
XML LONDON 2016
CONFERENCE PROCEEDINGS

UNIVERSITY COLLEGE LONDON,
LONDON, UNITED KINGDOM

JUNE 4–5, 2016

XML London 2016 – Conference Proceedings
Published by XML London
Copyright © 2016 Charles Foster

ISBN 978-0-9926471-3-1

Table of Contents
General Information. 4

Preface. 5

Forward with XSLT 3.0, processing uninterrupted live feeds and other goodies - Abel Braaksma. 6

XML, blockchain and regulatory reporting in the world of finance - Lech Rzedzicki. 18

Pioneering XML-first Workflows for Magazines - Dianne Kennedy. 27

CALS table processing with XSLT and Schematron - Nigel Whitaker. 31

Language-aware XML Aggregation - Malte Brunnlieb and Steffen B. Holzer. 38

Linked Data Templates - Martynas Jusevičius. 50

Scalability of an Open Source XML Database for Big Data - John Chelsom. 57

Best Practice for DSDL-based Validation - Soroush Saadatfar and David Filip. 64

A journey from document to data - Andrew Sales. 71

Structure-Aware Search of UK Legislation - John Sheridan and Jim Mangiafico. 78

Interoperability of XProc pipelines - Achim Berndzen and Gerrit Imsieke. 82

Using XForms to Create, Publish, and Manage Linked Open Data - Ethan Gruber. 99

Dynamic Translation of Modular XML Documentation Using Linked Data - Simon Dew. 108

Parse Earley, Parse Often - Steven Pemberton. 120

General Information
Date

Saturday, June 4th, 2016
Sunday, June 5th, 2016

Location
University College London, London – Roberts Engineering Building, Torrington Place, London, WC1E 7JE

Organising Committee
Kate Harris, Socionics Limited
Dr. Stephen Foster, Socionics Limited
Charles Foster, Socionics Limited

Programme Committee
Abel Braaksma, AbraSoft
Adam Retter, Freelance
Charles Foster (chair)
Dr. Christian Grün, BaseX
Eric van der Vlist, Dyomedea
Geert Bormans, Freelance
Jim Fuller, MarkLogic
John Snelson, MarkLogic
Mohamed Zergaoui, Innovimax
Norman Walsh, MarkLogic
Philip Fennell, MarkLogic

Produced By
XML London (http://xmllondon.com)

Preface
This publication contains the papers presented during the XML London 2016 conference.

This is the fourth international XML conference to be held in London for XML Developers – Worldwide, Semantic
Web and Linked Data enthusiasts, Managers / Decision Makers and Markup Enthusiasts.

This 2 day conference is covering everything XML, both academic as well as the applied use of XML in industries
such as finance and publishing.

The conference is taking place on the 4th and 5th June 2016 at the Faculty of Engineering Sciences (Roberts
Building) which is part of University College London (UCL). The conference dinner and the XML London 2016
DemoJam is being held in the UCL Marquee located on the Front Quad of UCL, London.

— Charles Foster
Chairman, XML London

Dealing with unlimited XML feeds using
XSLT 3.0 streaming

How to use streaming features to process uninterrupted and
unlimited live feeds of XML data

Abel Braaksma

Exselt
<abel@exselt.net>

Abstract

Working with unlimited XML feeds poses specific challenges
to processors. This paper will discuss those challenges and
shows how to solve them using standardized techniques
made available by XSLT 3.0 and the new streaming feature.
We will see how to set up the processor, how to deal with
buffering and flushing, how to handle errors and how to
handle a simple example feed with RSS and Twitter.

Keywords: XML, XSLT, XPath, Exselt

1. Disclaimer

This paper discusses new features defined in XSLT 3.0
and XPath 3.0. The XSLT 3.0 specification [1] is a
Candidate Recommendation, and information in this
paper may be superseded by changes in future additions
of this specification. You can track such changes through
the publicly available bug reports [2]. [3] is a W3C
Recommendation, this paper focuses on XPath 3.0 and
not on new features introduced in [4]. Where
appropriate, bugs of the specification that were
recognized at the time of writing have been incorporated
in the text.

This paper is based on the publicly available versions
of XPath 3.0, XSLT 3.0 and XDM 3.0 as of March 12,
2015, see [1], [3], [5]. Since XSLT 3.0 is not yet final, it
is possible that references and details change before the
final specification receives Recommendation status.

2. An introduction

In XSLT 2.0 it was not trivial to process an
uninterrupted live feed using a single stylesheet. XSLT
3.0 fills this gap with the introducation of streaming ,

which allows for any size of input document, including
perpetual XML streams like data or news feeds.

The typical reception by the public of the concepts of
streaming has been a combination of enthusiasm
("finally, we can deal with Big Data using XSLT") and of
criticism ("all that new terminology, what is posture and
sweep of a construct, what is operand usage and so on").
Most of these criticisms evolve around the fact that the
only available documentation is a handful of papers
(which often focus on the technical aspect of streaming)
and the XSLT specification itself, which is written with
processor implementors in mind, not the typical XSLT
programmer. Tutorials are currently hard to find, though
Dimitre Novatchev has done an excellent job of filling
that gap with courses on XSLT 3.0 concepts and more
advanced topics, available on Pluralsight, see [6].

This paper aims at filling at least a part of that gap.
While last year's talk on XSLT 3.0 was about The little
things [7] explaining many smaller but useful
enhancements of the XSLT language, this year's talk and
paper will be about practical application of certain
advanced concepts with everyday scenarios. We will see
that using these techniques, once undone of the
complexity of the language descriptions in the
specification, are quite easy to master. The result is, in
most cases, a cleaner stylesheet that can run on any
processor and with any size of input. The particular use-
case we will look at is about a Twitter feed, though the
methods and practices explained will be applicable to any
uninterrupted stream of data.

3. Setting up the environment

This paper will assume you will be using a conformant
XSLT 3.0 processor. While the specification is not final

doi:10.14337/XMLLondon16.Braaksma01Page 6 of 127

mailto:abel@exselt.net

1 See announcement on the xsl mailing list, https://www.oxygenxml.com/archives/xsl-list/201511/msg00025.html

yet, it is in Candidate Recommendation status1, which
means that the specification is generally frozen except for
fixing bugs that are found by implementors of the spec.
Conformant here means: conformant to the latest
version of the spec, or the Candidate Recommendation in
particular. As of this writing I am aware of two processors
that follow the specification as close as possible: Exselt
and Saxon. Other processors have announced that they
are in the process of supporting XSLT 3.0 but I am not
aware to what level they will support the streaming
feature. You can download Exselt from http://exselt.net
and Saxon from http://saxonica.com.

Considering that streaming is a specific feature that a
processor does not have to support, it may only be
available in the more extended editions of your chosen
processor. When you choose an edition, make sure to
choose one that supports streaming. This may be a part
of the Enterprise Editions of the processors, or available
as an add-on to the license.

Where this text uses processor-specific options, it will
use the syntax of Exselt. This is primarily related to
commandline options, which are somewhat different
between processors.

3.1. Quick guide to the commandline syntax
of Exselt

This section will briefly explain parts of the commandline
syntax of Exselt. It is not meant to be complete, but will
give you enough ammunition to run the examples in this
paper and to experiment a bit beyond that.

Other processors have similar syntax and
commandline abilitites. You may even find that many
options work the same way or use the same switches. For
more information, refer to your processor's
documentation.

Some commandline parameters can take either a URI
or an XPath expression (with, by default, the XSLT
stylesheet document root as context item, except for the
-xsl commandline switch itself). Where the expression is
ambiguous, for instance the commandline parameter-
xml:file.xml is both a valid URI and a valid XPath
expression, it will be treated as a URI. To have it treated
as an XPath expression use the syntax -

xml:xpath=file.xml, which in this case may not make
much sense and return the empty sequence. You can use
the syntax -xml:uri=file.xml to signify that it is an URI,
but this is also the default.

You can use spaces in your XPath expression, but this
may create an ambiguous commandline, in which case

you should wrap the expression in single or double
quotes.

Commandline parameters that do not take a URI
always take an XPath expression, though in many cases
this will be a numerical or string constant. For instance, -
param:$foo=12*12 will set parameter $foo to the integer
144

Commandline parameters that take a namespace
sensitive QName should either use the EQName syntax,
or use the prefixes of the namespace bindings of the
loaded stylesheet.

The following sections explain the commandline
switches needed to run the examples. More
commandline options are available, check
documentation of your processor. The Saxon notes below
are based on the official documentation found online.

3.1.1. Commandling switches for stylesheet
invocation

-xsl Sets the principal stylesheet module or the top-level
package. Takes a URI, a local file name, or an XPath
expression as input. This parameter is always required.

Ex: -xsl:twitter.xsl will run that stylesheet from
the current directory.

Saxon uses -xsl as well.
-xml Sets the input document, which means, it sets

the global context item and the initial match selection to an
instance of that document. Takes a URI, a local file
name, or an XPath expression as input. This parameter is
optional. If absent, the initial match selection and global
context item will be absent unless you use -ims or -gci,
which are more versatile.

Ex: -xml:feed.xml
Saxon uses -s instead, but syntax is the same. Saxon

also supports selecting a directory for input.
-o Sets the URI for the principal output document,

that is, the location of the output set by the unnamed
<xsl:output>. Takes a URI, a local file name, or an
XPath expression as input. If absent, stdout is used. The
target location must be writable.

Saxon uses -o as well.
-text Sets the input document, but here sets the

global context item and the initial match selection to a
string as if fn:unparsed-text was called. Takes a URI, a
local file name, or an XPath expression as input.

Saxon has no equivalent.
-text-lines Sets the input document for streaming

of text files. That is, it will set the global context item to
absent and the initial match selection to a sequence of

Page 7 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

https://www.oxygenxml.com/archives/xsl-list/201511/msg00025.html
http://exselt.net
http://saxonica.com

1 When using streaming with the -xml commandline option, by default you would set both the global context item and the initial match
selection to the same document. But in many cases this is illegal with streaming. Adding -gci:#absent you can override this behavior by
telling the processor to use no global context item at all. Alternatively, you can set it to a document, for instance a document with
settings or configuration options, to be used with your streaming input, but itself to be read without streaming. To prevent such complex
commandline scenarios altogether, you can force this behavior from within your stylesheet by using <xsl:global-context-item
use="absent" />.

2 The initial match selection and the global context item can now be set independently. This was done in XSLT 3.0 to allow for any input to
be used as initial input for the matching templates: it can be a string, a sequence of dates, a document, a map or it can be absent. This by
itself would create a controversy as to what the global context item (the item accessible with the expression . from global variable,
parameter, accumulator and key declarations) should be if the match selection is more than one item. Hence, XSLT 3.0 processors allow
you to set a different global context item. In Exselt, this can be achieved with using both -ims and -gci.

3 An addition to XSLT 3.0 was to allow similar behavior to int main() in C or C++, in other words, a starting point where processing
starts if no other arguments are present. For XSLT this is the template with the special name xsl:initial-template.

strings as if the argument was called with the function
fn:unparsed-text-lines. This mode of invocation was
added since using this function inside your stylesheet is
not necessarily streamable, but using it with this
commandline argument is always streamable. This allows
you to process large text documents using streaming.
Takes a URI, a local file name, or an XPath expression as
input.

Saxon has no equivalent, but you can reach the same
behavior through the API.

-gci Sets the global context item. The g lobal context
item can be different from the initial match selection (in
XSLT 2.0 these were always the same). Takes a URI, a
local file name, or an XPath expression as input, or the
special value #absent to force it to be absent1 or use the
special variable $ims to access whatever the initial match
selection is set to.

Ex: -gci:"map { 'subject' : 'Opera' }" will set the
global context item to this map. sets the global context
item to a map with one key, 'subject' set to the string
'Opera'.

Ex: -gci:$ims[2] will set the global context item to the
second item in the initial match selection , which may be
the empty sequence.

Saxon has no equivalent yet, but this may change due
to this being a new addition to the spec.

-ims Sets the initial match selection 2, can be used
instead of -xml to provide more control. They cannot
both be present. This commandline switch allows for any
item or sequence of items to become the initial match
selection. Takes a URI, a local file name (in which cases
it behaves similar to -xml), or an XPath expression.

Ex: -ims:"1,2,3" sets the initial match selection to a
sequence of three integers, which will each be processed
in turn.

Ex: -ims:"collection('.?select=*.xml')" will set
the initial match selection to all documents in the current
directory.

Saxon has no equivalent, though you can reach
similar behavior through the API or by using the -s

option with a directory. However, semantically these
approaches are different.

3.1.2. Commandline switches for stylesheet
invocation

The switches in this section are not required. If absent,
the default behavior with an input document is to start
with template based processing and the initial mode set to
the default mode. Without an input document, the
default is to start with named template processing , with
the initial template set to the special value xsl:initial-
template. Use the following commandline syntax to
override the default behavior.

-im Sets the initial mode(s). If all of -im, -it and -if
are absent and one of -xml, -text, -ims, or -text-lines is
present, then defaults to the default mode as specified in
the stylesheet, which itself defaults to the nameless mode.
Takes a sequence of EQNames , each name separated by a
comma, that correspond to modes in the stylesheet, or
the special values #default, #unnamed or an XPath
returning a sequence of QNames . The stylesheet is
invoked with the same arguments for each mode in the
sequence.

Saxon uses -im as well, but for namespaced QNames ,
you must use the EQName syntax. It doesn't accept the
special names.

-it Sets the initial template(s), syntax and behavior is
similar to -im. If neither of -im, -it, -if, -xml, -text, -
ims, or -text-lines is present then default to
xsl:initial-template 3

Ex: -it:main to set the initial template to main.
Ex.: -it:first,second,third will run the stylesheet

three times with each time a different initial template.
Saxon uses -it as wel, with the same restrictions as

for -im.
-if Sets the initial function(s), syntax and behavior is

similar to -im, except that it has no special values. To set
parameters, use the nameless parameter syntax explained

Page 8 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

1 A recent discussion in the XSL Working Group showed the necessity of such flexibility. At the moment of this writing, this bug is still
open, but I assume that all combinations mentioned here will be valid according to the XSLT 3.0 specification, or allowed as extensions.
See bug number 29499 in [2].

below, or use typical function-call syntax, as if you are
calling the function from XPath.

Ex.: -if:my:sum((1,2,3,4)) calls the my:sum function
with a sequence of four integer.

Ex.: -if:my:start calls the my:start function,
optionally with whatever you put in -param.

Ex.: -if:my:add(12,30),f:test('foo'),x:start will
call the three functions my:add, f:test, x:start with
other commandline parameters the same. The results will
be concatenated as with typical sequence normalization.

Saxon does not yet have a commandline switch for
invoking a function, but you can achieve the same result
through Saxon's API.

-param Sets the global parameters, or the nameless
parameters for the -it invocation. There are two distinct
forms. Either $var=expr or expr, where expr is a regular
XPath expression with other parameters, global variables,
accumulator and even stylesheet functions in scope of the
expression. This commandline switch can be repeated
multiple times, where order may be important if you
cross-reference parameters. The dollar sign is optional.

The order of nameless parameters must match the
order of the stylesheet function declaration and can only
be used with -if. The effective type of the param must
match the type of the declaration.

This commandline switch can be used to set global
parameters, inherited parameters from used packages,
parameters of stylesheet functions, parameters of initial
named templates, initial values for tunneled parameters
for template invocation.

Ex.: -param:"fourty" -param:42 sets the first
nameless param to a string and the second to an integer.

Ex.: -param:$foo=42 sets the parameter $foo to an
integer.

Saxon uses a similar syntax, but without the -param,
all parameters must come at the end of the commandline
and take the syntax key=value. Use ?key=value if you
want the value to be interpreted as an XPath expression.
Saxon does not allow the dollar sign to be prepended.

3.1.3. Commandline switches to manipulate
streaming behavior

-istream If set to yes, or used without argument, forces
the initial match selection to be loaded as streamed
documents. In case you run it against a sequence of
documents, each document will be streamed. This will
raise an error if the initial mode is not streamable, that is,
xsl:mode must have an attribute streamable="yes". It is

ignored when you use -it or -if invocation. This option
is normally not required, unless to differentiate between
the global context item and the initial match selection
and which of the two are streamable, or when loading a
collection of documents.

Saxon has no equivalent, though this may be possible
through the API.

-gstream If set to yes, or used without argument,
forces the global context item to be loaded as a streamed
document. This means that each global xsl:variable and
xsl:param and other declarations that access the global
context item must be motionless. By default, the global
context item is assumed to be non-streamable, but if you
run your stylesheet with the -xml option and the initial
mode or default mode is streamable, the global context
item will also be streamed and above rules apply. Using
this option with the -gci option you can initiate a
transformation with a streaming initial match selection
and a non-streaming, or streaming and different global
context item. Note that, if the xsl:global-context-item
is present and has the streamable property set either
implicitly or explicitly, this option should either be
omitted or set to the same value.1.

Saxon has no equivalent, though this may be possible
through the API.

-xstream Sets a special mode of operation for reading
the stylesheet XML itself. It serves the situation where
the data you want to stream is inside the stylesheet as
data elements in the root. This mode assumes that the
stylesheet, if read in memory at once, would be too large
because of these data sections. Such a stylesheet must
have all XSLT declarations before the data elements. All
data elements must come after the last declaration and
just before the closing </xsl:stylesheet> or closing </
xsl:package>. This allows the compiler to read and
compile the stylesheet or package without reading
through all the data elements and without running out of
memory.

Saxon has no equivalent.
-sr Sets the StreamReader to be used for streaming.

The default StreamReader accepts XML. For the purpose
of this paper, an additional StreamReader was added to
read RSS feeds as an indefinite stream, that is, it will poll
for new messages and not close the XML document.
Message are read with most recent last. To use this
StreamReader add -sr:RssStreamReader to the
commandline.

Saxon accepts alternative XmlReaders , which you
must enable on the classpath .

Page 9 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

1 Prior to the conference, all examples will be made available on http://exselt.net, including a copy of these instructions in case Argarwal's
blog disappears, and a ready-made twitter feed that can be configured with search criteria.

-ff Sets the flush frequency . The frequency is in Herz
and takes the format of an xs:decimal literal or an XPath
expression. For instance, setting -ff:0.1 will flush every
10 seconds and -ff:42 will flush 42 times per second.
The default is -ff:0.1. The default can globally be
overridden by setting the environment variable
EXSELT_FLUSH_FREQUENCY. See also the section on
flushing.

I've asked Saxon by mail on how to do this in Saxon
and the answer was that it can probably be achieved by
configuring a non-buffering output stream.

3.2. Running the examples

With the commandline arguments in place you should
have enough information to play around with the
examples or to experiment yourself. The examples can be
used with any [8] stream. For the purpose of these
examples, we use the Twitter RSS Feed Google script
made by Amit Argarwal, see [9]. It requires no
programming skills to set it up. It does require a Google
account. Simply follow the instructions on the referred to
web page1.

To run a stylesheet with a streaming input document,
perhaps the simplest is to use xsl:stream in your code.
For simplicity and shorter examples, the code in this
paper will assume (explained in the next section) that the
initial mode is the nameless mode (this is the default
since XSLT 1.0) and that this mode is explicitly set to be
streamable using the declaration <xsl:mode

streamable="yes" />. However, it is possible that your
processor does not support all commandline options
mentioned in the previous and this section. You can force
the examples to work with such processors by using the
xsl:stream instruction to load the external streamed
documents.

The simplest way to call a stylesheet is to have no
input document at all. The examples in this paper will
not use this approach though. Add a named template
such as the following (the name is pre-defined in XSLT
3.0) to your stylesheet:

<xsl:template name="xsl:initial-template">

 <xsl:stream href="streamed-source.xml">

 <!-- applies the principle node to the

 streamed default mode -->

 <xsl:apply-templates/>

 </xsl:stream>

</xsl:template>

Having this in place, where the href attribute points to
your streamed source document, you can run the
examples as well with the following simplified
commandline, which will auto-select the default initial
named template:

exselt -xsl:example.xsl

Most examples, unless otherwise mentioned, can be run
by using the following commandline with Exselt. For the
RSS examples to work with other processors, notably
Saxon, you may need to create the equivalent of the
StreamReader mentioned in the -sr commandline
argument. At the time of this writing I do not know if
Saxon supports indefinite streams, the question is still
open.

exselt -xsl:example.xsl

 -xml:feedurl.rss

 -sr:RssStreamReader

 -gci:#absent

The last line in the above example forces the global
context item to be absent. The default behavior of the -
xml argument is, for backwards compatibility reasons
with XSLT 2.0, to set both the global context item and
the initial match selection to the same input document.
But, as mentioned before, setting the global context item
to a streamed document can be problematic, it is
generally favorable to set it to the special value absent . A
cross-processor solution is to simply always use the
declaration <xsl:global-context-item use="absent" />
in your code to prevent this from happening. Exselt will
detect this scenario and will prime your stylesheet
without the global context item set if you use -xml or -
ims commandline options without a specific -gci option.

For examples that require a separate global context
item, the following commandline can be used:

exselt -xsl:example.xsl

 -xml:feedurl.rss

 -sr:RssStreamReader

 -gci:"document('settings.xml')"

 -gstream:no

If you want to try the examples with multiple RSS feeds,
which will mean they will be processed one after another
requiring the first feeds to be terminal, you can use the
following commandline, which uses the initial match
selection to set multiple streams. This can also be achieved
by code by using the xsl:stream instruction on each

Page 10 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

http://exselt.net

URI. In Saxon you can get similar behavior by using a
directory search pattern.

exselt -xsl:example.xsl

-ims:"document('feed1.rss','feed2.rss','feed3.rss')"

 -istream:yes

 -sr:RssStreamReader

 -gci:"doc('settings.xml')"

 -gstream:no

Finally, if you want to experiment with the global context
item itself being streamable, which requires the
xsl:global-context-item to be present with an attribute
streamable="yes", you can use the following
commandline:

exselt -xsl:example.xsl

 -xml:feedurl.rss

 -sr:RssStreamReader

The above will use the following defaults automatically:

exselt -xsl:example.xsl

 -xml:feedurl.rss

 -sr:RssStreamReader

 -gci:feedurl.rss

 -gstream:yes

In other words, it will use the feed from the -xml
argument as the global context item. This allows you to
access the streamed document from within global
declarations like xsl:accumulator and xsl:variable. Be
aware that this is an advanced concept and that you can
only use motionless expressions in the global declarations
(that is, the global declarations are not allowed to
advance past the root element).

3.3. Boilerplate for the examples

The examples, for the sake of brevity, will omit
boilerplate code. The templates, functions and other
declarations should be put inside the following base

stylesheet used for streaming. Without additions, it will
act as an identity template:

<!--

 using xsl:package instead of xsl:stylesheet

 enforces that modes have to be declared, which

 prevents type errors

 -->

<xsl:package

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs"

 expand-text="yes"

 version="3.0">

 <!-- sets the initial default

 mode to streamable -->

 <xsl:mode streamable="yes"

 on-no-match="shallow-copy"/>

 <!-- remove the xml decl in the output -->

 <xsl:output method="xml"

 omit-xml-declaration="yes"/>

 <!-- prevent the global context item

 to be there at all -->

 <xsl:global-context-item use="absent"/>

</xsl:package>

4. Understanding difference
between global context item and
initial match selection.

In a typical transformation scenario there's a triplet of a
stylesheet, that contains the programming logic, an input
document that needs to be processed, and an output
document containing the result.

That is no different with streaming. However, you
need to instruct the processor that you want to use
streaming. This can be done by using <xsl:mode

streamable="yes" />. This will set the initial mode to be
streamable and when you call the stylesheet in the
normal way, the processor will detect that it should read
the input document using streaming.

However, in XSLT 2.0 there was always only one
input document and the processor would present the
stylesheet with a document node of that input
document. In XSLT 3.0 this has changed. While the
above is still the default for backwards compatibility, the
input sequence can now be anything, ranging from an

Page 11 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

empty sequence, to a sequence of strings, dates, integers
maps etc, to a sequence of a single or multiple
documents, or even a mix of all of the above.

Since global variables and parameters and the like can
access the context item, for instance with <xsl:variable
name="settings" select=".//settings" /> to retrieve an
element named settings from the input document, the
question rises, if the input contains multiple items and
not necessarily documents, what is this context item set
to?

To differentiate between the two, XSLT 3.0
introduces the global context item and the initial match
selection . They do not have to be the same. It is up to the
processor's API or commandline interface to set these to
different values. It can be expected, but is by no means
necessary, that if the input sequence, which is the initial
match selection , is a sequence of more than one, that the
first item will serve as the global context item .

The commandline reference summary in the previous
section explains how to set this for Exselt, for Saxon you
can set this by API only, as of yet there is no way to set
this to different values using commandline parameters
only.

4.1. Relation between streaming, global
context item and initial match selection

When it comes to streaming, the processor can easily
detect when there is a single input document and when
the stylesheet has an <xsl:mode streamabe="yes" />.
However, for the global context item this is not so trivial.

A streamable construct is a construct that has
expressions or nested constructs that together are
guaranteed streamable . This paper will not discuss the
rules of guaranteed streamability, other papers are
available for that, including some of myself. In case of
the global context item, for a global declaration like
xsl:variable to access a streamed input document, the
processor must be informed about this by the use of
<xsl:global-context-item streamable="yes" />, which
in turn puts restrictions on the global declarations: they
may only contain grounded, motionless constructs.

It is rarely necessary to use this mechanism, unless
you want to maintain some information, for instance the
input document URI, for reference in other constructs.

A more serious issue arises if you would access the
global context item and you do not specify that it must
be streamable. Suppose you want to read the settings of
the input document as explained above. Such a construct
would be illegal with streaming.

A scenario like that can be achieved by setting the
global context item to a different document than the

initial match selection and to override that it must not be
streamed. You can get to this behavior by using the -gci
and the -ims commandline switches together with the -
istream and -gstream switches to instruct the processor
that the global context item should, or should not be
streamed. This scenario is most useful when the input
document should be streamable, but the global context
item should not.

Note that, if you set the global context item to a
streamed document and you do not provide the same
item in the initial match selection, that you cannot access
anything else than the root element of that document.
While an allowed scenario, in practice this is of little use.

5. Reading an uninterrupted stream

An uninterrupted stream, eternal stream, neverending
stream is a stream that has a start, namely the moment
the stream is requested, but no end. Processing such
streams poses an extra challenge on processors because it
requires them to do intermediate flushes, otherwise the
result document will be created in memory, but never
released, leading to an eternally running processor but no
output document.

One of the simplest conceivable uninterrupted
streams is a time ticker. For purposes of testing the
examples in this paper I have created an online time
ticker that can be found at http://exselt.net/time-ticker.
The stream looks something like this:

<ticker>

 <time>2016-06-15T15:04:36+01:00</time>

 <time>2016-06-15T15:04:37+01:00</time>

 <time>2016-06-15T15:04:38+01:00</time>

 ...

Not a particularly entertaining stream, but it works as an
example. It is somewhat similar to a ping command, that
it will return an element each second and leave the
connection open. It will never close the opening root tag.

You can process this stream using the example
boilerplate code, store it as timefeed.xsl, without any
additions and the following commandline:

exselt -xsl:timefeed.xsl

 -xml:http://exselt.net/time-ticker

 -gci:#absent

 -o:output.xml

You should now see a document output.xml that is
growing each time a new element is read from the input
stream. Since we use an identity template, seemingly

Page 12 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

http://exselt.net/time-ticker

1 With uninterrupted streams it can be dangerous to use fn:copy-of, xsl:copy-of and similar instructions, especially when operated on
the element that will never be closed, in this case the root element ticker. Since these copy-of instructions are supposed to read to the
end of the element, and there is no end of an element, it will lock your processor until it is forcibly closed. It may also crash your
processor, as essentially you are telling the processor that you can read the whole element in memory, which in this case clearly isn't
possible, leading to an out-of-memory exception.

2 It is possible that processors may provide a mechanism for closing the output stream when the stream is interrupted, but this is API
design and out of scope of the specification. In fact, it more likely that the XmlReader you are using can close the stream neatly when it
is interrupted, providing, in this case, the closing </ticker> to keep the XML well-formed.

nothing special happens and we output exactly the same
as the input.

The added -gci:#absent is not required, but makes it
clear that we do not want to set the global context item
to the same as the stream, see previous section for a
discussion.

Behind the scenes, this example uses the default
matching templates for shallow-copy , which means that
each node is processed and then its children are
processed, and when there's no match, they will be
copied. The behavior is similar to the identity template
using xsl:copy on non-matched items. This is different
from deep-copy , where the children are not processed
separately and once there's no match, the whole node
and all its children are copied to the output stream,
similar to xsl:copy-of 1.

5.1. Elaborating on the time-ticker

Let's expand a bit on the previous example and do
something a little bit more useful. Let's print the time in
a more humanly readable format, by adding the
following to the example:

<xsl:template match="ticker">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="time">

 <current-time>{

 format-time(., '[H01]:[m01]:[s01] [z]')

 }</current-time>

</xsl:template>

The output will now look something like:

<current-time>23:45:12 GMT+1</current-time>

<current-time>23:45:13 GMT+1</current-time>

<current-time>23:45:14 GMT+1</current-time>

...

We deliberately didn't output a root element, as we
won't be able to close it anyway2. By creating a sequence
of root elements, it may be easier to post-process this
stream, but of course that is up to whatever application
you want to process this further with.

Let's look at the example a bit more closely. The first
template, which has no mode attribute so it sits in the
unnamed mode, which is streamable because we use our
boilerplate example, skips the root element and processes
its children elements. This is called a downward selection
or more properly, a consuming expression. In streaming,
consuming expressions are allowed (they literally consume
the input stream, i.e., they move the reading pointer
forward through the stream data), as long as there is a
maximum of one consuming expression per construct.
All examples in this paper will use proper guaranteed
streamable expressions, for a discussion of such
expressions, several papers, talks and tutorials are
available online, on overview of which can be found at
http://exselt.net/streaming-tutorials.

The second template operates on time elements and
formats them in a more humanly readable format. The
curly brackets act as text value templates , which is similar
to attribute value templates from XSLT 2.0 and can take
any XPath expression, but can be applied to any place
where a text node is created, provided you have the
expand-text="yes" in a parent element. We set it already
on the root xsl:package, so we can use this syntax
everywhere.

This template, inside the text-value template uses the
function fn:format-time with the context item
expression .. This function consumes its first argument
and formats it. Since this whole matching template has
only one consuming expression, it is streamable.

6. Challenges with uninterruped
streaming

Several challenges exist for processors that support
uninterrupted streaming that are not directly addressed
by the specification, which means the specification leaves
it the API of the processor to address those challenges.

First of all, it is no requirement at all that processors
are able of reading an uninterrupted stream. Supporting
streamability means that processors can process arbitrary
large XML documents, it doesn't specify anywhere what
the maximum size is, though it implies that the size can
be unlimited, that is, an eternal stream, instead of a large

Page 13 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

http://exselt.net/streaming-tutorials

document that is too large for memory, but nonetheless
has a beginning and end.

Secondly, processors are not required, though
encouraged, to provide limited buffering on the output
stream. If a processor does not provide buffering, and
your stylesheet is such that the output stream grows
porportionally to the input stream, it will eventually,
given enough time, run out of memory. Furthermore, in
such cases the output will never appear physically, as it is
maintained in memory and not flushed in-between.

A third challenge is how to deal with interrupting the
unlimited stream. Suppose you would simply hit Ctrl-C
on the commandline, the processor will crash with an
error and what is written to the output may be a broken
document. The API may in such case provide a
mechanism to close the stream properly.

Several of those mechanisms have already been
discussed above with the commandline reference (see the
-ff switch to control the flush frequency). A further
improvement could be to allow flushing at a number of
elements or a number of bytes. Or to allow no flushing at
all, but to wait until the stream is completed and force
the processor to keep everything in memory.

At present, Exselt, and I believe Saxon too, does not
provide a mechanism by default to break the stream in a
neat way. However, it can be expected that such options
will become available in the near future. For now it
means that if you interrupt the stream forcefully, the
behavior is processor-dependent. If a part of the stream is
already flushed, at least that part will be readable.

6.1. Dealing with errors

XSLT 3.0 introduces xsl:try/xsl:catch for catching and
recovering from errors. This instruction comes with the
attribute rollback which takes a boolean value. If set to
"yes" it instructs the processor to buffer enough of the
output (and not flush it) so that it can recover from the
error by rolling back. An alternative mechanism can be
provided by use safe points or recovery points .

This approach is not very helpful for errors resulting
in unlimited streams, as that would require unlimited
buffering for the processor to recover from a potential
error. On a smaller scale you can still use this though, for

instance by using a try/catch around a leaf node, in our
example we could do it inside the time element:

<xsl:template match="time">

 <xsl:try rollback="yes">

 <current-time>{

 format-time(., '[H01]:[m01]:[s01] [z]')

 }</current-time>

 <xsl:catch>

 <current-time>invalid time</current-time>

 </xsl:catch>

 </xsl:try>

</xsl:template>

This works as can be expected. Where we to use this
without the rollback attribute, the processor may not be
able to recover from the stream leaving the output in an
inderminate state.

In case we would wrap the whole stream in a try/
catch we would everntually run out of memory, because
everything would need to be buffered to allow rolling
back. In practice this mechanism is only useful on
smaller elements that can easily be buffered.

7. Processing a twitter feed

Now that we have seen how a trivial uninterrupted feed
can be handled, let's see how we can process an
unlimited RSS twitter feed.

The URL created from the section on obtaining the
Twitter feed as RSS will look something like https://
script.google.com/macros/s/AKfycbxSzab_rjrOSSF1s6N-
C5kjXLdD0ZQZx-Zu3sqaeKS3Y38Bd6Y/exec?
730658803637727232 (on one line without spaces).

Page 14 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

1 A similar function exists that is called fn:parse-xml, but that requires a single root node. This is not guaranteed with this Twitter feed,
so we use fn:parse-xml-fragment, which wraps it in a document node.

Using the RssStreamReader mentioned before, with this
URI, will create a stream of the following format:

<rss version="2.0"

 xmlns:atom="http://www.w3.org/2005/Atom"

 xmlns:media="http://search.yahoo.com/mrss/">

 <channel>

 <title>Twitter RSS Feed ...</title>

 <!-- some information

 removed for readability -->

 <item>

 <title>

 <![CDATA[Abel Braaksma: @gimsieke lol,

 you got me, I thought it was

 http://twitter.com

 acting up after my browser

 crashed and restarted ;p]]>

 </title>

 <pubDate>2016-02-20T11:10:23+0000</pubDate>

 <author>Abel Braaksma</author>

 <!-- some info removed for readability -->

 <description>

 <!-- descr in esc. XHTML markup -->

 </description>

 </item>

 <item> ... next item

If you open the URI with a browser, it will show the
most recent first. When you open it with the
RssStreamReader the most recent item will come last.
Whenever a new tweet is sent to this Twitter account, the
reader will read it and append it to the input stream.

Using the commandline syntax discussed earlier we
can read this stream as an uninterrupted stream. The
closing </rss> will not be sent to the processor using our
reader, making it easier to deal with the stream.

7.1. Getting the Twitter descriptions

To get started, let's take our boilerplate code and try to
output only the description:

<xsl:template match="*">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="item/description">

 <div>

 <xsl:copy-of select="parse-xml-fragment(.)"/>

 </div>

</xsl:template>

This example skips over everything and then loads the
XML-as-string using the new XPath 3.0 function
fn:parse-xml-fragment 1 to interpret this escaped XML
as proper XML and output it.

The result is that on each flush, an element <div> is
added with as its content the tweet from the current feed.
Those div elements could be appended to any existing
HTML page, for instance by using AJAX technology.

7.2. Processing the result

Since we are dealing with uninterrupted feeds, the result
will also be an uninterrupted feed. To process this
further, we need to feed it to a system that can process
such streams. Since we are currently outputting XML
this may not be trivial and moves the burden of
processing an unlimited stream to the next tool in the
chain.

An easier way out is to use the xsl:message

mechanism of XSLT. This creates a document node each
time it is called and this document is fed to a message
listener . Both Saxon and Exselt provide an easy interface
to create a listener through the API which can react to
new messages whenever they appear and process them
further, for instance by sending them to a database,
making a push message to a mobile phone app or turning
it into a new feed for a web page.

The example above would look as follows when using
this technique:

<xsl:template match="*">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="item/description">

 <xsl:message>

 <div>

 <xsl:copy-of select="parse-xml-fragment(.)"/>

 </div>

 </xsl:message>

</xsl:template>

7.3. Accumulating data of the Twitter feed

Just processing a Twitter feed as explained above is not
particularly challenging and can be achieved by a myriad
of other techniques as well. But what if you want to
accumulate data, let's say the nth message send in this
feed?

Page 15 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

This cannot be done by using standard XSLT 2.0
mechanisms. This was recognized when XSLT 3.0
introduced streaming and the xsl:accumulator

instruction was added for this purpose. An accumulator
is created declaratively and globally and does what its
name implies: it accumulates data that is passed through
as a stream. You can look at is as a way of appending
meta-data to elements and other nodes that pass through
while streaming, which can be read out at a later stage
using the functions fn:accumulator-before and
fn:accumulator-after.

The reason this cannot be done is because in
streaming, you cannot look back or peek forward . In
other words, you simply cannot do something like
count(preceding-sibling::*), which might suffice here
to simply count all the tweets that have been passed
through up until the current tweet.

The following example shows how we can count with
an accumulator, expanding on our existing example:

<xsl:accumulator name="count"

 streamable="yes"

 initial-value="0">

 <xsl:accumulator-rule match="channel/item"

 select="$value + 1"/>

</xsl:accumulator>

<xsl:template match="*">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="item/description">

 <xsl:message>

 <div>

 <p>This is message {

 accumulator-before('count')

 }</p>

 <xsl:copy-of select="parse-xml-fragment(.)"/>

 </div>

 </xsl:message>

</xsl:template>

As long as we do not restart or interrupt the stream, the
accumulator will continue to add 1 each time it
encounters a new <item> and we can access this value by
using the fn:accumulator-before function. This function
is motionless , which means we can use it as often as we
want inside a single construct. In fact, the accumulator
itself must be motionless as well.

7.4. Accessing the global context item to set
defaults for the accumulator

The previous section showed how to count messages. But
what if we know the stream will not start with showing
all the past messages, but will start with the current
message, and we have a different XML feed that will
return the total messages processed?

There are several approaches to this, the approach I
will present here is by using a settings document that
contains the necessary metadata and set this as a non-
streamable global context item. Use the -gstream:no -
gci:settings.xml as additional commandline
parameters.

Suppose we feed our processor an additional settings
document that, for the purposes of keeping the example
brief, looks as follows:

<settings>

 <!-- set how many have been processed already -->

 <tweet processed="325" />

</settings>

With the commandline parameters specifying that the
the global context item is not streamed (if it were
streamed it would be illegal unless we also have the
xsl:global-context-item with streamable="yes" present
as mentioned previously) we can update our accumulator
as follows:

<xsl:accumulator name="count"

 streamable="yes"

 initial-value="xs:integer(

 ./settings/tweed/@processed)">

 <xsl:accumulator-rule match="channel/item"

 select="$value + 1"/>

</xsl:accumulator>

Normally, if the global context item were indeed
streamable and we had added the xsl:global-context-
item to make the stylesheet valid, we would not be able
to use the expression above, because all expressions that
access the global context item must be motionless.
Traversing down the tree is consuming , which is not
allowed.

Since we specified explicitly that we can read the
settings document in one go, without streaming, the
consuming expression is of no influence to the
streamability and the output will start counting with the
number 325 as expected.

Page 16 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

1 If you need multiple downward expressions, you can use the instruction xsl:fork, which creates a forked stream , that is, you can have
any number of downward selections in the children of that instruction and they may even overlap, the processor will create multiple read
pointers to deal with this.

7.5. Expanding on the Twitter feed example

We have seen some trivial examples that use an RSS feed
as unlimited XML stream. The examples here were
necessarily trivial to show how this process works. To
expand on these examples, for instance by adding layout,
more information, process timestamps of the feed etc.,
you can simply append the necessary matching
templates. Keep it simple, as each template is allowed at
most one downward expression1.

To expand on the accumulator, for instance to
provide a character-average, or other calculations, you
can add new accumulators or update the existing ones.
While doing this, make sure that the expressions you use
do not consume the tree. This can be tricky at times, but
you can circumvent more complex scenarios by
referencing accumulators from each other to create more
complex expressions and to refer or combine
calculations.

A more elaborate example that shows this and other
techniques is available online from http://exselt.net/
papers and will also be presented at XML London 2016.

8. Conclusion

While XSLT 3.0 does not directly address unlimited
XML feeds, the streaming feature comes with enough
capabilities for processors to support it without really
resorting to processor-specific extensions. While some of
this paper discussed processor-dependent ways of
invoking stylesheets, the principles shown here can be
applied with any capable processor, provided they
support intermediary flushing.

I've kept the examples necessarily brief to focus on
the matter at hand: uninterruped, unlimited streaming.
We've seen that we can process a feed of timestamps, a
Twitter feed or essentially any feed. Using techniques
presented here you can process XML streams that are
indefinite, a capability that was not available in XSLT
2.0, but could now become a mainstream approach for
the many live feeds that we work with everyday on our
phones, websites or apps.

Bibliography

[1] XSL Transformations (XSLT) Version 3.0, Latest Version, Candidate Recommendation. Michael Kay.
http://www.w3.org/TR/xslt-30/

[2] Bugzilla - Public W3C Bug / Issue tracking system. 2014. Miscellaneous authors.
https://www.w3.org/Bugs/Public/

[3] XML Path Language (XPath) 3.0, W3C Recommendation 08 April 2014. Jonathan Robie, Don Chamberlin,
Michael Dyck, and John Snelson.
http://www.w3.org/TR/xpath-30/

[4] XML Path Language (XPath) 3.1, W3C Candidate Recommendation 17 December 2015. Jonathan Robie, Don
Chamberlin, Michael Dyck, and John Snelson. Discussed version: http://www.w3.org/TR/2015/CR-
xpath-31-20151217/, Latest version: http://www.w3.org/TR/xpath-31/.

[5] XQuery and XPath Data Model 3.0, W3C Candidate Recommendation 08 January 2013. Norman Walsh, Anders
Berglund, and John Snelson.
http://www.w3.org/TR/2013/CR-xpath-datamodel-30-20130108/

[6] XSLT 3.0 new features. Dimtre Novatchev . 2014. Pluralsight.
https://www.pluralsight.com/courses/xslt-3-0-whats-new-part1

[7] It's the little things that matter. XML London. 2015. Abel Braaksma.
doi:10.14337/XMLLondon15.Braaksma01

[8] RSS 2.0, Really Simple Syndication.. Dave Winer.
http://cyber.law.harvard.edu/rss/rss.html

[9] Creating an RSS feed from a Twitter query. Amit Agarwal. 2016. Labnol.
http://www.labnol.org/internet/twitter-rss-feed/28149/

Page 17 of 127

Dealing with unlimited XML feeds using XSLT 3.0 streaming

http://exselt.net/papers
http://exselt.net/papers
http://www.w3.org/TR/xslt-30/
https://www.w3.org/Bugs/Public/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/2015/CR-xpath-31-20151217/
http://www.w3.org/TR/2015/CR-xpath-31-20151217/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/2013/CR-xpath-datamodel-30-20130108/
https://www.pluralsight.com/courses/xslt-3-0-whats-new-part1
http://dx.doi.org/10.14337/XMLLondon15.Braaksma01
http://cyber.law.harvard.edu/rss/rss.html
http://www.labnol.org/internet/twitter-rss-feed/28149/

XML, blockchain and regulatory reporting in
the world of finance

Combining the strengths and weaknesses of mature and modern
technologies to drive innovation and regulatory compliance

Lech Rzedzicki

Abstract

The regulatory burden for financial institutions makes it a
hard environment to innovate, yet the unfavourable market
conditions mean that banks must adopt the latest
technologies to cut costs and keep up with the market
demands.

This paper aims to show a technical proof of concept of
how to combine the seemingly opposite goals of using a
combination of tried and tested XML technologies such as
XSLT and Schematron in conjunction with experimental
distributed ledger technology to drive both regulatory
compliance and implement innovative features such as inter-
bank trade settlement using blockchain technology.

1. Background

1.1. XML in regulatory reporting

XML 1.0 is by now a very mature standard. As most of
the audience will know, the standard hasn't changed in
20 years. XML 1.1 hasn't been widely adopted and no
one is contemplating XML 2.0 to replace XML 1.0
anytime soon.

The strength of that is stability, great tool support,
human readability and the reach.

This means XML still is, probably more than before,
a good archival and reporting markup. Worst case
scenario is someone will open it in 20 years time in a text
editor and it will still be readable.

Enter the magical world of finance where common
sense quickly disappears and is replaced by exotic,
derivative products such as index variance swaps, whose
main goal is to depart the client from their money.

It is hard to prove whether the complex financial
product was engineered as a way to improve the bottom
line of financial institutions or are truly filling a market
need such as shielding clients from the volatility of the
equities markets or commodity prices.

What is universally true however is that the products
are complex and it is often hard to figure out who is
exposed to risks and to what extent.

As a result various regulatory bodies, such as the FCA
have started requiring more and more reporting on the
trades, positions and risks.

As it happens XML is a great fit for this purpose and
XML (and more specifically XML standard called
FpML) has been a de facto standard for regulatory
reporting to the extent that the regulatory bodies require
that the reporting be done in XML

Regulatory reporting is one of the major
considerations and driving forces for any established or
upcoming financial organisations in 2016.

1.2. Fintech innovation and blockchain

Another trend in 2016 is the need to radically disrupt or
reinvent and optimise financial services institutions.

Even armed with a full suite of exotic financial
products and masses of individual and institutional
clients, in an era of negative interest rates and fierce
competition from non-traditional players such as
supermarkets and tech companies, financial institutions
find that a combination of low yields and high regulatory
costs make it impossible to retain status quo and still
provide sufficient returns back to clients and
shareholders.

Executives in financial institutions are desperately
looking for solutions and for many they have found the
holy grail by the name of blockchain.

Originally devised by the mysterious Satoshi
Nakamoto for the purposes of using with bitcoin, the
concept of a distributed ledger is a powerful one.

Blockchain or distributed ledger uses solid and well
known cryptography around factoring large prime
numbers to make it hard to calculate and verify
transactions on the ledger and mathematically nearly
impossible to alter them by any single contributor.

doi:10.14337/XMLLondon16.Rzedzicki01Page 18 of 127

By now the technology has enjoyed a massive wave of
early adopter hype and financial institution have been
heavily looking at using it for trade settlement and smart
contracts.

A single project called r3cev alone has gathered over
40 international financial institutions and has recently
completed the early tests with 11 of them.

It is therefore an excellent example of an innovative
technology that many financial institutions would like to
try and we will be using it in the paper to showcase how
innovation, XML and regulatory reporting can play
together nicely.

1.3. Distributed ledgers history

Ledgers have been used throughout human history, from
Sumerian records of harvests and crop usage 4500 years
ago through to the tracking of bad debts by the Medici
bank in the 14th and 15th Century. Today’s modern
double-entry ledgers can trace their roots back to early
Islamic records in 7th Century and were first publicly
codified in Venice in 1494 by Friar Luca Pacioli based on
the practice of Venetian merchants of the Renaissance.
Distributed ledgers represent the next evolution of these
devices.

1.4. What is a distributed ledger?

A distributed ledger is essentially an asset database that
can be shared across a network of multiple sites,
geographies or institutions. All participants within a
network can have their own identical copy of the ledger
and any changes to the ledger are reflected in all copies in
minutes, or in some cases, seconds. The security and
accuracy of the assets stored in the ledger are maintained
cryptographically through the use of ‘keys’ and signatures
to control who can do what within the shared ledger.
Entries can also be updated by one, some or all of the
participants, according to rules agreed by the network.

It is important to understand that typically the design
is such that you can only add new entries to the ledger
and can not remove previous entries. If you wish to
amend entries, you add a new, corrected entry and a
reference the old one.

This also means that the ledger, whether it is stored as
a file or in a database, will grow over time which is both a
strength and a weakness. It makes it almost impossible to
falsify previously added information, but it also makes it
hard when you truly need to change the information – a
person changes name, or there was any other factual error
when entering the information on the blockchain.

1.5. What can you use distributed ledgers for?

There are three core use cases where distributed ledgers
can be used:

• To secure an enormous range and type of value
transactions – from simple money transfers, of which
bitcoin provides the best exemplar, to complex
registration of asset ownership and transfer such as in
the financial services industry.

• To provably convey trust between parties and verify
provenance, reputation or competence – certification
of university qualifications, the status of components
within a complex supply chain such as an aircraft
engine manufacture.

• To serve as the backend execution environment, a
distributed "computer in the cloud", where
algorithms are executed on the blockchain rather than
on any particular machine.

There is also a number of areas where people see
blockchain as the holy grail and mistakenly think it can
be applied to anything from preventing diamond
forgeries to solving blood bank reserves inefficiencies.

As a general rule, whenever there is a part of the
system that can not be put “on the blockchain”, for
example physical assets, or 3rd party IT systems, a
blockchain solution is unlikely to work as information
can be changed easily outside the blockchain.

1.6. Blockchain challenges

There are currently a number of fundamental challenges
with blockchain based distributed ledgers, particularly
around scalability and privacy of information on a public
blockchain (many of these are resolved in a private
blockchain systems).

The scalability challenges are numerous - the
transaction limits for blockchain based systems are low
(20 per second for Ethereum, a common next generation
blockchain system), the energy requirement for proof of
work based consensus systems is huge (the Bitcoin
network is estimated to use as much energy as the
republic of Ireland), although distributed amongst many
parties, the requirement for each node to hold a copy of
the full ledger means the cost of storing data on the
blockchain is computationally high (although this is
mitigated by other distributed storage systems such as
IPFS).

Privacy challenges exist as a result of each node
holding a copy of the ledger – all transactions are visible
to all parties currently unless encryption is used on the
data. The immutability of the blockchain also raises a

Page 19 of 127

XML, blockchain and regulatory reporting in the world of finance

potential legislative challenge around the European “right
to be forgotten”. How do you erase records on the
blockchain?

Due to the above concerns, usually the blockchain
stores just a hash – a signature of the transaction or
information and the private information is stored
separately in a wallet and protected by a private key. This
is turn means that if a private key is lost, it makes it
impossible to verify any previous or future information
for that key.

Distributed ledger can only be used to verify the
information on the blockchain. If the data is falsified or
tampered with before or outside of blockchain, a
distributed ledger can only verify that the data is not on
the ledger. An example here is diamonds and Everledger.
Everledger takes several measurements of the diamonds
(the way it is cut, the colour, size etc) and puts this
information on the distributed ledger. If the diamond is
lost or stolen and surfaces again, it can be easily
identified by taking the measurements again and
comparing the database stored on the distributed ledger.
This parallel verifiable digital certification on the
blockchain can assure buyers and sellers of the
provenance of the item.

Unfortunately, all it takes for a savvy thief to avoid
this is to change the qualities of the diamond slightly – in
the process the diamond might lose some value, but it is
very likely that a thief will prefer that to getting caught.
To sum up and generalise this issue, any inputs or
outputs that are not on the blockchain are vulnerable,
hence the movement to smart contracts and trying to do
as much as possible inside the blockchain.

More research and good education for decision
makers is key here – this will prevent using blockchain
where it is not appropriate – for example where data
changes often, or high performance or efficiency is
required. Many of these difficulties are the subject of
active research projects, and in the UK, EPSRC are
launching a call this summer to support the research
further with up to 10 small scale project grants with a
total of £3M.

1.7. The opportunity for distributed ledgers

Despite all the identified challenges, the opportunities
for distributed ledgers are potentially huge. Systems such
as Ethereum, Eris, NXT, R3CEV, with integrated smart
contracts, offer the ability to place complex business logic
on a public or private system where they can be triggered
by transactions – contract signing, approval of work,
external events etc.

The most direct beneficiary of distributed ledgers
technologies are the platform developers (initially
developing the private blockchain solutions) and the
application developers. In common with many open
source companies, the platform business model is to sell
proprietary value around an open source core. One
analogous example is Red Hat – a linux distribution
provider that offers their core product free of charge and
then offers consultancy, integration and development
services to enterprises – recently they were valued at $2B.

Assuming there is large scale adoption, application
developers stand to create value in the same way that the
app ecosystem has developed on the Apple and Android
mobile platforms.

Distributed ledgers allow for complex business
processes between parties who do not implicitly trust
each other to be automated and hence significant cost
savings to be achieved in many sectors. The classic
example is financial instrument trade reconciliation but
supply chain is another commonly talked about use case.
In many of the use cases, the core focus is about cost
reduction through the removal of unwanted middlemen
or through the reduction of duplicated effort across
untrusted parties. Distributed ledgers may also improve
transparency and efficiency, by ensuring that regulators
and other third parties have full, real time views of
transactions.

1.7.1. Smart contracts and Distributed Autonomous
Organisations

Smart contracts are beyond the scope of this short
presentation, but many in the world of blockchain speak
about distributed autonomous organisations (DAO),
written in code and deployed on the blockchain these
lend themselves strongly to new business structures or
digitisation of e.g. cooperatives. How these will develop
is unknown at this point, but initial DAO’s have raised
millions of pounds in blockchain crowdsales.

An example of that is Ethereum, where any
computation cost can be covered by spending a virtual
currency – Ether. Software developers wishing to execute
their programs on Ethereum network can choose to
outright buy the Ether computing units or provide the
computational resources themselves and even sell the
excess power in exchange for Ether/money. Such an
infrastructure is somewhat similar to cloud services
provided by Amazon or Google, where the price is set by
the factors such as electricity costs and demand, but with
distributed ledger, it is much more fair to smaller players
and there is no single entity that can control the network
and switch off an application.

Page 20 of 127

XML, blockchain and regulatory reporting in the world of finance

The existence of such networks enables the execution
of "Smart Contracts" - autonomous code running on the
blockchain (as opposed to a single machine). Given
certain conditions, the code can execute automatically.

A simple example here is bond coupon payment – in
a typical bond issue, the buyers buy the bond for 100%
of the price and the issuer repay the bond in instalments.

Traditionally this involves issuing paper certificates of
bond ownership and manually sending money via
cheque or bank transfer every month and keeping track
of what's been repaid etc. Assuming that all the
participants – bond issuer and the buyers are also
participating in the same distributed ledger network that
is capable of executing smart contracts and sending
virtual currency, the process can be simplified vastly,
possibly even removing the need for intermediaries such
as banks (for sending money) and law firms (for writing
up the contracts). In such a scenario a bond issuer, would
issue a smart contract to be viewed, audited, verified and
accepted by the buyers and upon accepting, the funds
would be automatically transferred to the issuer. Likewise
every instalment the issuer would automatically pay back
the coupon payments.

Smart contracts can enable a whole range of
scenarios, from distributing aid money, through voting,
secure communications and probably a number of areas
that have not been discovered yet. Still the challenges
described above remain.

The successful exploitation of smart contracts requires
solving the technical challenges, but also changing laws
and regulation and ensuring that the disruption caused
by the automation has a net positive effect on societies
and the economy.

2. Thesis

To many inside and outside the finance industry, the
suffocating combination of a low yielding market and the
burden of regulatory reporting may feel like a fatality
combo from Mortal Combat.

It isn't and like many combos in fighting games it
can be blocked or better yet countered.

What this paper describes is a proof of concept
technical solution to solve two seemingly opposite
problems - use tried and tested XML technologies to
solve compliance issues for financial institutions while at
the same time allow for innovative technologies such as
distributed ledger to be used alongside.

XML is a very mature and stable standard. It has
built a great ecosystem of technologies that enable

financial institutions to reliably solve their regulatory
reporting requirements.

XML does allow mixing in with modern ideas such as
distributed ledger or modern DevOps stacks such as
Docker and modern noSQL solutions such as Marklogic
and in fact makes it easy to do so, thanks to a few
surrounding standards such as XPath, XSLT, XQuery or
Schematron.

The aim of this presentation is to show that XML is a
great fit for financial institutions to deliver both the
business as usual activities such as regulatory reporting
and to explore new areas such as distributed ledger at the
same time.

3. Technical Description

This section describes a sample journey of a financial
transaction - a client requests FX swap between a client
and a bank, the bank executes the transaction, which is
then published to the distributed ledger and the
authenticity is jointly verified on the distributed ledger
by the client, bank and the regulatory body.

To best illustrate this, there are three separate
instances running blockchain - one for the client, one for
the bank and one for an imaginary regulatory body called
the Fictional Compliance Authority.

We aim to show how to add a transaction, how to
sign it, add it to the blockchain, how to prove the
authenticity of a given transaction, how to run a few
basic tests for the correctness of the message (using
Schematron), what happens when a bank or a rogue
party tries to falsify data on a blockchain and finally
showcase a few good use cases where XML technologies
show their strengths - transforming from raw CSV input
to FpML, transforming from FpML to a hash and plain
text ledger, generating reports and graphs.

3.1. Infrastructure - Stone Circle

Kode1100 blockchain proof of concept uses internally
developed infrastructure inspired by the Stone Circles
found in Gambia, West Africa.

Built thousands of years ago that continue to stand
today, and are a good symbol of stability and reliability.

Financial institutions have stringent requirements
about robustness of the infrastructure. As result they
often go for the tried and tested technology as opposed
to the cutting edge. Our early proof of concept was a
setup of Docker containers running Python code + open
source database. None of that proved to be a good fit and
the following setup more accurately depicts the needs

Page 21 of 127

XML, blockchain and regulatory reporting in the world of finance

and wants of the IT managers at the financial institutions
that we talked to:

• Operating System: Digital Ocean Virtual Machines
running CentOS 7 Linux. No special requirements
here, as long as the Operating System is capable or
running Java.

Possible environments where this proof of concept
can run (with slight modifications) are: raw Linux
Debian or Ubuntu, Linux on top of Docker, Amazon
AWS, Azure etc.

• Blockchain and "glue" code - Java EE 7. We opted for
Oracle as this caused least amount of problems and
mimics the bank environments that we know of. As
discussed earlier implementation for other platforms
and languages are possible - for example, we have
started our proof of concept using Python and most
of Bitcoin code is written in C.

• Marklogic 8. It is being described as the enterprise
noSQL database, has excellent XML technologies
support and replication features that we needed to
implement anyway. Having said that, is it possible to
use another data persistence mechanism, with
additional work.

3.1.1. Stone Circle

A cluster or three or more Linux nodes each consisting of
a Marklogic database, a user interfaced called Stoneface
and a Stoneman.

We chose to run three nodes: chain1.kode1100.com,
chain2.kode1100.com and chain3.kode1100.com to
represent three types of institutions - someone initiating
a transaction (the client), someone facilitating, executing,
and reporting the transaction (the bank), and an
independent regulatory body which we called FCA
(Fictional Compliance Authority).

To simplify these will be referred to as node 1-3 or
client, bank and FCA respectively.

The minimum setup is a single node and there is no
theoretical limit to the maximum amount of nodes,
although some steps, such as reaching consensus within
the network will take longer as the network size increases.

To accurately mimic a realistic setup that could
actually reliably work in production for a major financial
institution, we have configured a high availability
MarkLogic cluster, where both the configuration,
transactional data and the blockchain itself are protected
from failures using Marklogic enterprise features such as
clustering and automatic failovers.

In addition to that, it possible and very easy to
configure additional, automatic cluster replication, to

ensure additional availability in different data centres or
different time zones.

3.1.2. Stoneface

A JSF Primefaces interface allowing clients to interact
with the Stone Circle via graphical, browser user
interface.

It allows for uploading, validating files, verifying
hashes etc.

4. The Stone Circle algorithm

The Stone Circle algorithm is a proprietary private
consensus algorithm that generates in the end a stone
hash to further prove a node is in fact one of the trusted
delegate nodes such that it helps prevent man in the
middle attacks.

The basic cryptography is based on the original
bitcoin protocol (as described in the Bitcoin research
paper by Satoshi Nakamoto) with a number of
adjustments and improvements. That basic cryptography
is using well understood and widely used elliptical curve
mathematics and prime number factoring to make any
attempts at forging mathematically impossible using
current computer technology.

The improvement in the algorithm, include but are
not limited to the following:

• Adjustable difficulty of the hashing function strength.
In bitcoin and pretty much all blockchain solutions to
date, the security and immutability of the blockchain
signature comes with a significant computational cost
of having to run hashing functions multiple times
(and often discard the results due to race conditions)

The stone circle algorithm allows using different
hashing implementations, for example SHA256
instead of SHA-512 to effectively double the
performance and slash in half the resource usage for
signing the messages. This still results in more than
sufficient security of the blockchain due to the
multiplication effects of adding more transactions.

• Ability to disable coin mining. In a private blockchain
setup it is unnecessary to reward participants for
signing the messages. In this particular example it is
simply a regulatory requirement.

By removing the coin mining parts, we are again
massively reducing computational waste of calculating
who gets the reward and the waste of discarding any
computations of those who don't get the reward.

Page 22 of 127

XML, blockchain and regulatory reporting in the world of finance

• Using ethnographic research to avoid typical human
biases against entropy.

• Using tested and proven database technology for
storage, reliability and availability.

4.1. Stones

Stones are similar to blocks in bitcoin. They hold the
prev stone hash, the file hash and the current stone hash
'this' as well as the time in milliseconds the file was
created and the public key of the user who uploaded the

block or an agreed upon identification between parties
utilizing the system. In these example for security reasons
the 'this' hash is simply the hash of the prev + file rather
then stone hash generated by the stone circle algorithm.

<block version="1">

 <this>500251402261245FCB870657050AB1CAA5A5F137E25A77B5861EDD38964ED727</this>

 <prev>GENSIS893583B63FF73B0474CB42A1CBE7A96E1D8CE52854B4C876026BA453F</prev>

 <file>58D226C6016DCE5B25133D7388FFE29757E5476609FFC3B9BE988B3FF8D2DF3D</file>

 <id>PUBLIC_KEY_USER_ID</id>

 <time>1462288317220</time>

</block>

4.2. Stone Chain

A chain consisting of references to stones via the stone
hash, a genesis stone hash which can be a hash of any

content and a count 'c' to have a cheap method to
determine the position in the stone chain.

<chain>

 <block c="2" hash="B37EF2958FE7B62C0D1532E394895FD51F7053FA8B1457ABAF01A7139F905AE5" type="top"/>

 <block c="1" hash="500251402261245FCB870657050AB1CAA5A5F137E25A77B5861EDD38964ED727"/>

 <block hash="GENSIS893583B63FF73B0474CB42A1CBE7A96E1D8CE52854B4C876026BA453F" type="gensis"/>

</chain>

5. Blockchain operations

5.1. Adding a new transaction

5.1.1. File Upload

When a client uploads a file to the Stone Chain system
through the Stoneface, the system can be configured to
permanently or temporarily store the file, until it's

existence is preserved in the Stone Chain, in a Marklogic
database. A SHA256 hash of the file is created and used
to store the file as filehash.xml. The file hash is broadcast
to each Stoneman who each listen to JMS queue.

Page 23 of 127

XML, blockchain and regulatory reporting in the world of finance

Figure 1. File Upload

5.1.2. Preliminary Chain

Each Stoneman updates it's own preliminary chain based
on a first come first serve document queue and broadcast
the Stone Hash to the other Stonemen before continuing
to process more files. A file can be upload onto each
cluster from various clients producing documents on
system and it's possible that two files are uploaded
simultaneously and a conflict will need to be resolved. A
timestamp created during file processing resolves
conflicts followed by server priority should the rare
situation of two files uploaded at the exact same
milliseconds on each server.

5.1.3. Main Chain

When each Stoneman broadcasts the same Stone Hash
for the last file added to preliminary chains, then
agreement has been reached and the Block is added to
the Stone Chain.

5.2. Verifying the hash for a given file

The Stoneface allows clients to upload files to verify their
existence on the chain. If the file exists the user gets a
message consisting of the date the file was added to the
chain.

Page 24 of 127

XML, blockchain and regulatory reporting in the world of finance

Figure 2. Verification Files Exists

Figure 3. Verification File Does Not Exist

Page 25 of 127

XML, blockchain and regulatory reporting in the world of finance

6. Summary and the future

We have showed that XML is still a good fit for business
as usual activities such as trade onboarding and trade
reporting. We also showed how strengths of the XML
ecosystem can work together with new and emerging
technologies, using distributed ledger as an example.

The future steps in this area will largely be market
driven, possible next steps include open sourcing some or
all of the blockchain code for the community to use,

It is also fairly easy to evolve the Stone Circle
algorithm blockchain code to enable distributed,
verifiable code execution.

Such a development would then allow applications
such as smart contracts and autonomous distributed
organisations, which are beyond the scope of this
presentation, but we are more than happy to discuss
them.

Page 26 of 127

XML, blockchain and regulatory reporting in the world of finance

Pioneering XML-first Workflows for
Magazines

Dianne Kennedy

Idealliance
<dkennedy@idealliance.org>

Abstract

Most of the publishing world has long embraced the value of
structuring content using SGML/XML in the form of
DocBook, DITA or any number of vertical, standardized
publishing markup schemes. Yet those who publish
magazines have stubbornly remained in a world where
page-layout-based workflows predominate. While this
remains true today, for the first time magazine publishers are
flirting with a change to their traditional publishing
workflow that would employ XML-first content creation. In
this session you will gain an understanding of the two worlds
of publishing, why magazine publishers have been so
reluctant to embrace XML technologies and the emerging
trends that may bring magazine publishers into the XML
publishing domain.

Keywords: magazine publishing, PRISM metadata,
content-based publishing, design-based publishing, RDF,
XML authoring, HTML5, AMP Project, metadata

1. Introduction

In the early 1980's, when publishing moved from
linotype to computer assisted composition, the
publishing world was split into two different and distinct
worlds. These worlds, content-based publishing and
design-based publishing, adopted different tool sets,
different workflows and have clearly different
philosophies.

1.1. Content-Based Publishing

The world of "content-based" publishing includes
technical publishing, reference publishing, educational
publishing and many more kinds of publishing where
delivering the content is the whole point of publishing.
Content-based publications are often quite lengthy, being
made up of hundreds and often thousands of pages of
highly structured content. Technical publishing

encompasses technical documentation such as
maintenance and operational technical manuals and has
the clear purpose of communicating content. Reference
publishing such as legal publishing, financial reports and
product information along with content that is
assembled from databases such as course catalogs, racing
forms and even television show guides is also content-
based publishing.

Publishers with large volumes of structured content
have often adopted publishing tools and systems based
on ISO 8879: SGML and later on W3C’s XML markup
language. Content can be created in XML first and
stored in XML content management systems that are
modeled on the XML document structure. Content can
then be assembled from the XML content repositories
and the layout and styling are commonly automated
through the use of high-speed computerized pagination
engines. In the world of content-based publishing,
content formatting is simply a way to make the content
more easily digestible. Content-based publishing is
characterized by applying style sheets, templates or
scripted composition algorithms designed to enable a
reader to quickly access and understand the information
in lengthy publications.

doi:10.14337/XMLLondon16.Kennedy01 Page 27 of 127

mailto:dkennedy@idealliance.org

Note

My background was firmly in the world of content-
based publishing. In the mid 1980's I worked for
Datalogics and participated in the first working
SGML-based composition systems for the United
States Air Force. Later I participated in the CALS
SGML document design efforts, chaired the SAE
J2008 SGML design work and participated with the
Air Transport Association in the design of the ATA
100 SGML tag set. At that time I believed that all
content could be structured in a standardized way. But
in 2003, when I came to Idealliance I was shocked to
find out that a whole different world of publishing
existed; one where content was not structured and
where organizations firmly resisted the mere idea of
standardizing structures that made up a magazine.

1.2. Design-Based Publishing

A second and very different world of publishing is
"design-based" publishing. Most magazines fall into this
category along with highly designed books such as
cookbooks, travel books and other "coffee table" books.
When design comes first, the art director usually
develops the concept and design before any content is
created. For magazines, using standard style sheets that
give each issue the same look month after month simply
would not do. Articles within a magazine issue often
have their own unique design as well. And because design
comes first, content structures cannot be effectively
standardized. Hence, very few publishers of design-based
publications have adopted "XML-first" workflows. And
in fact, until recently, very few members of this
community employed XML as a publication source at
all.

2. Metadata for Magazines

Even though magazine publishers firmly resisted any
pressure to standardize the content and data structures
within their publications, they did respond to the
pressures to develop mechanisms that would enable them
to manage content assets and produce publication
products more efficiently. Urgency to develop a standard,
technical infrastructure increased as strategists began to
predict that content distribution would likely shift from
print to the Web and to new digital platforms in the near
future. At the same time the W3C was developing XML,

a separate W3C initiative, focusing on descriptive
metadata, known as RDF (Resource Description
Framework) [1], caught the interest of magazine
publishers.

In late 1999, magazine publishers and their content
technology partners came together as an Idealliance
working group to standardize metadata to enable
content/asset management. Founders of PRISM included
Linda Burman, a consultant to Idealliance and Ron
Daniel, a technologist who also served as co-chair for the
Dublin Core Data Model Working Group [2] and an
active participatant in the W3C RDF effort. Since it's
founding the PRISM Working Group has included
representatives from over 80 organizations and more
than 250 individuals. The concept behind PRISM was
simple. Since the magazine community could not
standardize the structures that make up an article, they
would focus on defining standard metadata vocabularies
that could provide a techincial infrastructure for
magazine content.

Work on the first version of PRISM, Publishing
Requirements for Industry Standard Metadata, began in
1999 and PRISM Version 1.0 [3] was published in 2001.
Initially the scope of PRISM was metadata for print-
based periodicals. PRISM was built upon, and extends
the Dublin Core metadata set. PRISM employs Dublin
Core publishing metadata fields where appropriate and
defines additional metadata specific to periodical
publications.

In 2008 PRISM 2.0 was published. This was the first
major revision to PRISM and the scope of PRISM
descriptive metadata was expanded to include both print
and online periodical content. PRISM 2.0 [4] provided a
number of additional special-purpose metadata
vocabularies modularized by namespace. This allowed
each publisher or user to select the modules that fit their
unique business requirements. PRISM 2.0 included
periodical metadata (prism:), image metadata (pim:),
recipe metadata (prm:), crafts metadata (pcm:), usage
rights metadata (pur:) and contract management
metadata (pcmm:) [5].

In addition to publishing standard metadata sets, or
taxonomies, the PRISM Working Group has developed
over 40 controlled vocabularies [6] including
vocabularies for periodical content types, article genres,
content presentation types, issue types, publishing
frequency types, role types for creators and
contributors . . .

Strange as it might seem, PRISM V1.0 was developed
without a specific use case in mind. At the time we
envisioned that PRISM may be instantiated using either
RDF or XML and used for many purposes. Three years

Page 28 of 127

Pioneering XML-first Workflows for Magazines

after release of PRISM, magazine publishers developed
the first industry use case for PRISM. The use case was to
deliver magazine articles to aggregators following
publication of the magazine or newsletter. The use case,
known as the PRISM Aggregator Message, or PAM,
required the use of PRISM metadata along with
encoding of article text in XHTML. In the years after
publication of PAM [7], most magazine publishers in the
US came to use it as the standard format to deliver
content to their aggregation business partners.

It is important to understand that generating PAM
XML was, and remains, a post publication process. The
magazine publishing workflow is typically focused on the
production of the print product. Once the PDF is
produced and sent to the printers, the source is either
converted or rekeyed into the PAM XML message format
to deliver to aggregators. In addition to sending articles
to aggregators, some publishers began to use PAM as an
archive format as well. Time, Inc., for example, invested
in the conversion of all previously published Time
Magazine content into PAM in order to establish a
content archive to serve as an editorial research database.
It seemed that while most magazine publishers came to
value XML-encoded content, they were still trappped in
their traditional design-first workflows.

3. The Impact of the iPad

A potential sea change for magazines and other design-
based publications came in 2010 with the launch of the
iPad. Suddenly publishers were called on to deliver their
publications digitally instead of exclusively in print. Until
this point, design-based publications were still able to
cost justify their labor-intensive design-based publication
process because their print revenues supported the
expense. But the launch of the iPad meant producing
well designed publications, not only in print, but on a
growing number of digital devices with different
resolutions, aspect ratios and sizes. This was
tremendously challenging and expensive. Idealliance
members launched the nextPub Council to develop a
strategy for the efficient cross platform publishing of
magazine content in the fall of 2010. After a six month
study the nextPub Council recommended that magazine
publishers shift to an XML-First publishing model. To
support this move, Idealliance extended PRISM to
develop the PRISM Source Vocabulary , or PSV [8]. The
PSV tagline was "The Source is the Solution." The PSV
XML schema employed PRISM / Dublin Core
publishing metadata along with semantic HTML5 for
rendering on tablets and mobile devices.

Once again, the tradition of design-first publishing
prevented the fulfillment of the vision to create magazine
source content in XML. In part the reason was
institutional. It was very difficult to convince the art
directors managing magazine production to move to a
content-centric workflow. The move to XML content
creation for magazines was also limited by the publishing
tools available at the time and the skill set of the editorial
and production staff. Since the predominant publishing
tools used by magazine publishers were page layout
based, i.e. design oriented, and the investment in them
was so great, most magazine publishers opted to remain
with design-based content creation workflows. And
instead of creating articles in XML, magazine publishers
simply decided to repurpose their layouts as page replicas
(PDFs or page images) on tablets, thus protecting their
tradition of uniquely crafted, high-quality publishing
design and layout.

It is important to understand that publishing print
replicas of magazines on tablets was generally a
disappointment. Once the novelty of interactivity wore
off, an ongoing readership could not be maintained. And
publishers never figured out how to make a profit on
tablet-based magazine content. As new, smaller tablets
came to market, presenting print-size pages on small
screens became a serious issue for readers as well.

4. Mobile Comes of Age

Today, more than 5 years after the impact of the iPad on
the magazine marketplace, a new disruptive force, even
more significant than tablets, is demanding that design-
based publishers finally shift to XML-first workflows.
That force is the rapid shift toward content consumption
on smart phones along with the increasing demand for
"360 degree" or "integrated access" to magazine content
across media platforms, digitally and in print. Today's
readers will no longer accept a frustrating, slow, clunky
digital reading experience. As a result major US
publishers are beginning to shift away from presentation
of page replicas and toward HTML5-based viewing
technologies. And because presentation speed is
becoming increasingly critical, the lightweight Accelerated
Mobile Pages project (AMP) [9] is gaining traction.

5. Developing a Magazine
Authoring Schema

As new tools to author structured magazine content
come to market, magazine publisher's still have to decide

Page 29 of 127

Pioneering XML-first Workflows for Magazines

on an authoring schema. Since the industry has invested
so much in organizing their content using PRISM
metadata that seems to be a natural fit. But again the
issue comes down to the correct authoring schema. Some
initial work has been done on that front.

In the summer of 2014, usability testing was
conducted using the PSV schema. This schema was
designed to store source magazine article metadata and
text in semantic HTML5. At first glance, it seemed a
natural fit. But usability testing quickly lead to the
conclusion that a robust archive format was not ideal for
authoring. The HTML5 model offered just too many
options that most authors would not use, and in fact had
a severe impact on the usability of the schema.

For the next iteration, Idealliance tested a schema
that allowed for key fields of PRISM metadata along
with a simplified version of HTML5 that contained only
those elements that an author was likely to use. In order
to test this iteration of the authoring schema, we utlized
an MSWord plugin from Ictect [10] that had been
specially configured to support this version of the
schema. Several rounds of testing with the schema led to
further modifications.

The work to develop a magazine authoring schema by
Idealliance is ongoing. New metadata fields to embed
licensing terms such as content expiration dates and
geographic display access are being added. AMP
enablement is being studied as well. Ongoing work can
be tracked on the Idealliance PRISM website [11]

Bibliography

[1] RDF. Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Resource_Description_Framework

[2] Dublin Core. Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Dublin_Core

[3] PRISM V1.0. Idealliance, Inc..
http://www.prismstandard.org/specifications/1.0/prism1.0.htm

[4] PRISM V2.0. Idealliance, Inc..
http://www.prismstandard.org/specifications/2.0/

[5] PRISM Taxonomies. Idealliance, Inc..
http://www.idealliance.org/specifications/prism-metadata-initiative/prism/specifications/taxonomie

[6] PRISM Controlled Vocabulary Specification V3.0. Idealliance, Inc..
http://www.prismstandard.org/specifications/3.0/PRISM_CV_Spec_3.0.htm

[7] PRISM Aggregator Message Guide. Idealliance, Inc..
http://www.prismstandard.org/specifications/3.0/PAM_Guide_2.2.htm

[8] PRISM Source Vocabulary Specification. Idealliance, Inc..
http://www.prismstandard.org/specifications/psv/1.0/

[9] Accelerated Mobile Pages Project. Google.
http://www.ampproject.org

[10] Intelligent Content Architecture. Ictect, Inc..
http://www.ictect.com

[11] PRISM Website. Idealliance, Inc..
http://www.prismstandard.org

Page 30 of 127

Pioneering XML-first Workflows for Magazines

https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Dublin_Core
http://www.prismstandard.org/specifications/1.0/prism1.0.htm
http://www.prismstandard.org/specifications/2.0/
http://www.idealliance.org/specifications/prism-metadata-initiative/prism/specifications/taxonomie
http://www.prismstandard.org/specifications/3.0/PRISM_CV_Spec_3.0.htm
http://www.prismstandard.org/specifications/3.0/PAM_Guide_2.2.htm
http://www.prismstandard.org/specifications/psv/1.0/
http://www.ampproject.org
http://www.ictect.com
http://www.prismstandard.org

Figure 1. Example of table validation error

CALS table processing with XSLT and
Schematron

Nigel Whitaker
<nigel.whitaker@deltaxml.com>

Abstract

CALS tables are used in many technical documentation
standards. There are OASIS specifications for CALS tables
which include a number of semantic rules to ensure table
validity. This paper reports on some of our experiences with
CALS table processing and validation. We implemented the
majority of our validation code in XSLT and have needed to
carefully consider performance when handling large tables of
several thousand rows.

We have experimented with a number of new XSLT
features when addressing performance issues and will report
on our experiences. In addition to processing tables we
wished to improve the quality of CALS tables that we would
meet and which our users/customers would produce (we
wished to rid the world of bad tables!). For this we have used
schematron to check and report the validity of tables in a
user friendly way. We met a number of obstacles and will
report on these and our solutions ('work-arounds') in this
paper.

1. Background

CALS tables are used in many technical documentation
standards such as DocBook, DITA and s1000d.
Unfortunately these document standards refer to slightly
different versions of the CALS specification (the
'exchange subset' and the full specification [1]) and they
have slightly different messages about validity.

Different XML tools and processors (such as XSL:FO
to PDF engines) enforce different subsets of the semantic

rules. Our goal for comparison processing was to
generate a valid result if the inputs were valid. In order to
do this we needed a way of checking validity. We looked
for something that we could reuse as part of our test
processes and also internally as part of the processing of
the tables. Table processing is a widely used example in
schematron [2] tutorials and blog postings, however we
did not find anything that was close to being a complete
implementation of the CALS specification(s). We
therefore decided to construct one.

Our CALS validity code is Open Source software
(originally available on GoogleCode, now GitHub [3]).
We provided it as open source as a number of
collaborators were asking us about it. Additionally,
customers were questioning our error/warning reporting
and not fully understanding the nature of the validity
issues. Using schematron allows us to provide good
diagnostics to the user, typically in an XML editor or
authoring tool, and we hope this would help reduce the
number of bad tables, finding the structural and other
table errors as they are created. Providing Open Source
code would improve use and adoption. The oXygenXML
editor supports schematron validation and Figure 1,
“Example of table validation error” shows how an error is
reported.

2. Introduction to table validity

CALS tables allow for 'wide' cells or entrys. Rather than
a regular grid there are cells that 'span' a number of grid
positions. Some simpler table models such as those for
HTML tables use attributes with integer dimensions to

doi:10.14337/XMLLondon16.Whitaker01 Page 31 of 127

mailto:nigel.whitaker@deltaxml.com

1 As entry is an element name we have chosen to deliberately misspell this plural form.
2 An accumulator would now be a better choice and would avoid the use of generate-id to form the map key.

describe the wide/tall cells. CALS tables use the
@morerows attribute with an integer for vertical spanning,
but use a more complex structure for horizontal
spanning. A column specification section is declared and
then the later cells reference these colspec and similar
elements by name in order to configure their spanning.

The CALS rules cover a number of areas. Here are
some examples.

2.1. Context constraints

The CALS specification include a number of constraints
about the context in which an attribute can occur. For
example, a wide (horizontally spanning) entry can be
specified by referring to the start and ending colspecs
(the @namest and @nameend attributes). It is also possible
to define a spanspec element at the same time as the
colspecs which itself refers to the start and end colspecs.
It is permissible for an entry to refer the the spanspec
(using @spanname) in the main body of the table.
However using a spanname attribute is not allowed in the
context of the thead and tfoot elements used to define
the headers and footers of a table.

2.2. Referential integrity constraints

References to colspec and spanspec elements from
within a table have to be validated. These references have
a per-table scope and therefore do not make use of the id
or xml:id mechanisms.

2.3. Structural constraints

There are a number of structural constraints in the CALS
spec. These tend to be orientated to making the table
regular (so that for example each row has the correct
number of columns occupied or that a morerows vertical
span does not extend beyond the end of the table. Other
constraints are used to ensure correct left-right ordering
and to prevent overlap.

As discussed above attributes can be used to specify
wide table entrys1. They can also be used simply position
an entry in the table. Some editors and authoring tools
will refer to a colspec in every entry in the table.
However, its also possible to use an entry without
specifying its position in which case its position has to be
inferred and this style is used by other tools. The rules are
quite complex and consider the position of the preceding
entry element but also tall entrys that use morerows

attributes in the rows above. The situation may be quite
recursive in that an entry will use morerows but in order
to work our which columns it occupies then it's
necessary to look to all the entrys to its left to see if they
define their position or infer their position by default
rules and its also necessary to look at rows from above
that 'straddle' or 'overlap' into the current row at
positions before where the entry may be placed by the
default rules.

3. XSLT processing of CALS tables

3.1. Row distance calculation

In calculating and checking for vertical spanning we
originally wrote code that measured the distance between
rows. The initial naive implementation is shown in
Figure 2, “Original row-distance code”.

Figure 2. Original row-distance code

<xsl:function name="cals:row-distance"

 as="xs:integer">

 <xsl:param name="r1" as="element()"/>

 <xsl:param name="r2" as="element()"/>

 <xsl:sequence

 select="abs(count($r1/preceding-sibling::*:row) -

 count($r2/preceding-sibling::*:row))"/>

</xsl:function>

This is code at least O(n) and the calling code, discussed
later, made for O(n2) complexity. From our analysis we
knew this function was called a lot, over 108 invocations
in one of our tests.

Customer feedback reported performance concerns
and the need to process larger tables. As it was a known
'hot-spot' we concentrated on optimizing this function.
This was around the time of Saxon version 9.3 and maps
were used2. This optimized code is shown in Figure 3,
“Optimized row-distance code”.

Page 32 of 127

CALS table processing with XSLT and Schematron

Figure 3. Optimized row-distance code

<xsl:variable name="rowtopos"

 as="map(xs:string, xs:integer)">

 <xsl:map>

 <xsl:for-each select="//*:row">

 <xsl:map-entry key="generate-id(.)"

 select="

 count(./preceding-sibling::*:row) + 1"/>

 </xsl:for-each>

 </xsl:map>

</xsl:variable>

<xsl:function name="cals:row-distance"

 as="xs:integer">

 <xsl:param name="r1" as="element()"/>

 <xsl:param name="r2" as="element()"/>

 <xsl:sequence select="

 abs(map:get($rowtopos, generate-id($r1)) -

 map:get($rowtopos, generate-id($r2)))"/>

</xsl:function>

This optimization reduced a 5 minute plus runtime to
the 15-20 second range. For further details see
Section 3.6, “Performance summary”.

3.2. Vertical column infringement processing

The code shown in Figure 4, “vertical infringement code”
was used to calculate which columns of a row are
overlapped or infringed from above.

Figure 4. vertical infringement code

<xd:doc>

 <xd:desc>

 <xd:p>Describes how a table row is

 spanned from above.</xd:p>

 <xd:p>This result is a set of columns which are

 overlapped from above in the row

 specified as an argument. The 'set' is

 really a sequence and may be out of

 order, eg: (3, 2).</xd:p>

 </xd:desc>

 <xd:param name="row">A table row</xd:param>

 <xd:return>A sequence of integers specifying

 which columns are spanned or

 'infringed' from above</xd:return>

</xd:doc>

<xsl:function name="cals:overlap2"

 as="xs:integer*">

 <xsl:param name="row" as="element()"/>

 <xsl:sequence select="

 for $r in $row/preceding-sibling::*:row return

 let $row-distance :=

 cals:row-distance2($r, $row) return

 for $e in $r/*[@morerows] return

 if (xs:integer($e/@morerows) ge $row-distance)

 then cals:entry-to-columns($e)

 else ()"/>

</xsl:function>

The above code reflects our XSLT 2.0 training and
experience. For each row we look upwards and see if any
of the rows above could infringe the current row. This
process is O(n) and makes repeated use of the row-
distance function above. It also uses the entry-to-

columns function which for a table entry reports which
columns are occupied.

There are several issues we knew about when writing
this code that we were aware could cause performance
issues:
• We will be using this function repeatedly and each

time it is called it will look all the way back through
the table.

• It looks all the way back to the top of the table since
theoretically it is possible for the first row to have a
morerows span to the end of the table. In common
cases it's likely that spanning would be short, however
doing an analysis of the maximum morerows value
and the using this to optimize the code would have
made some complex code even more complicated and
difficult to maintain.

Page 33 of 127

CALS table processing with XSLT and Schematron

Figure 6. Example table and morerows grid

3.3. Forward looking morerows processing

The processing of morerows attributes could be
attempted in forward looking manner. An xsl:iterator
was used to make a morerows calculation using a
sequence of integers. Each member of the sequence
would store the current morerows value for its
corresponding column as the iterator would allow it to
be decremented as each subsequent row was processed,
provided it did not also use morerows.

Figure 5. The morerows iterator

<xsl:iterate select="$tgroup/*:row">

 <xsl:param name="morerows" as="xs:integer*"

 select="for $i in 1 to $tgroup/@cols return 0"/>

 <xsl:param name="grid" select="map{}"

 as="map(xs:integer, xs:integer*)"/>

 <xsl:on-completion select="$grid"/>

 <xsl:variable name="rowmap"

 as="map(xs:integer, xs:integer)">

 <xsl:map>

 <xsl:for-each select="entry[@morerows]">

 <xsl:variable name="coveredCols"

 as="xs:integer+" select="

 cals:entry-to-columns(., $morerows)"/>

 <xsl:sequence select="

 map:merge(for $i in $coveredCols return

 map:entry($i, xs:integer(@morerows)))"/>

 </xsl:for-each>

 </xsl:map>

 </xsl:variable>

 <xsl:next-iteration>

 <xsl:with-param name="morerows"

 select="for $i in 1 to count($morerows) return

 max(($morerows[$i]-1, $rowmap($i),0))"/>

 <xsl:with-param name="grid"

 select="map:merge(($grid, map:entry(

 count(preceding-sibling::*:row)+1,

 $morerows)))"/>

 </xsl:next-iteration>

</xsl:iterate>

In Figure 5, “The morerows iterator” the morerows param
stores the sequence that is adjusted as each row is iterated
over. Additionally, we wanted to store these values and
the grid param records each of the morerows calculations
using a map where the map key is an integer
corresponding to the row number.

The rowmap calculates the morerows values declared in
the current row (it maps from column number to the
morerows value). In order to do this knowledge of the
morerows spanning from above is needed to determine
the column positions of any entries which do not define
their columns by explicit reference to colspecs.

An example table and the corresponding morerows
grid is shown in Figure 6, “Example table and morerows
grid”.
The iterator that has been developed now needs to be
used. If our intention was, for example, to produce a
normalized form of the table then it should be possible
to use the iterator in an xsl:template matching the
tgroup or table. However, we are keen to preserve the
ability to have checking for individual entries in the table
and error reporting specific to those entries. We could
use the iterator in a function after finding the parent
table, but then we would be iterating repeatedly over the
same table. In order to use the same data we then looked
at accumulators.

3.4. Caching the table data for use in
schematron

After discounting using the iterator in a template we
tried to find ways of keeping the data available. Thinking
in terms of imperative programming you would write:

if (empty map) then {

 construct map; // done once

}

return lookup data in map;

However this doesn't fit well with either XSLT or
schematron. We found a solution using the new
xsl:accumulator mechanism (once we realized an

Page 34 of 127

CALS table processing with XSLT and Schematron

accumulator doesn't actually need to accumulate
anything!).

If we put our accumulator in a function, as indicated
in Figure 7, “Function with iterator”, we can then use the
iterator in an accumulator as shown in Figure 8, “Storing
data in an accumulator”. Another accumulator is used to
provide a mapping from the rows to the row numbers as
this is what is used to index the map representing our
grid data. The use of a sequence in this accumulator is
designed to support the possibility of nested tables.

Figure 7. Function with iterator

<xsl:function name="cals:generate-morerows-data"

 as="map(xs:integer, xs:integer*)">

 <xsl:param name="tgroup" as="element()"/>

 <xsl:iterate select="$tgroup/*:row">

 <xsl:param name="morerows" select="

 for $i in 1 to $tgroup/@cols return 0"

 as="xs:integer*"/>

 <xsl:param name="grid"

 as="map(xs:integer, xs:integer*)"

 select="map{}"/>

 <xsl:on-completion select="$grid"/>

 ...

 </xsl:iterate>

</xsl:function>

Figure 8. Storing data in an accumulator

<xsl:accumulator name="table-spanning"

 as="map(xs:integer, xs:integer*)"

 initial-value="map{}">

 <xsl:accumulator-rule match="*:tgroup"

 phase="start"

 select="cals:generate-morerows-data(.)"/>

</xsl:accumulator>

<xsl:accumulator name="row-number" as="xs:integer*"

 initial-value="()">

 <xsl:accumulator-rule match="*:tgroup"

 phase="start" select="(0, $value)"/>

 <xsl:accumulator-rule match="*:tgroup"

 phase="end" select="tail($value)"/>

 <xsl:accumulator-rule match="*:row"

 select="head($value)+1, tail($value)"/>

</xsl:accumulator>

3.5. Using the accumulator data in
schematron

We can now use the data in various ways. One technique
is to create functions that use the data by calling the

accumulator-after or accumulator-before functions. It is
also possible, when using the XSLT query binding and
foreign element support, to use the data directly in
schematron. In order to check CALS tables there are
three assertions that check the table structure that
operate on every table entry. We can use some foreign
XSLT code at the the schematron rule level so that they
are available to all of the assertions. The code is quite
long so only the basic mechanism is shown in Figure 9,
“Accessing accumulator data from schematron”.

Figure 9. Accessing accumulator data from
schematron

<pattern id="p-structure">

 <rule context="*:entry">

 <xsl:variable name="row" as="element()"

 select="ancestor::*:row[1]"/>

 <xsl:variable name="table-data"

 as="map(xs:integer, xs:integer*)"

 select="$row/ancestor::*:tgroup[1]/

 accumulator-after('table-spanning')"/>

 <xsl:variable name="row-number" as="xs:integer"

 select="$row/

 accumulator-after('row-number')"/>

 <xsl:variable name="morerows" as="xs:integer*"

 select="$table-data($row-number)"/>

 <assert

 test="... cals:entry-to-columns(., $morerows)

 ... ">...</assert>

 <assert test="...">...</assert>

 <assert test="...">...</assert>

 </rule>

</pattern>

Every table entry will invoke the assertions above, but in
each case we rely on the pre-calculated or accumulated
data. This should change an O(n3) complexity problem
into one closer to O(n).

3.6. Performance summary

Two customer support cases presented particular
problems with table performance. The earlier row-
distance optimization with maps gave performance
improvements at the time, but there were still
performance doubts and concerns. The optimization
work with iterators and accumulators discussed here have
provided dramatic performance improvements as seen in
Table 1, “Performance data”.

The results discuss run time improvements. There was
no obvious change in memory consumption.

Page 35 of 127

CALS table processing with XSLT and Schematron

Table 1. Performance data

 case 1 case 2

description Standards
documentation

Semiconductor
data

file format DocBook 5 DITA 1.1

file size 8.7MB 574KB

tree details

459262 nodes,
656993
characters, 208
attributes

31670 nodes,
41285 characters,
10384 attributes

table count 15 3

average row
count 1083 1149

largest table
(rows) 2032 1552

Saxon EE 9.7.0.4 performance: Apple iMac, 3.2 GHz
Intel Core i5, 24GB, MacOS 10.11.4, Java 1.8.0_74
64 Bit Server VM

original
runtime

greater than 11
hours 348.49s

row-distance
map optimized
runtime

1557.52s 16.09 s

iterator/
accumulator
optimized
runtime

2.20s 0.152s

4. Schematron processing

We have two ways of using the schematron file. The first,
standard, way is to use it as a file checker, perhaps inside
an XML editor or authoring tool as discussed earlier.
Additionally we are interested in using checking code as
part of our comparison products which required some
modifications to the to the standard schematron
processing model and tool-chain. As schematron
processing is based on XSLT (the schematron is
'compiled' to XSLT using XSLT) we've taken the
approach of using further XSLT to modify the generated
checker to satisfy our requirements. This approach works
while the generated checker is stable, but could cause us
problems if new version of the schematron code, such as
the 'skeleton', is released. One reason for describing our

requirements and changes here is to gauge if there is
wider interest in them. If so, we could see if there is
acceptance to have them incorporated into the official
release.

4.1. Schematron phases

When developing the CALS validity constraints a
misconception about schematron phases was not noticed
until the final stages of testing. We followed a
development model similar to that of traditional
compilers where checking is performed in stages. Similar
to a compiler constraints were grouped into categories
such as: context, reference and structure. When
developing the structural constraints referential integrity
was assumed. We developed and tested those constraints
first and assumed the implementation wouldn't run
those constraints if the referential integrity constraints
fail. Instead schematron phases seem to be something
that is left to user control - the user is often presented
with a list of phases and asked which to run.

Alternatives were considered. Adding conditional
code to the later constraints to test the earlier one and
therefore prevent failures in the execution of complex
structural constraints was a possibility, but would add
more complexity and make the code harder to maintain.
We decided to modify the execution model of the
generated schematron checker. The XSLT which is
generated uses modes to (which are then template-
applied to the root node '/' in turn) which correspond to
the various phases. A very simple, but naive, initial
modification used saxon:assign to record any failure in a
global variable which was then tested between the apply-
templates for the various stages.

While the saxon:assign approach worked it was not
elegant. Advice was sought from the schematron-users
email list and David Carlisle suggested an alternative
algorithm using a nested structure of xsl:if tests, variables
and apply-template instructions.

The new xsl:try/xsl:catch mechanism may provide a
better mechanism for our preferred phasing and may be
investigated.

4.2. Issues with schematron granularity

Current Schematron tools focus on validating an entire
XML file. This is what is needed in an editor or
authoring tool. For use in our comparator products we
needed something slightly different. When comparing
and aligning a table we make decisions on how the result
will be represented partly based on whether the input
tables were valid. The requires a knowledge of the validity
of a table (we add a valid attribute during input

Page 36 of 127

CALS table processing with XSLT and Schematron

processing) rather than the whole file. Schematron
defines an XML format, the Schematron Validation and
Reporting Language (SVRL), to describe the validation
results. Unfortunately this format is a flat list of
validation results. While it does contain XPaths which
point to the location of failures it is a hard process to
group these and associate them with source tables. We
took a different approach and again adjusted (by post
processing the generated XSLT) the control flow so that
rather than rely on template matching form the root or /
element downwards a set of phases are applied to each
table and then processing moves to the next table.

If other schematron users have similar requirement it
may be appropriate to share code, approaches or discuss
alternatives further.

5. Acknowledgements

The author has been assisted by colleagues at DeltaXML
Ltd who have also contributed to the code and associated

tests. This is why the first-person form 'we' is used in this
paper.

We would also like to thank Dr John Lumley who
has been assisting DeltaXML with performance profiling
and optimization approaches with our XSLT code. He
suggested that an iterator would improve the
performance of the CALS checking code and the results
presented above confirms this.

David Carlisle and other members of the
schematron-users email list have helped with the
schematron issues we have discussed above and we are
very gratefully for their advice.

References

[1] Harvey Bingham (ed.) CALS Table Model Document Type Definition. OASIS Technical Memorandum TM
9502:1995. . OASIS Inc.. 1995.
https://www.oasis-open.org/specs/tm9502.html

[2] ISO/IEC 19757-3:2006 Document Schema Definition Languages (DSDL) — Part 3: Rule-based validation —
Schematron.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40833

[3] CALS Table Schematron. Github repository.
https://github.com/nigelwhitaker/cals-table-schematron

Page 37 of 127

CALS table processing with XSLT and Schematron

https://www.oasis-open.org/specs/tm9502.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40833
https://github.com/nigelwhitaker/cals-table-schematron

Language-aware XML Aggregation
Malte Brunnlieb

Capgemini Deutschland GmbH, Germany

Technical University of Kaiserslautern, Germany
<m_brunnl@cs.uni-kl.de>

Steffen B. Holzer

Technical University of Kaiserslautern, Germany
<holzer@rhrk.uni-kl.de>

Abstract

Looking at version control systems, XML data view updates,
or simply code generation, merging XML based documents
has become an omnipresent challenge these days. Each
problem domain comes with its own facets of merge
algorithms, like 2-way merges, 3-way merges, and patch
description & applications. In this paper, we will focus on
the problem domain of code generation applying a 2-way
merge with patch semantics. As XML DTDs and XSDs
specify the syntax of XML languages, document merges
become even harder when language semantics are taken into
account. Additionally, due to the fact, that one XML
document can be based on multiple XML languages
separated by namespaces, an appropriate merge algorithm
has to focus on each XML language specification rather than
just considering XML meta-language syntax. For this need,
we developed a XML-based description language called
MergeSchema. It is designed for controlling a 2-way XML
merge to also cover the semantics of a XML-based language
during merge processing.

Keywords: XML Aggregation, MergeSchema, 2-way
merge, Incremental Code Generation

1. Motivation

The need of merging XML documents is quite old and
omnipresent these days. As examples just take commonly
known version control systems or data view updates
[Abiteboul2001]. Already available approaches can be
classified into 2-way merge vs. 3-way merge techniques.
In a 3-way merge the two documents to be merged are
derived from a known common base document. Thus, a
merge algorithm can take additional information into

account by comparing each document to the common
base document. Such information for example cover the
knowledge about deletions, additions, or updates. In
contrast to that, a 2-way merge focuses on the merge of
two documents, which may not be derived from a
common base document. Thus, no further information
are available and the two documents to be merged can
just be processed in an aggregative manner by taking
language specifications into account.

Merge techniques can also be classified into structural
vs. line-based techniques. Whereas commonly used
version control systems try to merge conflict based on
line-based algorithms, only a view tools already provide
structural merge techniques resulting in much better
merge results due to the processed knowledge of the
document's language. However, utilizing the XML meta-
language as the basis for structural merge algorithms will
easily result in unintended document merges as the
concrete XML-based language of the documents is not
considered at all. Therefore, there are different tools at
least including DTD or XSD validation to not result in
syntactically wrong merge results. But, as DTD and XSD
just cover the specification of the syntax of a language,
we experienced that the merge results are of a very
generic nature. Especially in patch semantics, it would be
much more beneficial to consider even the semantics of a
document or architecture-driven coding conventions to
generate merge results of higher quality specific to
different use cases.

Our approach will focus on the lack of language
specific information during a 2-way structural merge by
providing an additional XML document named
MergeSchema to describe further merge relevant
language characteristics of XML-based languages,
whereas each MergeSchema specifies merge properties for
exactly on XML language. Furthermore, we

doi:10.14337/XMLLondon16.Brunnlieb01Page 38 of 127

mailto:m_brunnl@cs.uni-kl.de
mailto:holzer@rhrk.uni-kl.de

1 https://www.springframework.org/schema/beans/spring-beans-4.0.xsd

implemented a merge algorithm, which can process
multiple MergeSchemas to process a 2-way structural
merge of documents by a XML language aware
algorithm.

1.1. Outline

The reminder of the paper is structured as follows. First,
we will shortly introduce the context as well as the
background of this work to fully understand the
motivation behind the MergeSchema specification needs.
Following, we will discuss the requirements on the
notion of equality of XML nodes as well as on the
aggregation needs of XML nodes. As a third step, we will
present the MergeSchema and its specification to
influence the merge in use case proper way. Furthermore,
we will shortly describe additional features covered in the
merge algorithm itself regarding the alignment of the
merge result. Coming to a conclusion, we will discuss the
limitations as well as our experiences with the approach.

2. Patch Semantics in a Generative
Context

Our approach of a 2-way structural XML merge has been
developed in the context of code generation, in specific
incremental code generation [Brunnlieb2014].
Incremental code generation essentially focuses on the
generation and integration of small code fragments
specified by AIM Patterns [Brunnlieb2016]. AIM
Patterns are architecture dependent design patterns
designed to be applied on an existing code base. This
especially implies the generation and merging of new
code into the current code base's code artifacts. AIM
Patterns even specify the code artifacts to integrate new
code to, which is basically driven by architectural code
conventions [Brunnlieb2016].

As an example in the context of XML languages, the
application of an AIM Pattern might result in the
generation of a new XML document, which has to be
deployed to a specific code artifact (i.e. XML file). If the
code artifact does not already exist in the specific
deployment path, a new XML document will be
deployed to the specified path. However, if the code
artifact does exist, the generated XML document has to
be merged with the existing XML document. In
addition, there are high requirements on the readability
of the merged documents in the context of interest as the

merged documents are basically designed and maintained
by humans.

In the case of structurally merging the generated
document to an already existing one, the generated
document is further called the patch, whereas the
existing document will further be referenced as the base.
Thus, the patch encodes the semantics of providing an
update to the base document. This is especially is
different to general 2-way merge approaches as we inject
further semantics about the relationship of the two input
documents into the merge algorithm. Furthermore, the
patch semantics in this context have to be considered as
of an additive nature as the patch does not provide any
meta information about the addition, removalm or
update of XML nodes at all.

3. Requirements of a Language-
aware Merge

There are basically two challenges for 2-way structural
merge algorithms. First, equivalent document fragments
have to be found and second, the operation to be
performed has to be determined. As we are focusing on a
merge algorithm to be usable for different XML-based
languages, we even have to handle different notions of
equality of element nodes. In the following, we discuss
the notion of equality in more detail as well as different
operations for aggregation.

3.1. Equality of nodes

Discussing the notion of equality of element nodes, the
most trivial notion of equality is based on the recursive
identity of all attributes and children nodes of an
element. Another trivial notion of equality of element
nodes can be fixed by relying on the id attribute already
provided by the XML meta-language. However, in
practice the identifying attribute does not always have to
be named id. As an example, it might be also aliased by
additional attributes as done in the specification of
Spring Beans1 by the <bean> element. A <bean> element
provides the additionaly name attribute as an alias for the
id attribute. Thus, it enables the developer to use
characters not contained in the DOM ID type within
the identifying string. Summarizing, a XML language-
aware merge algorithm essentially should be able to
analyze equality of elements based on arbitrary attributes.

Furthermore, the notion of equality can be easily also
discussed on an element's children like any elements or

Page 39 of 127

Language-aware XML Aggregation

textual nodes. As a first example, there is the significance
of the order of child nodes. Considering Example 1 and
Example 2 show different documents with different
semantics indicating the importance of the consideration
of node ordering.

Example 1. DocBook section

<section>

 <para>for all men</para>

 <para>it exists one woman</para>

</section>

In Example 1 consider docbook's semantics of the node
<section> when switching the <para> elements. The
semantics of the resulting document will change. In this
specific example the ordering of <para> nodes is crucial
for the semantics of the <section> node.

Example 2. Data store

<data>

 <entry id="1">...</entry>

 <entry id="3">...</entry>

 <entry id="2">...</entry>

</data>

In contrast to Example 1, consider the simple XML data
store in Example 2. The order of child elements in this
case does not have any impact on the semantics of the
<data> node. However, the information about the nodes
semantics are not specified in the language specifications
as e.g. in DTDs or XSDs. For the design of a proper
merge algorithm, these semantics have to be considered
to enable a proper document merge.

Example 3. Example: HTML table

<table>

 <tr><th>Cell A</th><th>Cell B</th></tr>

 <tr><td> </td></tr>

 <tr><td> </td></tr>

</table>

Of course, child elements contain even more information
than just encoding information in its order. In
Example 3 a HTML table is shown. Since it lacks an
<id> or any other attribute, the notion of equality has to
be based on other properties than already discussed. Lets
assume for our personal needs, we want to merge two
HTML documents containing a HTML table, whereas
the tables are designed for the same purpose but the data
rows differ. Given this semantics, we could use the
column headers of the table as the most identifying
property. To access this information, the equality analysis
again has to retrieve information from the <table>

elements children to obtain the notion of equality of the
<table> element, i.e. the first table row. However, the
notion of equality might also refer to any other child
nodes or even attributes of them. This rather individual
and more complex notion of equality indicates the
complexity a generic merge algorithm has to deal with to
enable proper 2-way structural merges for different XML
languages.

3.2. Node Accumulation & Aggregation

After gathering the basic requirements, which can be
easily enriched by further more complex examples, the
next step is to discuss the different facets and restrictions
on aggregating and accumulating element nodes as well
as non-element nodes. Again, we provide different
examples to visualize and gather the needs of different
use cases of a 2-way merge in a generative context.

Example 4. Node multiplicity

<!-- 1st input -->

<root>

 <child id="1"/>

 <child id="3"/>

</root>

<!-- DTD -->

<!ELEMENT root (child)*>

<!ATTLIST child id ID>

<!-- 2nd input -->

<root>

 <child id="1"/>

 <child id="2"/>

</root>

<!-- intended result -->

<root>

 <child id="1"/>

 <child id="3"/>

 <child id="2"/>

</root>

Page 40 of 127

Language-aware XML Aggregation

Considering Example 4, both input documents contain
an element that isn't present in the other one. Since the
document definition allows <root> to contain an
arbitrary number of <child> elements, the merge result

should contain both relying on simple data storage
semantics. In addition, the <child> elements with id="1"
of both input documents should be matched and thus
should appear only once in the result.

Example 5. Unique nodes

<!-- DTD -->

<!ELEMENT root (child)>

<!ATTLIST child id ID>

<!-- 1st input -->

<root>

 <child id="1"/>

</root>

<!-- 2nd input -->

<root>

 <child id="2"/>

</root>

Example 5 describes a simlar case, but in contrast to
Example 4, the <child> element can only occur once per
document due to the changed language specification.
Thus, simply accumulating the <child> nodes will not
yield a valid result document regarding the language
specification. Injecting additive patch semantics here
while considering the first input as the base document
and the second input as the patch document, the

attributes value of the patch could be interpreted as an
update for the matching attribute in the base document.
However, it might be even more likely, that the base
document should be left untouched in such case of a
conflict. This obviously highly depends on the use case.
Summarizing, there is a need of parameterizing the
conflict handling to at least be able to prefer the base or
patch to support different use cases for the structural
merge algorithm.

Example 6. Accumulation of non-element nodes

<!-- Base document -->

<element id="1" type="a">

 lorem

</element>

<!-- Patch document -->

<element id="1" useage="b">

 ipsum

</element>

<!-- possible result -->

<element id="1" type="a" useage="b">

 lorem

 ipsum

</element>

Next to the handling of elements, especially in additive
patch semantics, it would also make sense to accumulate
non-element nodes to add or update new attributes or
text nodes to already available nodes in the base
documents. Example 6 shows a simple example of a base
document and a patch document. Each containing an
attribute that is not present in the other one. Merging
base and patch, it can be assumed that both attributes are
intended to occur in the resulting document. The even
more interesting question raised in Example 6 is how to
handle text nodes. In this example many different results
can be discussed to be valid dependent on the
document's semantics or even dependent on the

intention of the merge. It can be easily seen, that the
complexity of merging full text properly is very high and
we are not able to takle this issue here exhaustively.
However, especially in our daily context of XML used as
specification language for framework configurations, you
most often will find no full text in text nodes. Thus, we
will focus on the simple use case of the merging text
nodes like values of attributes. This indicates text nodes
to just describe a simple structured value, which can be
easily interpreted. By this, we can discuss different proper
merge techniques of text nodes like appending text with
or without a separator or even replace text nodes entirely

Page 41 of 127

Language-aware XML Aggregation

1 https://github.com/may-bee/lexeme/blob/development/src/main/resources/xsd/merge-schema.xsd

in the base document by the patch's corresponding text
node.

3.3. Result of the analysis

Summarizing, a generic 2-way XML merge algorithm
just considering the XML meta-language specification
will not be able to merge different XML-based languages
properly. The same holds generic 2-way merge algorithms
just considering the language specifications e.g. DTDs
and XSDs as we observed, that the available XML
language specifications do not cover all important
properties for making a proper merge feasible. We
observed, that the semantics of the language have to be
considered to provide proper merge rules.

4. The MergeSchema

To overcome the lack of information according to the
notion of equality of nodes as well as according to the
individual merge operation to be performed, our
approach focuses on the specification of further merge
relevant information in a seperate language specific
document further referenced as MergeSchema. In the
following section the important parts of the
MergeSchema language will be presented essentially
again on the basis of different examples. The
MergeSchema itself is specified as a XML-based
language1 as well.

4.1. Building the MergeSchema

The basic idea of specifying different notions of equality
for different element nodes is based on XPath
expressions. Thus, the assessment of the equality of two
element nodes will be done by evaluating and comparing
the corresponding XPath expression on both element
nodes to be compared.

Example 7. MergeSchema for Example 4

<merge-schema>

 <handling for="child">

 <criterion xpath="./@id"/>

 </handling>

</merge-schema>

As a first simple example consider the MergeSchema in
Example 7 provided for the input documents presented
in Example 4. The merge-schema contains one merge rule
described by the <handling> element. The handling

describes a simple equality expression for <child>

elements, which are specified to be equal if their id
attribute's values are equal. The latter is described in the
match <criterion>, which xpath expression points to the
child's id attribute node ("./" points to the current node,
"@" to an attribute of that node). A handling
specification for the <root> element is not necessary. It is
always assumed that the document's root elements match
according to their full qualified element name with each
other. Otherwise, the 2-way merge will not be considered
to be possible at all. Utilizing this MergeSchema the
<child id="1"/> elements from Example 4 of the base
and patch will be matched with each other. The
remaining child element can simply be accumulated
since no further match is found.

If no handling is specified for an element, element
nodes will be compared due to their recursive identity,
meaning comparing all attribute nodes as well as child
nodes value by value. In contrast to that, you can also
imagine elements to just occur once as specified in the
language specification or simply as of code conventions
of a target code architecture. As an example take the
<title> element of the docbook specification. To ensure
this, "./true()" can be used as a criterion's xpath

expression, which simply always evaluates to true. This
will lead to a match of any title element between base
and patch under an equally identified parent element.
Treating each title element to be equal for the merge
algorithm, there are two use cases coming up with the
patch semantics for processing the merge. On the one
hand, you could imagine a prefer base approach, which
simply discards the title element from the patch and
leaves the matching base's title element untouched. On
the other hand, you can discuss it the other way around,
treating the patch as an update for the base resulting in
the patch's title element to occurr in the result.
However, both use cases can be easily motivated in a
generative context and thus should be supported by a
proper merge algorithm. For now we do not cover this as
a property to be specified in the MergeSchema. However,
it is configurable as a global parameter of our
implementation of the merge algorithm allowing to
prefer the base's or patch's value.

Page 42 of 127

Language-aware XML Aggregation

Example 8. Individual merge of HTML tables

<!-- Base -->

<table>

 <tr>

 <th>Group No.</th>

 <th>Attendees</th>

 </tr>

 <tr>

 <td>1</td>

 <td>John Doe</td>

 </tr>

 <tr>

 <td>2</td>

 <td>Joe Bloggs</td>

 </tr>

</table>

<!-- Patch -->

<table>

 <tr>

 <th>Group No.</th>

 <th>Attendees</th>

 </tr>

 <tr>

 <td>1</td>

 <td>G. Raymond</td>

 </tr>

</table>

<!-- MergeSchema -->

<merge-schema>

 <handling for="table">

 <criterion xpath="./tr/th"/>

 <handling for="tr">

 <criterion

 xpath="./td[1]/text()"/>

 <handling for="td"

 attachable-text="true"/>

 </handling>

 </handling>

</merge-schema>

<!-- Result -->

<table>

 <tr><!-- ==base --></tr>

 <tr>

 <td>1</td>

 <td>John DoeG. Raymond</td>

 </tr>

 <tr>

 <td>2</td>

 <td>Joe Bloggs</td>

 </tr>

</table>

Example 8 introduces a more complex example of
merging two HTML tables in a very specific way. The
base document specifies a double-columned table listing
groups with their identifier and attendees. The intention
of the patch is to add a new attendee to an already
existing group by enriching the Antendees cell's value of
the corresponding group by an additional person's name.
Therefore, we describe the data to be added in the patch,
in specific, the already known table and the group with
the new attendee's name. To merge base and patch
documents as intended, the merge schema has to be
specified as follows. First, we identify the table by their
column headers (xpath="./tr/th") as already been
discussed in Example 3. Next, we have to identify the
rows (tr) by their first column's value respectively Group
No.(xpath="./td[1]/text()"). Given that, the merge
algorithm will find the matching rows and compare its
children, whereas the first column will obviously been
detected as identity and left unchanged. However, the
merge of the second column will result in a conflict

unless a possibility of conflict resultion is given. Besides
prefering one of the documents, there is also the ability
to accumulate the patch's text nodes to the base's one's
by adding a handling for td elements allowing text node
attachments (attachable-text="true"). The current
pitfall here, is the fact that the text nodes are simply
accumulated and thus not appendend with any possibly
custom text separator. This already shows one of the
shortcomings of the current implementation. For the
moment (custom) separators for appending text is just
supported for attributes due to technical reasons of the
algorithm implementation.

Finally, working with XML we also have to discuss
XML namespaces. Namespaces are used for language
separation in XML documents as one XML document
can contain elements from multiple XML-based
languages. With the introduction of XML namespaces,
the distinction between local and full qualified names of
element nodes has to be considered. While the full
qualified name looks like nsp:tag-name the local name is

Page 43 of 127

Language-aware XML Aggregation

just the tag-name and nsp: the abbrevation of its
namespace. To overcome the issue of non unique local
names when using different XML namespaces in a
document, we restrict each MergeSchema to one XML
namespace. Thus, we analogously separated concerns as

already done by the introduction of different XML
namespaces respectively languages. As a consequence, the
merge algorithm will have to adduce the correct
MergeSchema dependent on the current element's
namespace to gather further merge relevant information
for each language.

Example 9. Consideration of XML namespaces

<!-- Base -->

<a:root xmlns:a="firstNameSpace">

 <a:child id="1"/>

 <b:root xmlns:b="secondNamespace">

 <b:child id="1"/>

 </b:root>

</a:root>

<!-- Patch -->

<a:root xmlns:a="firstNameSpace">

 <a:child id="2"/>

 <b:root xmlns:b="secondNamespace">

 <b:child id="2"/>

 </b:root>

</a:root>

<!-- MergeSchema firstNamespace -->

<merge-schema>

<definition

 namespace="firstNamespace"/>

 <handling for="child">

 <criterion xpath="./@id"/>

 </handling>

</merge-schema>

<!-- MergeSchema secondNamespace -->

<merge-schema>

 <definition

 namespace="secondNamespace"/>

 <handling for="child">

 <criterion xpath="true()"/>

 </handling>

</merge-schema>

<!-- Result -->

<a:root xmlns:a="firstNameSpace">

 <a:child id="1"/>

 <a:child id="2"/>

 <b:root xmlns:b="secondNamespace">

 <b:child id="2"/>

 </b:root>

</a:root>

Considering Example 9, the child element is present in
two different languages introduced by the XML
namespaces firstNamespace and secondNamespace.
Different languages may most commonly introduce
different semantics of poentially equally named elements.
To provide a MergeSchema for each of the languages, we
introduce the definition element to the merge-schema
root indicating the namespace the MergeSchema
corresponds to. Example 9 specifies the child element of
the firstNamespace to match on its id attribute. In
contrast to that, the child element of the
secondNamespace is specified to match any child element
of the same language, i.e. is forced to occur only once. To
gain the result as shown in Example 9, we in addition
have to assume a global conflict resolution of patch wins .
This simple example already indicates quite well, that by
considering the elements' language semantics, we were
able to merge the documents more properly than just

assume the same semantics for each XML element
regardless its language.

4.2. Nesting of Handlings

The XML language definition allows a distinction
between the type and the name of an element. The name
and type information of an element is specified in the
corresponding XSD or DTD. But especially, in an XSD
the mapping between name and type is not bidirectional.
This introduces mainly two issues with XSDs related to
the specification of the MergeSchema presented so far.
First, the name of an element needs only be unique
under any parent element and second, types can be
shared between multiple namespaces due to type reuse
and extension. In order to overcome the second problem,
we focus on element names rather than on the types to
connect a MergeSchema's handlings to. Thus, we were

Page 44 of 127

Language-aware XML Aggregation

able to ensure that a MergeSchema just covers the
specification of the corresponding language rather than
also covering the handling of types inherited from
different languages. To also takle the first problem also,
the MergeSchema specification allows nesting of
handlings to specify the handling's context to be valid
for. As given by the XML specification the context
basically can be summarized as the axis of ancestors of a
node.

Introducing nesting immediately introduces the need
of semantics for overriding handlings and their visibility
for application. A handling is visible and thus applicable
for all its sibling handlings and all handlings on the
descendant axis. However, by specifying handlings for
the same element names on the same descendant axis,
the most specific handling in each context will visible
and thus applicable dependending on the current context
of the node to be processed by a merge algorithm.

Example 10. Nesting of handlings

<merge-schema>

 <handling name="a"/>

 <handling name="b">

 <handling name="c"/>

 <handling name="d">

 <handling name="a"/>

 </handling>

 </handling>

</merge-schema>

For a better understanding consider Example 10.
Assuming the merge algorithm already merged or <c>
elements and stepping down on the descendant axis
encounters an <a> element, we would apply the first
handling declaration. However, if the merge algorithm
would have merged a <d> element and stepping down on
the descendant axis encountering an <a> element, we
would apply the fifth handling since it overrides the first
one.

4.3. Reduction of Redundancy

MergeSchemas obviously can become quite large if
considering complex XML languages. Often, many
elements can be identified with the same xpath statement
or merged with any specific default configuration. Some
but not all XML languages use XML's id attribute as
identifier for elements, e.g. reconsider the language for
Spring Bean declaration discussed in Section 3.1. Such
notion of equality might even hold for multiple elements
of the smae language and thus will result in many
duplicates of criterion specifications. Therefore, the

<default-criterion> element has been introduced as a
child of the merge-schema root to be able to change the
default criterion with xpath="./*" (recursive equality) to
anything more suitable specific to each language.

4.4. Further MergeSchema Features

Similiar to many other concepts around 20% of the
language specification of MergeSchemas already covers
around 80% of use cases. Describing the whole language
specification of MergeSchemas would exceed the scope of
this paper. Therefore, we briefly want to point out also
implemented concepts we could not cover in this scope,
but which have been experienced to be necessary for real
world application.

Ignore order on matching criterion's XPath
results: Evaluating the xpath expression of a criterion
may result in an ordered list of nodes. By default, this list
is compared to another list by considering the the order
as well. However, as indicated in Section 3, ordering of
nodes has not to be considered in each language.

Support for XSD type inheritance: As shortly
discussed in Section 4.2, XML introduces types and
element names which are losely coupled. This may lead
to redundancy e.g. of criterion specification in the
MergeSchema as of the fact, that the MergeSchema refers
to element names rather than to XML types but you may
want to specify criterions not in each element anew.
However, this is a very advanced topic, which is just
partially adressed in our approach.

Connect multiple namespaces to one
MergeSchema: Most commonly, XML namespace aliases
for the latest release of evolving language specifications
are introduced next to the XML namespaces for each
released version of a XML language. Thus, the latest
released language specification can be referenced by two
different XML namespaces. However, you do not want
to specify two equivalent MergeSchemas for it, but just
connect a MergeSchema to different namespaces.

Conditional merge operations: In some use cases,
the merge operation for elements has to differ in a
specific context, e.g. the merge operation should be
different for the first element respectively the subsequent
elements with the same name. Therefore, we introduced
some kind of where clauses to activate/deactivate
handlings in specific contexts.

Value precedence specification: Especially attributes
can be restricted to some enum values, which in case of a
conflict during merge should not just processed stupidly
based on a global conflict handling. Moreover, the merge
algorithm should follow an individual precedence of the
values specified in the MergeSchema.

Page 45 of 127

Language-aware XML Aggregation

1 Language-aware XML Merger; https://github.com/may-bee/lexeme

5. LeXeMe

To enable structural 2-way merging of XML documents
based on the previously introduced MergeSchema, we
developed the Java library LeXeMe1 to be used in a
company internally developed and maintained code
generator [Brunnlieb2014]. As of the complexity of the
overall MergeSchema language specification, the
following just focuses on an additional feature
introduced by the merge algorithm itself rather than
explaining how the algorithm implements the previously
discussed language semantics of the MergeSchema in
detail.

5.1. Preserving the Document Order

The merge algorithm implemented in LeXeMe mainly
introduces one important additional feature to gain

better merge results. Remembering the context
considerations for our approach, the XML documents to
be merged are also manipulated by humans. Thus, the
merge result should be readable by humans easily. This
essentially means, that it is important to preserve the
ordering of the documents XML child elements to not
destroy the humans mental model. Thus, the LeXeMe
merge algorithm tries to preserve as much ordering in the
document as possible to produce more predictable results
for humans. The following listing of pseudo-code
describes a simplified version of the merge algorithm to
merge element nodes.

mergeElement(base, patch)

 FORALL elements IN patch.ChildElements AS pElem

 IF (pElem.findMatch(base.ChildElements) AS bElem) THEN

 // special case: child nodes list starts with text nodes

 tNodes = text nodes patch.ChildNodes starts with

 IF (tNodes not empty && pElem is first of patch.ChildElements) THEN

 Add tNodes to base before base.bElem

 // recursively merge pElem and bElem

 base.bElem = mergeElement(bElem, pElem)

 // handle subsequent text nodes

 Add all subsequent text nodes of pElem after bElem

 Remove tNodes and pElem from patch

 // handle non matching nodes

 IF (patch.ChildElements is not empty)

 Try to align and merge remaining patch elements to base

 Accumulate remaining nodes

RETURN base

The listing describes a method called mergeElement,
which takes a base element node as well as a matching
patch element node as inputs. For simplicity reasons, we
ignored all the processing steps handling the
corresponding MergeSchema specification and conflict
handling. The algorithm starts with entering the root
nodes of the base and patch, whereas it is assumed as a
precondition for the shown function, that the root nodes
match each other, i.e. have the same element name and
namespace.

The first part of the algorithm (line 2-12) tries to find
a matching child element node (bElem) for each patch
element child (pElem) in the list of element children of

base. If there is a matching base child bElem, the
algorithm merges pElem and bElem recursively (line 9).
Furthermore and even more important, the text nodes
are merged based on the location of bElem as a
sophisticated comparison and alignment of text nodes is
a non-trivial problem not covered. Thus, we chose to
stick each list of sequent text nodes to their next element
predecessor. Given that, all immediately subsequent text
nodes of pElem will be merged right after bElem to the
base (line 11). As we are just consider subsequent text
nodes, the exceptional case of a list of children starting
with text nodes is considered in lines 5-7.

Page 46 of 127

Language-aware XML Aggregation

1 https://github.com/may-bee/lexeme/tree/development/src/main/resources/mergeSchemas
2 http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/persistence/index.html
3 http://dozer.sourceforge.net

After processing all matched child elements of patch
and their subsequent text nodes, the merge of the non-
matching child elements of patch as well as their
subsequent text nodes have to be merged as well. To find
a suitable place for the remaining elements, we memorize
the siblings of each child element of patch. Based on that
knowledge, the algorithm tries to align and merge the
remaining element nodes of patch to base. Surely, it is
not trivial to preserve all orderings of the patch's children
in the base as well. Therefore, we simply implemented a
first come first serve approach discarding non-preservable
alignment needs of further nodes and thus prevent the
algorithm from struggling with a general optimization
problem. Finally, the remaining child elements and its
text nodes, which could not be aligned and merged until
now, are accumulated at the end of the base (line 16).

Summarizing, this part of the complete LeXeMe
implementation is obviously a best effort approach,
which essentially works with non-ordered XML
documents best, just preserving some of the ordering
within the document in the resulting document. This
algorithm has not been designed to preserve the
semantics of e.g. xHTML documents entirely. We claim,
that this is not easily manageable as it will introduces the
need for merging full text, which finally will lead to
linguistic analysis.

5.2. Limitations to the Implementation

The merge algorithm implemented by LeXeMe assumes
the root elements of the two input XML documents as
mergable, i.e. declaring the same full qualified element
name. Given that, the recursive merge processing is able
to start and produce a result. Until now, the merge
algorithm just aggregates nodes based on the
MergeSchema and not based on the DTD or XSD
knowledge as well. This especially includes the
multiplicity constraints of a XSD, which can be more
fine-grained than it can be described in a MergeSchema
(1 to unbound). LeXeMe only validates the merge result
against its DTD or XSD detecting wrongly accumulated
nodes or attribute values. Furthermore, LeXeMe tries to
preserve the document structure of the base as explained
in the previous section. However, merging ordering
sensitive documents as e.g. xHTML will remain unsolved
taking the entire document semantics into account. At
least our approach may produce non-intended results in
its current implementation. Finally, as we introduced by

the context the implementation is operating in, LeXeMe
is not able to perform any deletions in the resulting
document as the MergeSchema as well as the two
documents simply do not provide any information to
this regards.

6. Industrial Experiences

Compared to the previous implementation of a generic
structural xml merger based on the XMLMerge
[XMLMerge] framework, the structural merge has
become a lot more powerful with the LeXeMe. Although
we tuned the generic XML merge algorithm a lot to
make it even more smarter, we quickly observed multiple
conflicts in our needs to merge different XML-based
languages properly. As indicated, the original motivation
for structurally merging XML files comes from the need
of adding new XML contents to already existent XML
documents. Especially in the context of Java applications,
there are a bunch of frameworks, which can be
configurated by using XML documents for various use
cases. As an example, there are multiple XML documents
to configure the component framework Spring. So we
implemented some mergeSchemas1 to be able to merge
such configuration files even better than with generic
XML merge approaches. We successfully used LeXeMe
in a company internal generator implementation to add
new <bean> declarations, add new <property> elements
to already existing bean declarations, as well as update
different XML attributes accordingly. Furthermore, we
were able to generate additional XML code to Java
persistence configurations2 as well as to Dozer Mapper
configurations3.

7. Conclusion

First, we discussed different examples of merging two
XML documents to underline the different needs to be
takled by a structural 2-way merge algorithm. Based on
that, we developed a language specific MergeSchema,
which encodes different rules derived from the language's
semantics to handle structural merges properly for
different XML-based languages. Finally, we described the
core idea of the merge algorithm considering the
MergeSchema. We showed, that structural 2-way merges
for XML documents can be much more effective if

Page 47 of 127

Language-aware XML Aggregation

considering further semantics of the language to be
merged. However, specifying a MergeSchema for each
XML based language to be supported for 2-way merging
introduces additional effort. We further indicated
different limitations of our approach as e.g. the arbitrary
complex problem of merging text nodes has not been
covered in our approach as we mainly focused on the
structural merge rather than on the merge of text nodes
potentially containing full text.

Finally, we identified the following future works. We
identified the need to also process information from
already available language specifications like DTD or
XSD right during the merge to not end up in invalid
results according to the language specification. This
especially adresses the XSD as it not only provides more
fine grained multiplicity constraints, but also gives hints
about the validity of attribute values during merge. As
another topic of future work, LeXeMe currently provides
a parameter for conflict resolution globally indicating the
algorithm to prefer the base or patch values when
detecting non-resolvable conflicts. It might be more
suitable to provide such kind of conflict resolution on a
more fine-grained level specified per element in the
MergeSchema. Thus, MergeSchemas could not only be
used for language specific 2-way XML merge, but also
for an use case specific document merge.

8. Related Works

DeltaXML [LaFontaine2002] has been developed for
merging documents by first deriving so called delta
documents from two XML documents to be merged.
Such delta document can then be further processed to
show the differences or to be executed by a structural
merge algorithm. This already is one of the major
differences between LeXeMe and DeltaXML as
DeltaXML determines a delta document of the inputs
encoding all information of all input documents.
Furthermore, DeltaXML just processes the XML meta-
language and does not consider any further language
specific merge properties during a merge. DeltaXML just
provides a trivial matching algorithm and just provides a
manual approach to influence element matching via
deltaxml:key attributes by manipulating the input
documents.

XMLMerge [XMLMerge] was mainly one of the
open source libraries takling the general issue of merging
XML documents in a 2-way fashion. However,
programmatically adjusting the merge algorithm to some
language needs will immediately collide with any other
languages' needs. Diving deeper into the libraries API it

may be also possible to encode an appropriate merge
behavior for each XML language. However, you will have
to change your programs implementation on changes or
different merge needs, which makes the approach highly
inflexible. To overcome this, we chose a more declarative
approach to easily change merge properties without
having to change the implementation of our merge
algorithm.

Our approach and the specification of the
MergeSchema is somehow influenced by the work of
Tufte and Maier [Tufte2001]. They introduce a so called
Merge Template, which purpose is quite similar to our
MergeSchema. One of the basic differences is the context
of application. The Merge Template is designed to
accumulate XML elements from two input streams
rather than from completely available and readable input
documents. To identify a pair of mergeable elements the
Merge Template specifies nodes which have to be
identical in two considered input elements. Due to the
fact, that they discuss streams as input, neither deep
matching (i.e. matching via descendant nodes) nor
matching of single nodes e.g. by attribute's values is
supported. The approach via XPath as it is used in
LeXeMe provides a lot more possibilites to define
advanced matching criterias. The focus of the Merge
Template and its corresponding accumulation algorithm
only relies on non ordered XML data. XML languages
implying ordering of nodes are thus not mergeable by
Tufte and Maier's approach.

Page 48 of 127

Language-aware XML Aggregation

Bibliography

[LaFontaine2002] Robin La Fontaine. Copyright © 2002. XML Europe. Merging XML files: A new approach
providing intelligent merge of xml data sets.

[XMLMerge] Pip Stuart. Copyright © 2004. XML::Merge - search.cpan.org.
http://search.cpan.org/~pip/XML-Merge-1.2.565EgGd/Merge.pm
accessed 03/07/2016 .

[Brunnlieb2014] Malte Brunnlieb and Arnd Poetzsch-Heffter. Copyright © 2014. GI. Architecture-driven
Incremental Code Generation for Increased Developer Efficiency.

[Brunnlieb2016] Malte Brunnlieb and Arnd Poetzsch-Heffter. Copyright © 2016. ACM. Application of
Architecture Implementation Patterns by Incremental Code Generation.

[LaFontaine2001] Robin La Fontaine. Copyright © 2001. XML Europe. A Delta Format for XML: Identifying
changes in XML files and representing the changes in XML.

[Tufte2001] Kristin Tufte and David Maier. Copyright © 2001. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering. Aggregation and Accumulation of XML Data.

[Abiteboul2001] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and Janet L. Wiener. Copyright
© 1998. Stanford InfoLab. Incremental Maintenance for Materialized Views over Semistructured
Data.

Page 49 of 127

Language-aware XML Aggregation

http://search.cpan.org/~pip/XML-Merge-1.2.565EgGd/Merge.pm

Linked Data Templates
Ontology-driven approach to read-write Linked Data

Martynas Jusevičius

AtomGraph
<martynas@atomgraph.com>

Abstract

In this paper we summarize the architecture of Linked Data
Templates, a uniform protocol for read-write Linked Data.

We start by overviewing existing approaches as well as
protocol constraints, and propose a declarative approach
based on URI-representation mapping, defined as templates.
We then introduce an abstract model for RDF CRUD
interactions based on template matching, outline the
processing model, and provide an example.

We conclude that LDT provides a new way to build
applications and can be used to implement the ontology-
driven Semantic Web vision.

Keywords: HTTP, REST, RDF, Linked Data, SPARQL,
XSLT, SPIN, declarative, data-driven

1. Introduction

Linked Data is a vast source of information available in
RDF data model. In this paper we describe Linked Data
Templates: a generic method for software agents to
publish and consume read-write Linked Data. By doing
so, we facilitate a distributed web as well as redefine the
software development process in a declarative manner.

Web applications duplicate a lot of domain-specific
code across imperative programming language
implementations. We abstract application logic away
from source code and capture it in a machine-processable
representation that enables reuse, composition, and
reasoning. Our goal is to permit software to operate on
itself through metaprogramming to generate higher-level
applications — a feature not available in imperative
languages. Having a uniform homoiconic representation,
we reduce application state changes to uniform Create,
Read, Update, Delete (CRUD) interactions on Linked
Data representations [1].

Linked Data representations describe application
resource properties. A consuming process can query and
change resource state by issuing requests to resource
URIs. On the producing end, representations are

generated from an RDF dataset, either stored natively in
a triplestore or mapped from another data model. The
exact logic of how representations are generated and
stored is application-specific.

By establishing a mapping between URI address
space and the RDF representation space, we can model
application structure in terms of RDF classes that map
URIs to RDF queries and updates. We choose RDF-
based ontologies as the LDT representation, as it is the
standard way to define classes and satisfies both the
machine-processability and the homoiconicity
requirements. Ontology as a component for application
structure is what distinguishes LDT from other Linked
Data specifications such as Linked Data Platform.

In the following sections, we explain the motivation
behind LDT and describe the LDT architecture in more
detail. First we establish that applications can be driven
by ontologies that can be composed. We then introduce
templates, special ontology classes that map URI
identifiers to request-specific SPARQL strings. We
proceed to describe how a process matching templates
against request URI is used by RDF CRUD interactions
that generate Linked Data descriptions from an RDF
dataset and change the dataset state. Lastly, we map the
interactions to the HTTP protocol and show how the
client can use HTTP to interact with LDT applications.

2. Distributed web as read-write
Linked Data

2.1. A protocol for the web of data

Smart software agents should navigate the web of data
and perform tasks for their users — that has been an
early optimistic vision of the Semantic Web [2].
Ontologies and ontology-driven agents were central to
this vision, to provide the means to capture domain logic
in a way that sustains reason. It was largely forgotten
when the high expectations were not met, and the
community focus shifted to the more pragmatic Linked
Data.

doi:10.14337/XMLLondon16.Jusevicius01Page 50 of 127

mailto:martynas@atomgraph.com

In order to enable smart agents, we need to provide a
uniform protocol for them to communicate. Such a
protocol, understood by all agents in the ecosystem,
decouples software from domain- or application-specific
logic and enables generic implementations. The web has
thrived because HTTP is such protocol for HTML
documents, and web browsers are generic agents.

REST readily provides uniform interface for a
protocol, which has been successfully implemented in
HTTP. The interface is defined using 4 constraints [3]:

• identification of resources
• manipulation of resources through representations
• self-descriptive messages
• hypermedia as the engine of application state

Since the Linked Data resource space is a subset of REST
resource space, we can look at how these constraints
apply to standard Linked Data technologies:

• URIs identify resources
• RDF is used as resource representation. Resource state

can be changed using RDF CRUD interactions.
• RDF formats are used for self-describing Linked Data

requests and responses

2.2. Ontology-driven Linked Data

The main point of interest for this paper is RDF CRUD
interactions, the central yet underspecified component of
read-write Linked Data. The only standard in this area is
W3C Linked Data Platform 1.0 specification, which
defines a set of rules for HTTP interactions on web
resources, some based on RDF, to provide an architecture
for read-write Linked Data on the web [4]. It has several
shortcomings:

• It is coupled with HTTP and provides no abstract
model for RDF CRUD

• In order to accommodate legacy systems, it does not
mandate the use of SPARQL. SPARQL is the
standard RDF query language and does provide an
abstract model [5].

• It does not offer a standard way for agents to
customize how CRUD interactions change resource
state

The Linked Data API specification defines a vocabulary
and processing model for a configurable, yet read-only

API layer intended to support the creation of simple
RESTful APIs over RDF triple stores [6]. Hydra Core
Vocabulary is a lightweight vocabulary to create
hypermedia-driven Web APIs and has similar goals to
combine REST with Linked Data principles, but does
not employ SPARQL and focuses on JSON-LD [7].

As we can see, currently popular Linked Data access
methods are either read-only or do not use SPARQL.
They use lightweight RDF vocabularies, but not formal
ontologies that enable reasoning, as does the original
ontology-driven Semantic Web vision. Although there
has been a fair share of research and development in the
area of ontology-driven applications [8] [9], it focuses
mostly on domain and user interface modeling, and not
representation manipulation modeling.

2.3. LDT design

We propose Linked Data Templates, an ontology-driven
approach to read-write Linked Data. It builds on the
following constraints:

• there is a mapping between URI address space and
the RDF representation space. It is used to determine
resource’s representation from its URI identifier.

• applications are read-write and backed by SPARQL
1.1 compatible services to decouple them from
database implementations

• application structure is defined in an ontology to
enable reasoning and composition

• application state is driven by hypermedia
(HATEOAS) to satisfy REST constraints

XSLT is a homoiconic high-level language for the XML
data model [10]. We wanted to follow this approach with
a Linked Data specification, and as a result, XSLT heavily
influenced the template-based design of LDT. We draw
multiple parallels between XSLT stylesheets and LDT
ontologies, XML source documents and RDF datasets,
XPath patterns and URI templates etc.

AtomGraph Processor2 is an open-source
implementation of LDT. The commercial AtomGraph
Platform3 provides a multi-tenant environment and has
been successfully used to build rich LDT applications for
product information management and library data.

Page 51 of 127

Linked Data Templates

1 Icons used in the diagram made by Freepik http://www.flaticon.com
2 AtomGraph Processor - https://github.com/AtomGraph/Processor
3 AtomGraph Platform - http://atomgraph.com
1 LDT vocabulary is planned to have http://www.w3.org/ns/ldt# namespace in the final specification

Figure 1. Main components of LDT architecture1

Linked Data
response

URI SPARQL

Linked Data
request

SPARQL request

Ontology

SPARQL responseRDF

RDF
dataset

LDT applicationSoftware agent

Software
agent

RDF

RDF

Transformation
Parser

(X)HTML

RDF/POST

3. Application ontologies

[Definition: An LDT application represents a data space
identified by its base URI, in which application resource
URIs are relative to the base URI.] The only external
interface an application provides is RESTful Linked
Data: application produces RDF representations when
resource URIs are dereferenced, and consumes RDF
representations when requested to change resource state.

Application structure, the relationships between its
resources, is communicated through representations.
Representations are generated from, and stored in, an
RDF dataset. Two different applications should be able
to use the same dataset yet expose different structures
because they produce representations and change state
differently. It follows that application structure can be
defined as instructions for representation processing.

An ontology is an efficient way to define such
structure declaratively. We use OWL to define LDT
application ontologies with RDF query and state change
instructions specific to that application. We use SPARQL
to encode these instructions, because it is the standard
RDF query and update language and can be
conveniently embedded in ontologies using SPIN RDF
syntax. Using SPARQL service as the interface for the
dataset, applications are independent from its
implementation details.

An LDT application ontology may comprise several
ontologies, contained in different RDF graphs. For a
given application, one of these serves as the principal
ontology. Ontologies are composed through the standard
owl:imports mechanism, with the additional concept of

import precedence, which makes ontologies override
each other depending on the import order.

LDT does not make any assumptions about the
application structure. There is however a useful one: a
resource hierarchy consisting of a container/item tree. It
is similar to the container/resource design in LDP, but
based on the SIOC ontology instead [11]. The vast
majority of Web applications can be modeled using this
structure.

4. Templates

[Definition: A template is a declarative instruction
contained in an ontology, defined using LDT
vocabulary1, and driving RDF CRUD processing.] It is a
special ontology class that maps a certain part of the
application URI space to a certain SPARQL string. A
template can be viewed as a function with URI as the
domain and SPARQL as the range, which are the two
mandatory parts of the template, detailed below.

A template domain is defined using ldt:path

property and a regex-based JAX-RS URI template syntax
[12]. It is a generic way to define a class of resources
based on their URI syntax: if an URI matches the
template, its resource is a member of the class. Starting
with a catch-all template that matches all resources in an
application, we can specialize the URI pattern (e.g. by
adding fixed paths) to narrow down the class of matching
resources.

A template range is defined using ldt:query property
and SPIN RDF syntax, while updates use ldt:update

Page 52 of 127

Linked Data Templates

http://www.freepik.com/
http://www.flaticon.com
https://github.com/AtomGraph/Processor
http://atomgraph.com
http://www.w3.org/ns/ldt#

 property [13]. URI that matches URI template is passed
to SPARQL using a special variable binding ?this (path
variables from the URI template match, if any, are not
used since URIs are opaque). Starting with the default
query DESCRIBE ?this, we can specialize it with a graph
pattern, for example to include descriptions of resources
connected to ?this resource. The query forms are limited
to DESCRIBE and CONSTRUCT, as the required result is RDF
graph.

An important feature of LDT templates is annotation
inheritance, which enables code reuse but requires
reasoning. It mimics object-oriented multiple
inheritance: a class inherits annotation properties from its
superclasses via the rdfs:subClassOf relation, unless it
defines one or more properties of its own which override
the inherited ones. SPIN takes a similar object-oriented
world-view and uses subclass-based inheritance.

5. Processing model

We have established that application state is queried and
changed using Linked Data requests that trigger RDF
CRUD in the form of SPARQL. We can constrain the
requests to 4 types of CRUD interactions that map to
either SPARQL query or update. An interaction is
triggered by a Linked Data request and results in query
or change of application state by means of SPARQL
execution [14].

Table 1. LDT interaction types

Interaction
type

SPARQL form Generated from

Create INSERT DATA request RDF entity

Read DESCRIBE/
CONSTRUCT

ldt:query

Update DELETE; INSERT

DATA

ldt:update; request
RDF entity

Delete DELETE ldt:update

DESCRIBE and CONSTRUCT forms are generated from
ldt:query SPARQL templates; DELETE is generated from
ldt:update SPARQL template. INSERT DATA is generated
from the RDF in the request entity, either as triples or as
quads. Update interaction combines two updates into
one SPARQL request.

[Definition: We refer to the software that uses
application templates to support the interaction as an

LDT processor.] A processor consists of several sub-
processes that are triggered by a Linked Data request and
executed in the following order:

1. A validation process validates incoming RDF
representations against SPIN constraints in the
ontology. Invalid data is rejected as bad request. Only
applies to Create and Update.

2. A skolemization process matches request RDF types
against ontology classes and relabels blank nodes as
URIs. Only applies to Create.

3. A matching process matches the base-relative request
URI against all URI templates in the application
ontology, taking import precedence and JAX-RS
priority algorithm into account. If there is no match,
the resource is considered not found and the process
aborts.

4. A SPARQL generation process takes the SPARQL
string from the matching template and applies ?this
variable binding with request URI value to produce a
query or an update, depending on the interaction
type. BASE is set to application base URI.

5. A SPARQL execution process executes the query/
update on the application’s SPARQL service. If there
is a query result, it becomes the response entity.

6. A response generation process serializes the response
entity, if any. It uses content negotiation to select the
most appropriate RDF format, sets response status
code, adds ontology URI, matched template URI and
inheritance rules as header metadata.

For the container/item application structure it is
convenient to extend this basic model with pagination,
which allows page-based access to children of a container.
It requires SELECT subqueries and extensions to query
generation and response generation processes.

Having access to application ontologies, LDT clients
can infer additional metadata that helps them formulate
successful requests. For example, SPIN constructors can
be used to compose new resource representations from
class instances, while SPIN constraints can be used to
identify required resource properties. Applications with
embedded clients become nodes of a distributed web, in
which data flows freely between peers in either direction.

5.1. HTTP bindings

The mapping to HTTP is straightforward — each
interaction has a corresponding HTTP method:

Page 53 of 127

Linked Data Templates

Table 2. LDT interaction mapping to HTTP

Interaction
type

Request
method

Success
statuses

Failure
statuses

Create POST 201 Created

400 Bad

Request

404 Not Found

Read GET 200 OK 404 Not Found

Update PUT
200 OK

400 Bad

Request

201 Created 404 Not Found

Delete DELETE
204 No

Content
404 Not Found

It should be possible to use the PATCH method for
partial modifications instead of replacing full
representation with PUT, but that is currently unspecified.

5.1.1. Example

In the following example, an HTTP client performs an
Update-Read request flow on linkeddatahub.com
application, which supports LDT. Only relevant HTTP
headers are included.

First, the client creates a resource representing Tim
Berners-Lee by submitting its representation:

PUT /people/Berners-Lee HTTP/1.1

Host: linkeddatahub.com

Accept: text/turtle

Content-Type: text/turtle

@base <http://linkeddatahub.com/people/Berners-Lee> .

@prefix ldt: <http://www.w3.org/ns/ldt#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

<> a ldt:Document ;

 foaf:primaryTopic <#this> .

<#this> a foaf:Person ;

 foaf:isPrimaryTopicOf <> ;

 owl:sameAs

 <https://www.w3.org/People/Berners-Lee/card#i> .

Let's assume the match for /people/Berners-Lee request
URI is the :PersonDocument template in the application
ontology:

@base <http://linkeddatahub.com/ontology> .

@prefix : <#> .

@prefix ldt: <http://www.w3.org/ns/ldt#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix sp: <http://spinrdf.org/sp#> .

ontology

: a ldt:Ontology ;

 owl:imports ldt: .

template

:PersonDocument a rdfs:Class, ldt:Template ;

 ldt:path "/people/{familyName}" ;

 ldt:query :DescribeWithPrimaryTopic ;

 ldt:update :DeleteWithPrimaryTopic ;

 rdfs:isDefinedBy : .

query

:DescribeWithPrimaryTopic a sp:Describe, ldt:Query ;

 sp:text

 """PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DESCRIBE ?this ?primaryTopic

WHERE

 { ?this ?p ?o

 OPTIONAL

 { ?this foaf:primaryTopic ?primaryTopic }

 }""" .

update

:DeleteWithPrimaryTopic a sp:DeleteWhere, ldt:Update ;

 sp:text

 """PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DELETE {

 ?this ?p ?o .

 ?primaryTopic ?primaryTopicP ?primaryTopicO .

}

WHERE

 { ?this ?p ?o

 OPTIONAL

 { ?this foaf:primaryTopic ?primaryTopic .

 ?primaryTopic ?primaryTopicP ?primaryTopicO

 }

 }""" .

The variable binding (?this, <http://

linkeddatahub.com/people/Berners-Lee>) is applied on
the DELETE associated with the template. It is combined
with INSERT DATA generated from the request RDF entity

Page 54 of 127

Linked Data Templates

1 AtomGraph - http://atomgraph.com

into a single update request. Application base URI is set
on the final SPARQL string which is then executed on
the SPARQL service behind the application:

BASE <http://linkeddatahub.com/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX ldt: <http://www.w3.org/ns/ldt#>

DELETE {

 <people/Berners-Lee> ?p ?o .

 ?primaryTopic ?primaryTopicP ?primaryTopicO .

}

WHERE

 { <people/Berners-Lee> ?p ?o

 OPTIONAL

 {

 <people/Berners-Lee>

 foaf:primaryTopic ?primaryTopic .

 ?primaryTopic ?primaryTopicP ?primaryTopicO

 }

 } ;

INSERT DATA {

 <people/Berners-Lee>

 a ldt:Document .

 <people/Berners-Lee>

 foaf:primaryTopic <people/Berners-Lee#this> .

 <people/Berners-Lee#this>

 a foaf:Person .

 <people/Berners-Lee#this>

 foaf:isPrimaryTopicOf <people/Berners-Lee> .

 <people/Berners-Lee#this>

 owl:sameAs

 <https://www.w3.org/People/Berners-Lee/card#i> .

}

We assume the representation did not exist beforehand,
so it is created instead of being updated (an optimized
implementation might have skipped the DELETE part in
this case). The application responds with:

HTTP/1.1 201 Created

Location: http://linkeddatahub.com/people/Berners-Lee

The client can choose to follow the link to the newly
created resource URI, and retrieve the same
representation that was included with the initial PUT
request:

GET /people/Berners-Lee HTTP/1.1

Host: linkeddatahub.com

Accept: text/turtle

We omit the response, but note that the application
would use the DESCRIBE query associated with the
matching template to generate the representation.

6. Future work

The use of OWL and SPARQL is probably the biggest
advantage and limitation of LDT at the same time. RDF
ontology and query tools as well as developers are scarce
for mainstream programming languages with the possible
exception of Java, making implementations expensive
and adoption slow. Query performance is a potential
issue, albeit constantly improving and alleviated using
proxy caching. On the other hand, OWL and SPARQL
provide future-proof abstract models on which LDT
builds.

We are working around slow adoption of Linked
Data by providing a hosted LDT application platform1.
It uses metaprogramming to implement complex data
management features such as application and resource
creation, autocompletion, access control, provenance
tracking, faceted search — all done through a user
interface, exposing as little technical RDF details as
possible.

We envision an ecosystem in which applications by
different developers interact with each other: ask for
permissions to access or create data, send notifications to
users, automate interactions etc.

7. Conclusions

In this paper we have described how read-write Linked
Data applications can be modeled using standard
RDF/OWL and SPARQL concepts. Linked Data
Templates enable a new way to build declarative software
components that can run on different processors and
platforms, be imported, merged, forked, managed
collaboratively, transformed, queried etc. Experience with
AtomGraph software has shown that such design is also
very scalable, as the implementation is stateless and
functional. We expect that substantial long-term savings
in software engineering and development processes can
be achieved using this approach.

We have shown that SPARQL is the crucial link that
reconciles ontology-driven Semantic Web and read-write
Linked Data. Using SPARQL, Linked Data Templates
define a protocol for distributed web of data as uniform
RDF CRUD interactions. LDT already provide features

Page 55 of 127

Linked Data Templates

http://atomgraph.com

from the original Semantic Web vision, such as ontology
exchange between agents, and we are confident it has the
potential to implement it in full.

Bibliography

[1] Create, read, update and delete. Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

[2] The Semantic Web. Tim Berners-Lee, James Hendler, and Ora Lassila. Scientific American. 1 May 2001.
http://www.scientificamerican.com/article/the-semantic-web/

[3] Representational State Transfer (REST). Roy Thomas Fielding. 2000.
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_5

[4] Linked Data Platform 1.0. Steve Speicher, John Arwe, and Ashok Malhotra. World Wide Web Consortium
(W3C). 26 February 2015.
https://www.w3.org/TR/ldp/

[5] SPARQL 1.1 Query Language. Steve Harris and Andy Seaborne. World Wide Web Consortium (W3C). 21
March 2013.
https://www.w3.org/TR/sparql11-query/

[6] Linked Data API Specification.
https://github.com/UKGovLD/linked-data-api/blob/wiki/Specification.md

[7] Hydra Core Vocabulary. Markus Lanthaler. 20 March 2016.
http://www.hydra-cg.com/spec/latest/core/

[8] Agents and the Semantic Web. James Hendler. 2001.
http://www.cs.rpi.edu/~hendler/AgentWeb.html

[9] Ontology-Driven Apps Using Generic Applications. Michael K. Bergman. 7 March 2011.
http://www.mkbergman.com/948/ontology-driven-apps-using-generic-applications/

[10] XSL Transformations (XSLT) Version 2.0. Michael Kay. World Wide Web Consortium (W3C). 23 January
2007.
https://www.w3.org/TR/xslt20/

[11] SIOC Core Ontology Specification. Uldis Bojārs and John G. Breslin. DERI, NUI Galway. 25 March 2010.
http://rdfs.org/sioc/spec/

[12] JAX-RS: Java™ API for RESTful Web Services. Marc Hadley and Paul Sandoz. Sun Microsystems, Inc.. 17
September 2009.
https://jsr311.java.net/nonav/releases/1.1/spec/spec3.html#x3-300003.4

[13] SPIN - Modeling Vocabulary. Holger Knublauch. 7 November 2014.
http://spinrdf.org/spin.html

[14] Architecture of the World Wide Web, Volume One. Ian Jacobs and Norman Walsh. World Wide Web Consortium
(W3C). 15 December 2004.
https://www.w3.org/TR/webarch/#interaction

Page 56 of 127

Linked Data Templates

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://www.scientificamerican.com/article/the-semantic-web/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_5
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/sparql11-query/
https://github.com/UKGovLD/linked-data-api/blob/wiki/Specification.md
http://www.hydra-cg.com/spec/latest/core/
http://www.cs.rpi.edu/~hendler/AgentWeb.html
http://www.mkbergman.com/948/ontology-driven-apps-using-generic-applications/
https://www.w3.org/TR/xslt20/
http://rdfs.org/sioc/spec/
https://jsr311.java.net/nonav/releases/1.1/spec/spec3.html#x3-300003.4
http://spinrdf.org/spin.html
https://www.w3.org/TR/webarch/#interaction

Scalability of an Open Source XML Database
for Big Data

John Chelsom

City University, London
<john.chelsom.1@city.ac.uk>

Abstract

Big Data tools and techniques are starting to make
significant contributions in clinical research and studies. We
explore the use of XML for holding data in an electronic
health record, where the primary data storage is an open
source XML database of clinical documents. We evaluate the
feasibility of using such a data store for Big Data and
describe the techniques used to extend to the massive data
sets required for meaningful clinical studies.

Using an open source Electronic Health Records system
we have loaded the database with a set of patient records
and measured the size of the database from 1 to 20,000
patients, together with the execution time of a typical query
to retrieve and combine data across a cohort of patients.

We describe the implementation of a federated data
store, whereby we can scale to millions of patient records. We
then make projections for the size and search execution time
at Big Data scale.

Keywords: Native XML Database, Big Data, Scalability,
Electronic Health Records, XRX, HL7 CDA

1. Introduction

In healthcare, the application of Big Data tools and
techniques is revolutionizing clinical research and has
already contributed to breakthroughs in cancer
treatments and management of long term conditions
such as diabetes and coronary heart disease [1] [2].

In this paper we explore the scalability of the eXist
open source, native XML database for Big Data. We have
used an open source Electronic Health Records (EHR)
system to load the database with a set of patient records
and measured the size of the database from 1 to 20,000
patients, together with the execution time of a typical
query to retrieve and combine data across a cohort of
patients. Extrapolating these results, we have estimated
the largest single database instance which would produce
acceptable query performance.

In order to reach the scale required for Big Data in
clinical research, which we have assumed to be the full
records for 55 million patients, we have investigated the
use of federated search across multiple instances of the
native XML database. By combining the results from this
federated search we are able to achieve the scalability
required for Big Data. Our approach to testing the
scalability of the XML database follows the same
principles described in the BigBench data benchmark
proposal [3].

2. Electronic Health Records in
XML

Health records typically contain a mix of structured and
unstructured data, with some data highly structured
(laboratory test results, for example), some lightly
structured (clinic attendance notes) and some with no
structure, other than meta data (diagnostic images). This
variation makes XML an ideal candidate for the basic
data representation and storage of healthcare data and
has led to the development of a number of standard
representations, the most commonly used being the
Health Level 7 Clinical Document Architecture (HL7
CDA) [4].

cityEHR [5] is an open source EHR which is
currently deployed in five hospitals in the National
Health Service in England, as well as being used for
research and teaching of health informatics. It is built as
an XRX application (XForms – REST – XQuery) on
existing open source Enterprise Java components,
primarily Orbeon Forms [6], the eXist XML database [7]
and the Mirth messaging engine [8] running in Apache
Tomcat. The study described in this paper used Orbeon
version 3.9 and eXist version 2.2. The architecture of
cityEHR, shown in Figure 1, “cityEHR as an XRX
Application”, was inspired by a previous commercial
product called Case Notes, which was implemented
using a relational database [9].

doi:10.14337/XMLLondon16.Chelsom01 Page 57 of 127

mailto:john.chelsom.1@city.ac.uk

Figure 2. Database Size with Increasing Record Count

Figure 1. cityEHR as an XRX Application

cityEHR – Open Source
XML Glue

Enterprise Java (Open Source)

eXist Orbeon Mirth

XML XSLT XQuery

OWL/XML XForms XHTML

Apache Tomcat

We have used the eXist XML database for developing
XML applications in healthcare since soon after its first
release in 2000; a version of eXist also ships with Orbeon
as the default persistent store for XML. It was therefore a
natural choice to use eXist for cityEHR, although there
are several open source alternatives, most notably BaseX
[10] and Berkeley DB XML Edition [11].

eXist ships with the Jetty Java Servlet container by
default and for this study we have used that default
installation running as a service in the MS Windows
operating system. For live deployments of cityEHR in
hospitals we can also run the eXist database in the same
Tomcat instance as Orbeon, which is a simpler
environment to deploy and maintain.

3. Scalability of the XML Database

3.1. Database Size

To measure the scalability of the XML database we used
the test data generation feature of cityEHR to create
databases ranging in size from 1 to 20,000 records. This
data generation feature imports a sample patient record
and replicates that record in the database, varying key
data for each test instance created. These key data include
the patient identifiers (which are anonymised), dates
(which are offset by a random time period) and gender
(the proportion of male/female patients can be set for the
generated test data).

For the current study, we used a sample record
containing 34 clinical documents, which when stored on
disk as a single XML file (HL7 CDA format) was
approximately 1.35Mb in size. When imported to the
XML database, the database of 20k patients was 31.6Gb,
including indexes. The equivalent size of the raw XML
for this number of patients is 27Gb, so the database
'bloat' is about 17%, which compares well with other
databases. The database size up to 20k patients (680k
documents) is shown in Figure 2, “Database Size with
Increasing Record Count”. Based on these results, our
estimate of the size of a database of 100,000 patients is
156Gb, 500,000 patients is 780Gb and 1 million
patients is 1.56Tb.
The eXist database is indexed with a range index on two
XML attributes and a full text (Lucene) index on the
same two attributes. These indexes are sufficient to
retrieve any patient data from the HL7 CDA records,
since all data follow the same pattern in terms of XML
markup.

Page 58 of 127

Scalability of an Open Source XML Database for Big Data

Table 1. Database size and search hits from 1 to 20,000 patients.

Patient Records 0 1 10 100 1000 2000 5000 10000 20000

Database Size (Mb) 80.3 82.1 97.3 248 1700 3210 7950 16000 31600

Hits 1 4 49 499 999 2499 5025 9775

Example 1. Definition of eXist Indexes

<collection

xmlns="http://exist-db.org/collection-config/1.0">

 <index>

 <!-- Disable the standard full text index -->

 <fulltext default="none" attributes="no"/>

 <!-- Full text index based on Lucene -->

 <lucene>

 <analyzer class="

org.apache.lucene.analysis.standard.StandardAnalyzer

 "/>

 <text qname="@extension"/>

 <text qname="@value"/>

 </lucene>

 <!-- New range index for eXist 2.2 -->

 <range>

 <create qname="@extension" type="xs:string"/>

 <create qname="@value" type="xs:string"/>

 </range>

 </index>

</collection>

3.2. XQuery Formulation and Indexing

For scalability testing we used a single test XQuery which
finds all Female patients, returning the patient identifier.
This query is typical of any query that finds clinical data
in a set of HL7 CDA documents and uses both the range
and Lucene full text indexes in eXist.

We also ran similar queries with fewer predicates, so
that just the range or full text indexes were used and
queries with XQuery for, let and return clauses. The
purpose of these additional queries was to verify that the
performance results reported here for the documented
test query are representative of a wider range of queries
that may be run in cityEHR. That said, all queries on
clinical data in HL7 CDA are accessing the same
extension and value attributes used in the test query.

Example 2. XQuery for performance testing.

xquery version "1.0";

declare namespace cda="urn:hl7-org:v3";

/descendant::cda:value

[ft:query(@value,'Female')]

[@extension eq '#ISO-13606:Element:Gender']

[../cda:id/@extension eq '#ISO-13606:Entry:Gender']

/ancestor::cda:ClinicalDocument

/descendant::cda:patientRole/cda:id

3.3. Query Execution Time

The results of loading the database with up to 20,000
patients and running the test query are shown below.
Table 1, “Database size and search hits from 1 to 20,000
patients.” shows the database size and number of search
hits returned; Figure 3, “Database size and search hits
from 1 to 20,000 patients.” shows these as a graph.

Figure 3. Database size and search hits from 1 to 20,000 patients.

Page 59 of 127

Scalability of an Open Source XML Database for Big Data

Figure 4. Execution time for first and repeated queries from 1 to 20,000 patients.

Table 2. Execution time for first and repeated queries from 1 to 20,000 patients.

Patient Records 0 1 10 100 1000 2000 5000 10000 20000

First Query Time (sec) 0.61 0.58 0.59 0.98 1.15 1.92 3.02 6.7

Repeat Query Time (sec) 0.016 0,016 0.06 0.18 0.34 0.58 0.98 2.49

Table 2, “Execution time for first and repeated queries
from 1 to 20,000 patients.” shows the execution times
for the first and repeated queries; Figure 4, “Execution
time for first and repeated queries from 1 to 20,000
patients.” shows these as a graph. These results were
obtained on a quad-core Intel i7 processor, with 16Gb
RAM running Windows 8. cityEHR was running under
Apache Tomcat with 4096Mb Java heap; eXist was
running under Jetty with 4096Mb Java heap.

When a slightly different search is performed (e.g. to
search for Male rather than Female patients) the
execution time reverts to the first query time, so the
cache used by eXist does not assist in this case. We have
therefore based our projections and conclusions on the
slower first query time, rather than the cached query, and
ensured during this study that services were restarted and
the cache cleared before each measurement was taken.

To check the impact of the Java heap size allocated to
the eXist process, we ran the same query at heap sizes
from 128Mb to 4096Mb (on a 1000 patient database
running on a dual core server, with 8Gb RAM). We
found that the query did not complete at 128Mb,
completed in 2.9 seconds at 256Mb and then completed
consistently in around 2 seconds for heap sizes from
512Mb to 4096Mb. Our conclusion is that once the Java

heap is above a sufficient threshold it has no effect on
query execution time.

4. Extension to Big Data Scale

4.1. Federated Search

To reach Big Data scale requires a step change in the
scale of the XML database which is unlikely to be
achieved through simple expansion of a single database
instance. A large acute hospital in the NHS might cover
a population of 1.5 million patients and a national
database for England should cover up to 55 million
patients.

Fortunately, the fact that each patient record is a
discrete data set allows us to scale the database as a set of
separate database instances, over which a federated search
can be run. Such replication or clustering could be
implemented at the database level, using whatever
support the database offered for this type of scaling. For
example, the eXist database has some support for
clustering using the Apache ActiveMQ messaging system
to marshal a master and slave databases.

Our objective has been to create a federated database
using the components of cityEHR (namely Orbeon and
eXist) 'out of the box' with no additional software
components and no database-specific implementation.

Page 60 of 127

Scalability of an Open Source XML Database for Big Data

Such an approach ensures that the solution can be
deployed easily on any network of servers or virtual
machines.

So rather than use database-level replication or
clustering facilities, we replicated the same database on
five separate network servers. For the purposes of this test
we used a 1000 patient database on dual core servers
with 4Gb memory, using 1024Mb of Java heap for eXist.

Before testing the federated search, we ran the same
test query on each database separately with the results
shown in Table 3, “Execution time for database nodes of
1000 patients.”. Each individual query returned 499 hits.
Node 1 was running on the same server as the cityEHR
(Tomcat) instance, whereas nodes 2 to 5 were running on
network servers.

Table 3. Execution time for database nodes of 1000
patients.

Network
Node

Node 1 Node 2 Node 3 Node 4 Node 5

Query Time
(sec) 0.24 0.68 0.58 0.58 0.53

4.2. Using XML Pipelines

Our first implementation of a federated search process
was implemented using an XML Pipeline in Orbeon,
which iterates through the available database nodes,
makes a submission to each node to run the XQuery and
then aggregates the results set. The results for running on
the five database nodes are shown in Table 4, “Results of
federated search on 1 to 5 database nodes, using an XML
pipeline.”.

Table 4. Results of federated search on 1 to 5 database
nodes, using an XML pipeline.

Nodes
Queried

1 node 2 nodes 3 nodes 4 nodes 5 nodes

Query Time
(sec) 6.2 12.54 18.65 24.25 30.22

Hits 499 998 1497 1996 2495

Were the submissions from the pipeline
asynchronous, we would expect that the time taken to
complete the federated query would be equivalent to the
slowest query to any database instance plus the time

required to aggregate the results from all queries. The
results show that not only are the submissions
synchronous (i.e. each waits for the previous iteration to
complete before it submits) but the overhead of the
aggregation in the XML pipeline is unacceptably high.
We concluded that this is not a viable approach for
implementation of the federated search.

4.3. Using Iteration Within XForms

Following the disappointing results using XML pipelines,
we made a second implementation using iteration of the
XQuery submissions from within XForms. The results of
this implementation on five database nodes are shown in
Table 5, “Results of federated search on 1 to 5 database
nodes, using XForms.”.

Table 5. Results of federated search on 1 to 5 database
nodes, using XForms.

Nodes
Queried

1 node 2 nodes 3 nodes 4 nodes 5 nodes

Query Time
(sec) 0.28 0.49 0.82 0.94 1.15

Hits 499 998 1497 1996 2495

These results are more encouraging, showing that the
overhead in the aggregation of results sets within XForms
iterations is minimal; indeed the results seem to suggest
performance that is better than a simple synchronous
aggregation, since the combined query time for each
node running as the single database instance is 2.61
seconds, whereas the federated search on all five nodes
was only 1.15 seconds.

The XForms 1.1 standard does specify asynchronous
submissions as the default, but in the version of Orbeon
we used for these tests (3.9, community edition) only
synchronous submissions are documented as being
available. Assuming this to be the case, we would
therefore expect a significant improvement in the
federated search performance were asynchronous
submissions used.

5. Conclusions

The results presented here show that the eXist database
scales adequately as the number of patient records
increases from 1 to 20,000. Our experiments have shown
that to achieve satisfactory performance, it is vital to

Page 61 of 127

Scalability of an Open Source XML Database for Big Data

formulate each XQuery to ensure optimal use of the
database indexes. This may explain why some other
independent analyses have reached different conclusions
regarding the scalability of eXist [12].

There is a considerable difference between the
execution time for the first call of a query and the times
for subsequent calls. This is due to caching in eXist,
which would appear to be based on the pages touched by
the query, rather than the full indexes. For this particular
implementation in cityEHR, it is unlikely that an
identical query will be run more than once in a single
session and so the benefit of caching will not necessarily
be seen. However, it is very likely that similar queries will
be repeated in the same session, accessing the same
indexes; it would therefore be more beneficial for
cityEHR if the indexes themselves were cached.
Therefore for our purposes we must look at the
performance of the first query execution as our
benchmark for performance.

Big Data queries on complex data sets can be
expected to take some time to return results. It is not
obvious where the threshold of acceptable performance
lies for such queries, since results on larger or more
complex data sets are more valuable and therefore longer
execution times are likely to be more acceptable than
times for queries driving a user interface (for example).

In the experiments described here, we have used the
eXist database in its 'out of the box' configuration and
have not attempted any database tuning beyond creating
indexes, carefully formulating XQueries and setting the
Java heap above the minimum required to execute the
queries. Performance does seem to degrade between

10,000 and 20,000 patients and this is therefore an area
for future investigation which may require more
sophisticated tuning or knowledge of eXist to address.
Assuming we can avoid further degradation, then we
would project that a search on a 100,000 patient would
complete in under 35 seconds. Limitation of time and
resources have so far prevented us from implementing a
database of this size, which is an obvious next step for
our research.

To implement a federated search using databases of
100,000 patients (100k nodes) would require 10 nodes
for one million patients and 550 nodes for 55 million.
Using the benchmark of 35 seconds for a 100,000
patient database node and the results of our tests on
federated search, we project a search time of just under 6
minutes for 1 million patients, one hour for 10 million
and about 5.5 hours for 55 million. Total database sizes
(aggregate of the federated databases) for 1, 10 and 55
million would be approximately 1.5Tb, 15Tb and 85Tb.

In conclusion, we can say that although the projected
search times on an 85Tb database of 55 million records
seem slow, they are based on a fairly unsophisticated
approach to implementation. A comparable
implementation of the Secondary Uses Service (SUS)
[13], to hold data on 55 million patients in the NHS in
England, was originally designed to use clustered
relational database technology and hardware accelerators
to hold far less structured data than we propose in this
paper. Hence we conclude that the results obtained so far
show enough promise to justify an extension to the next
order of magnitude and we will report those results at a
future date.

Bibliography

[1] Big data and clinicians: a review on the state of the science.. W. Wang and E. Krishnan. 2014. JMIR medical
informatics, 2(1)..
http://www.ncbi.nlm.nih.gov/pmc/articles/4288113/

[2] The meaningful use of big data: four perspectives--four challenges.. C. Bizer, P. Boncz, M.L. Brodie, and O. Erling.
2012. ACM SIGMOD Record, 40(4), pp.56-60.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.6604&rep=rep1&type=pdf

[3] BigBench: towards an industry standard benchmark for big data analytics.. A. Ghazal, T. Rabl, M. V, F. Raab, M.
Poess, A. Crolotte, and H.A. Jacobsen. 2013, June.. n Proceedings of the 2013 ACM SIGMOD international
conference on Management of data (pp. 1197-1208)..
http://www.msrg.org/publications/pdf_files/2013/Ghazal13-BigBench:_Towards_an_Industry_Standa.pdf

[4] HL7 Clinical Document Architecture, Release 2. RH. Dolin, L. Alschuler, S. Boyer, and . 2006. J Am Med
Inform Assoc. 2006;13(1):30-9. .
http://ssr-anapath.googlecode.com/files/CDAr2.pdf

Page 62 of 127

Scalability of an Open Source XML Database for Big Data

http://www.ncbi.nlm.nih.gov/pmc/articles/4288113/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.6604&rep=rep1&type=pdf
http://www.msrg.org/publications/pdf_files/2013/Ghazal13-BigBench:_Towards_an_Industry_Standa.pdf
http://ssr-anapath.googlecode.com/files/CDAr2.pdf

[5] Ontology-driven development of a clinical research information system.. JJ. Chelsom, I. Pande, R. Summers, and I.
Gaywood. 2011. 24th International Symposium on Computer-Based Medical Systems, Bristol. June 27-June
30.
http://openhealthinformatics.org/wp-content/uploads/2014/11/2011-06-CMBS.pdf

[6] eXist: An open source native XML database.. W. Meier. 2002. In Web, Web-Services, and Database Systems (pp.
169-183). Springer Berlin Heidelberg..
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.4808&rep=rep1&type=pdf

[7] Are Server-Side Implementations the Future of XForms?. E. Bruchez. 2005. XTech 2005.
[8] Experiences with Mirth: an open source health care integration engine.. G. Bortis. 2008. In Proceedings of the

30th international conference on Software engineering (pp. 649-652). ACM..
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.5384&rep=rep1&type=pdf

[9] XML data warehousing for browser-based electronic health records.. Dave Nurse and John Chelsom. 2000.
Proceedings of XML Europe, 2000. IDE Alliance..
https://www.infoloom.com/media/gcaconfs/WEB/paris2000/S32-03.HTM

[10] Visually exploring and querying XML with BaseX.. C. Grün, A. Holupirek, and M.H. Scholl. 2007. .
https://kops.uni-konstanz.de/bitstream/handle/123456789/3007/visually_scholl.pdf?sequence=1

[11] Berkeley DB XML: An Embedded XML Database.. Paul Ford. 2003. O'Reilly, xml.com.
http://www.xml.com/pub/a/2003/05/07/bdb.html

[12] eXist-db: Not Ready for High Scale.. Robert Elwell. 2014. .
http://robertelwell.info/blog/exist-db-not-ready-for-high-scale

[13] Electronic health records should support clinical research.. J. Powell and I. Buchan. 2005. Journal of Medical
Internet Research, 7(1), p.e4..
http://www.jmir.org/2005/1/e4/

Page 63 of 127

Scalability of an Open Source XML Database for Big Data

http://openhealthinformatics.org/wp-content/uploads/2014/11/2011-06-CMBS.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.4808&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.5384&rep=rep1&type=pdf
https://www.infoloom.com/media/gcaconfs/WEB/paris2000/S32-03.HTM
https://kops.uni-konstanz.de/bitstream/handle/123456789/3007/visually_scholl.pdf?sequence=1
http://www.xml.com/pub/a/2003/05/07/bdb.html
http://robertelwell.info/blog/exist-db-not-ready-for-high-scale
http://www.jmir.org/2005/1/e4/

Best Practice for DSDL-based Validation
Soroush Saadatfar

ADAPT Centre
<Soroush.Saadatfar@ul.ie>

David Filip

ADAPT Centre
<David.Filip@adaptcentre.ie>

Abstract

This paper proposes a best practice guide to apply Document
Schema Definition Languages (DSDL) for validation of an
arbitrary industry vocabulary. The research is based mainly
on a practical case study of creating such an optimized set of
DSDL validation artefacts for XLIFF 2, a complex industry
vocabulary. Available schema languages have advanced
functionality, enhanced expressivity and can be used in
concert if needed. This advantage, on the other hand, makes
the creation of a stable and robust set of validation artefacts
hard, because there would usually be more than one way to
describe the same Functional Dependencies or Integrity
Constraints and various validation tasks can be solved by
more than one schema language.

Keywords: DSDL, validation, expressivity, progressive
validation, constraints, functional dependencies, XLIFF,
Schematron, NVDL

1. Introduction

Validation is a key component of processing vocabularies
based on XML (eXtensible Markup Language) [1]. This
nontrivial task has been approached by a number of
various initiatives according to the needs of specific target
data models. Initially, DTD (Document Type
Definition) [2] was widely used to define structure of
XML documents and usually combined with
programmatic approaches to validate the constraints that
were not expressible in DTD. Several schema languages
followed since DTD to enhance the expressivity for
different XML constraints, however, the programmatic
approach to tackle advanced contsraints validation had
not been fully superseded. Although, the first validation
technique has advantage of expressivity and trancparency
being standardized.

Our focus in this paper will remain on non-
programmatic, standards driven, trasparent approaches
based on machine readable implementation independent
artefacts. We aim to illustrate the potential DSDL
methods and schema languages have to replace ad hoc
programmatic validation approaches based on our
experience with XLIFF (XML Localization Interchange
File Format) [3], an OASIS standard which has been
widely adopted in the localisation industry since its
inception.

XLIFF has a multimodal structure, comrising a core
namespace and several module namespaces; a complex
data model designed to fulfill current and future needs of
the industry. It is intended to complete a round-trip in
the localisation workflow and to be dynamically Modified
and/or Enriched by different Agents who manipulate the
XLIFF data in accordance with their specialized or
competing functionality. This XML vocabulary does not
follow the normal XML behaviour when it comes to
usage of ID attributes and it defines a number of scopes
for NMTOKEN [4] keys (that are called IDs in XLIFF
context) instead of the usual XML convention where the
ID attributes are required to be unique throughout the
document. The task of internal fragment referencing
therefore cannot be implemented using native XML
IDREF attributes either. The standard specifies several
levels of date driven structures for NMTOKEN keys as
well as introducing the XLIFF Fragment Identification
Mechanism to replace the XNL ID and IDREF concepts
respectively. These approaches have been chosen with
needs of the industry in mind and will be discussed in
detail in the following section. Also some other relational
dependencies that XLIFF sets, have a complex nature
and logic and some of these we will also be covered in the
next section of this paper. As XLIFF files are meant to
circulate in arbitrary workflows, it is vital - for purposes
of lossless data exchange - that all workflow token
instances conform to the XLIFF Specification completely

doi:10.14337/XMLLondon16.Saadatfar01Page 64 of 127

mailto:Soroush.Saadatfar@ul.ie
mailto:David.Filip@adaptcentre.ie

and do not violate any of its advanced constraints.
Therefore comprehensive validation should be applied
after any modification. Programmatic validation, mainly
applied to its earlier version, XLIFF 1.2, led to
misinterpretations of the standard in many cases and
developers never implemented the full list of constraints
specified by XLIFF 1.2. These issues motivated the
XLIFF TC and the authors of this paper to find an
exhaustive solution for validation of XLIFF 2.x (XLIFF
2.0 and its backwards compatible successors) to provide a
unified and transparent platform for validating XLIFF
instances against the full specification. Research revealed
that the DSDL (Document Schema Definition
Languages) [5] framework is capable of providing such a
solution. This attempt succeeded and brought Advanced
Validation Techniques for XLIFF 2 [6] to be part of the
standard, starting from the 2.1 version, scheduled to
release in 2016. In the following sections, we will try to
generalize this work to provide mapping for XML
constraints and appropriate DSDL method to use. We
believe that transparent and standardized validation is a
prerequisite for achieving interoperability in workflows
and that the DSDL framework provides enough
expressivity for producing machine readable validation
artefacts for arbitrary XML industry vocabularies and
data models.

2. Analysis of the XML Data Model

XML has a very simple, but at the same time universal
and generalized nature as a data model: (a) it is
composed of only two objects: XML nodes and their
values (b) data model expressed through value and
structure of nodes (c) it defines a minimum set of rules in
terms of syntax. These properties enable XML to deliver
its main task- extensibility. Each XML-based vocabulary
represents the target data model by specifying valid
scenarios of structure and values of declared nodes.

In this section, we will discuss constraints of XLIFF 2
from general XML point of view. We will first have a
brief look at the structure and purpose of XLIFF. We
review the literature for available definitions and
notations of XML constraints in the next step and then
apply them to XLIFF. This section will also include
Processing Requirements that XLIFF specifies for different
types of users (Agents) as they modify XLIFF instances.
This type of constraints require progressive (dynamic)
validation as they are based on comparison of files before
and after Agents perform changes.

2.1. XLIFF Structure

The main purpose of XLIFF is to store and exchange
localizable data. Typically, a localisation workflow
contains processes like extraction, segmentation (process
of breaking down the text into the smallest possibly
translatable linguistic portions, usually sentences),
metadata enrichment (like entering suggestions based on
previous similar content, marking up terminology etc.),
translation (editing of target content portions
corresponding to source content portions) and merging
the payload (the translated content) back to the original
format. An XLIFF document can facilitate in its
progressing instances all the aforementioned tasks. The
extracted segmented content will be placed in the source
element children of segment. The translated content is
kep aligned in target siblings of the source elements; it
can be added later in the process. In other words, the
flow of original text transforms into sequence of segment
elements within a unit element, the logical container of
translatable data. Parts of the content which are not
meant to be translated can be stored in the ignorable
siblings of the segment elements. unit elements can be
optionally structured using a group parent (ancestor)
recursively. Finally, a file elements will wrap the possibly
recursive structure of group and unit elements. An
XLIFF instance (an XML document with the root xliff)
can have one or more file elements. In order to preserve
metadata and markup within text (e.g. the HTML
tag), XLIFF has 8 inline elements , (e.g. pc element in
"Listing 1" for well formed paired codes) some recursive,
which may appear along with text in source/target
pairs. The native codes may be stored in originalData
elements, which are then referenced from inline
elements. To avoid confusion, we present a simplified
notion of XLIFF and skip many other structural parts.
"Listing 1" shows a sample XLIFF file.

Page 65 of 127

Best Practice for DSDL-based Validation

Listing 1 - Sample XLIFF instance

<xliff version="2.0" srcLang="en" trgLang="fr">

 <file id="f1">

 <unit id="u1">

 <originalData>

 <data id="d1"></data>

 <data id="d2"></data>

 </originalData>

 <segment>

 <source>

 Some <pc id="pc1" dataRefStart="d1"

 dataRefEnd="d2">Important</pc>text.

 </source>

 <target>

 Un texte <pc id="pc1" dataRefStart="d1"

 dataRefEnd="d2">important</pc> de.

 </target>

 </segment>

 <ignorable>

 <source>Non-translatable text</source>

 </ignorable>

 <segment>

 <source>Second sentence.</source>

 <target>Deuxième phrase</target>

 </segment>

 </unit>

 </file>

</xliff>

2.2. XML Constraints

The structural relation of XML nodes is the first step of
shaping the tree of the targeted data model. All other
constraints can be specified only afterwards. Generally,
studies for defining XML constraint have proposed keys
[7], foreign keys [8] and functional dependencies [9],
[10]. These papers represent each type of constraint
through mathematical expressions which is out of scope
of this paper as our goal is to match every category with
appropriate schema language in practice. Therefore we
will consider general types as well as some of their special
cases.

2.2.1. Keys and foreign keys

The concept of ID and IDREF, introduced by DTD, cover
the category of keys and foreign keys respectively.
However, these attributes implement only special cases of
these types, absolute keys/foreign keys , setting the scope of
keys to the root element, i.e. absolute path. In XLIFF, for
instance, only file elements define absolute keys whilst

keys are specified at 14 points of XLIFF core elements.
Relative keys can be of various complexity depending on
steps of relativity they designate (starting from zero steps,
i.e. absolute keys). For example for unit elements, with
only one step of relativity (from the root element), scope
of key uniqueness is the parent file element. Number of
steps for one key can be a variable if the corresponding
element is allowed at different places of the XML tree,
like data elements with unique keys in the scope of
originalData, where the latter element might occur at
several levels of the hierarchy. These variables, however,
have a minimum value stating how close the element can
be to the tree root, in the case of data the minimum
number of steps is 3. In a more complicated scenario
keys might be shared among nodes of distinct types and
distinct parents. Keys for all inline elements, some of
which can be recursive, are set at the unit level, but only
for those appearing in the source text whereas elements
of the target must duplicate their corresponding key in
source. This type of content, where an element can have
a mix of text and other elements, is usually being
dropped in attempts of generalizing Keys for XML as an
assumption [11] and therefore not well researched.

XLIFF, when it comes to foreign keys, has all of its
referencing attributes relative (e.g. dataRefStart attribute
in "Listing 1"). Even though cross-referencing is allowed
only at the unit level, the standard defines format of IRIs
pointing to XLIFF documents through Fragment
Identification. This mechanism allows one to specify a
unified path to any node with identifier. Therefore the
notion <pc id="1" dataRefStart="#/f=f1/u=u1/

d=d1" ... is an alternative valid value which specifies the
referenced node by an absolute path instead of the
shorter form used in Listing 1, where identifier is given
relatively (within the enclosing unit).

2.2.2. Functional Dependencies

Attempts of generalizing this nontrivial category for
XML has been limited so far and define only some
variations of Functional Dependencies (FD) [12]. A
significant progress has been made though, by applying
mappings of paths in XML document to relational
nodes. Basically, FDs specify functional relations of XML
nodes and play an important role in data models being
the most complex of XML Integrity Constraints. Co-
occurrence constraints and value restrictions are some
usual variations of FDs. XLIFF has various FDs, some of
which we review in this paper. The target element has an
optional xml:lang attribute, but when present must
match trgLang attribute of the root element. The latter
attribute, on the other hand, is initially optional (at early

Page 66 of 127

Best Practice for DSDL-based Validation

stages of the localization process), but must be present
when the document contains target elements. Another
interesting and complex FD in XLIFF relates to the
optional order attribute of target. As was mentioned
earlier, the sequence of segment and ignorable elements
specifies the flow of text at the unit level, but sentences of
a translated paragraph may have different order than in
the source language. In this case target elements must
specify their actual "deviating" position respective to the
default sequence. This value then points to the
corresponding source element for ID uniqueness
constraints over inline elements "Listing 2" and "Listing
3" show a paragraph with three sentences in different
order, represented in HTML and XLIFF respectively.

Listing 2 - Paragraph with disordered sentences after
translation

<p lang='en'>Sentence A. Sentence B. Sentence C.</p>

<p lang='fr'>Phrase B. Phrase C. Phrase A.</p>

Listing 3 - Usage of order attribute in XLIFF

<unit id="1">

 <segment id="1">

 <source>Sentence A.</source>

 <target order="5">Phrase A.</target>

 </segment>

 <ignorable>

 <source> </source>

 </ignorable>

 <segment id="2">

 <source>Sentence B.</source>

 <target order="1">Phrase B.</target>

 </segment>

 <ignorable>

 <source> </source>

 </ignorable>

 <segment id="3">

 <source>Sentence C.</source>

 <target order="3">Phrase C.</target>

 </segment>

</unit>

The XLIFF file in Listing 3 is valid, in terms of order
constraints, as (a) values are between 1 and 5 (segments
and ignorables combined) (b) each target element
occupying a different position than its natural explicitly
declares its order.

2.2.3. Data Types

Constraints of this category apply various rules on values
that can be assigned to XML nodes. The concept of
Simple and Complex data types was introduced by W3C
XML Schema [13] and provides a solid library that
enables one to build custom data types through
manipulating simple data types and specifying
restrictions for them. A number of libraries have been
developed after that to target specific needs. Allowed
values can be defined in many different ways including
set of fixed values, default values, forbidden values/
characters, mathematical restrictions for numeral values,
specific or user-defined format etc. We will return to this
topic in the following sections.

2.2.4. Progressive Constraints

Some data models are designed to perform in different
stages of their life cycle and therefore might need to be
validated against different set of constraints according to
the stage they are at. Initially optional trgLang attribute
of XLIFF, which was mentioned earlier, serves as a good
example for this case. But some advanced constraints,
like XLIFF Processing Requirements, focus on the
applied modifications in documents and perform
validation based on comparison of data before and after
changes were made. For example, if value of one attribute
has been changed by the last user, value of some other
nodes must be changed as well. Technically, this type can
be considered as a cross-document functional
dependency, but as XML vocabularies are being often
used for exchange purposes, this might grow into a
category on its own in the future. XLIFF classifies its
users (Agents) based on the type of general task they
carry out (e.g. Extracting, Enriching etc.) and assigns
different sets of Processing Requirements to each group.

In the following section we will examine expressivity
of popular XML schema languages against each of the
aforementioned types.

3. Implementing XML Constraints

After specifying XML Integrity Constraints, we now will
explore schema languages which can implement the
constraint types in the previous section. W3C XML
Schema is the schema language to define the structure of
XML trees with the widest industry adoption. The
DSDL framework, on the other hand, is a multipart ISO
standard containing various languages for different
validation tasks and broad domain of constraint types.

Page 67 of 127

Best Practice for DSDL-based Validation

Schema languages often perform across constraint types
and DSDL provides the framework for mapping and
using them together. In the current section we aim to
highlight the task each language can handle the best.
Following such guidance will contribute to optimizing
performance level of the validation process.

3.1. XML Schema

This schema language is useful for defining the XML tree
nodes and their relations in the XML tree. XML Schema
uses XML syntax and Data types [4], the second part of
the language, introduces an advanced library of data
types which is widely used and referenced by other
schema languages. Users can apply different restrictions
to values of elements or attributes. XML Schema
supports only absolute Keys and foreign Keys using a
limited implementation of XPath [14], a syntax for
regular expressions in XML. The concept of key in XML
Schema presumes that the attribute must always be
present and thus cannot be applied to optional attributes.
Finally, XML Schema cannot target Functional
Dependencies of any level of complexity.

3.2. DSDL framework

Some parts of DSDL, like RelaxNG [15] and
Schematron [16], were standalone projects initially that
were subsequently standardized as part of the framework.
For the goals of this paper, we only review 3 parts of the
framework that together enable full expressivity for XML
Integrity Constraints.

3.2.1. RelaxNG

This schema language describes structure and content of
information items in an XML document through a tree
grammar. The grammar-based validation RelaxNG offers
is an easy and convenient approach, although it keeps the
expressivity power of this language close to the level of
XML Schema. RelaxNG has some basic built-in data
types so other libraries (e.g. XML Schema Data types)
should be used for advanced requirements in this type of
constraints. Although it does not support any variations
of Keys and foreign Keys, RelaxNG is able to cover some
basic Functional Dependencies like co-occurrence
constraints based on values or presence of XML nodes.
Defining such constraints in RelaxNG, however, might
wind up not pragmatic for vocabularies with a large
number of nodes. such as XLIFF. For instance, the
constraint on trgLang attribute in XLIFF, which was
mentioned earlier, could, theoretically, be expressed in

RelaxNG by defining two possible valid grammars, but
this would unfortunately effectively double the volume of
the schema. Overall, RelaxNG is a simple language to
use compared to XML Schema. Its focus on targeting
only one problem has made RelaxNG an efficient schema
language [17] and therefore more and more industry
vocabularies tend to pick this language for validation
tasks. We developed an experimental RelaxNG schema
for XLIFF 2, yet this was not adopted as part of the
advanced validation feature for XLIFF 2.1 by the XLIFF
TC due to a wide overlap with the XML Schema, which
already was a normative part of the standard and needs to
be kept for backwards compatibility reasons.

3.2.2. Schematron

The rule-based validation allows Schematron to catch
Functional Dependencies violations. This schema
language provides full support for both XPath regular
expressions and functions which enables users to define
comprehensive sets of XML paths to express an arbitrary
Functional Dependency, key or foreign key. Each
Schematron rule describes permitted relationships
between document components by specifying a context,
i.e. the XML node(s) where the current rule applies and
then conducting the user-defined test. Because XPath
integration provides a powerful mechanism for
navigating through XML trees, Functional Dependencies
often may be expressed in multiple ways. It is a
convenient approach to first define the subject and the
object of a Functional Dependency as well as whether the
path, through which the subject affects the object, is
relative or absolute. Consider the Functional
Dependency for the order attribute, where the subject
node is any target element whith explicitly specified
order. The object then would be such a target element
that occupies the natural position of the subject. The
subject and object are related at the unit level (the
common unit ancestor), therefore a relative regular
expression needs to be applied. "Listing 4" illustrates
implementation of this constraint using our convention.

Page 68 of 127

Best Practice for DSDL-based Validation

Listing 4 - XLIFF Functional Dependency for the
order attribute expressed in Schematron

<iso:rule context="xlf:target[@order]">

 <iso:let name="actual-pos" value="count

 (../preceding-sibling::xlf:segment|

 ../preceding-sibling::xlf:ignorable)+1"/>

 <iso:assert test="ancestor::xlf:unit//xlf:target

 [@order=$actual-pos])">

 Invalid use of order attribute.

 </iso:assert>

</iso:rule>

Schematron also introduces a phasing mechanism that
can be used to group constraints in various phases so that
rules are applied only when the relevant phase is active .
Using this feature, alongside with document() function of
XPath enables cross-document rules and progressive
validation consequently. An XLIFF Processing
Requirement, forbidding any changes in skeleton

element (which stores the original data), is represented in
Schematron in "Listing".

Listing 5 - XLIFF constraint on skeleton element
expressed in Schematron

<iso:let name="original-xliff"

 value="document('before.xlf')"/>

 <iso:rule context="xlf:skeleton">

 <iso:assert test=

 "current()=$original-xliff//xlf:skeleton">

 Structure and content of skeleton element

 must not be changed.

 </iso:assert>

</iso:rule>

Schematron also offers some other useful features like
variables (used in "Listing 5") and several tools to
produce customized and informative error reports. The
full adoption of XPath has made Schematron the most
expressive schema language in the DSDL framework that
is capable of handling the most complex Functional
Dependencies, Keys and foreign Keys. Many of XLIFF
constraints and Processing Requirements have been
implemented in Schematron for the Advanced Validation
feature to be avialable as of XLIFF 2.1.

3.2.3. NVDL

Namespace-based Validation Dispatching Language [18],
NVDL, provides a schema language for selecting
elements and attributes in specific namespaces within a
document that are to be validated by a specified schema.
NVDL is especially useful for muyltimodal XML

vocabularies, such as XLIFF, that may contain different
namespaces within a single document instance. NVDL
can handle the task of mapping namespaces and assign
appropriate schema artefacts for effcetive validation. The
Advanced Validation feaure for XLIFF 2.1 and successors
uses NVDL to compartmentalize the validation task for
any potential XLIFF Document and run XML Schema
and Schematron artefacts to validate static and dynamic
usage of XLIFF Core and Module namespaces. Although
Schematron rules can be embedded in both XML
Schema and RelaxNG, it is generally advisable to use
NVDL for this purpose, even in cases where the XML
document declares only one namespace, as the former
approach would require additional extraction and
processing where NVDL is supported by various tools
and libraries and provides simpler syntax for the task.

4. Conclusion

In this paper we reviewed generalized forms of XML
Integrity Constraint types used to represent a data model
in XML. We demonstrated, on the examples from the
XLIFF industry vocabulary, that various types of Keys,
foreign Keys and Functional Dependencies can be of
different complexity depending on how advanced the
required regular expressions are. We then explored a
number of XML schema languages - focusing on the
DSDL framework - in terms of their capacity to target
different types of XML constraints and functional
dependencies. The comparison revealed that Schematron,
mainly due to its full adoption of XPath, can provide the
highest expresivity for all types of constraints and
fucntional dependencies among the tested schema
languages. It is an industry proven best practice to
validate the static structure of XML instances first, e.g.
using RelaxNG or XML Schema, and to apply other
advanced constraints or functional dependencies only
afterwards, programmatically or by appropriate advanced
schema languages, as paths towards the tested nodes
must be established first and only then can be examined
against any such advanced constraints. We also provided
a convention to simplify and optimize defining
Schematron rules through the concept of subject/object of
Functional Dependencies.

Although the DSDL multipart standard (especially
Schematron and NVDL) has resolved many issues in the
XML validation domain, some of its aspects could be still
improved. For instance, Schematron leaves
implementation of some of its features, optional for
processors, which significantly affects the functionality
when using different processors or invoking Schematron

Page 69 of 127

Best Practice for DSDL-based Validation

rules from an NVDL schema. These features usually
presented via attributes like subject, role would
generally enhance the error reporting, if more widely
adopted.

Applying the methods presented in this paper to
other industry vocabularies than XLIFF is proposed as

future work. Similar investigations of DSDL applications
on various vocabularies would provide a valuable set of
artefacts for further theoretical research and study of
XML Integrity Constraints and Functional
Dependencies on the basis of emerging industry needs.

Bibliography

[1] T. Bray, J. Paoli and C. Sperberg-McQueen. Extensible Markup Language (XML) 1.0 (Fifth Edition) W3C, Nov.
2008..

[2] T. Bray, J. Paoli and C. Sperberg-McQueen. Extensible Markup Language (XML) 1.0 W3C, 1998..
[3] T. Comerford, D. Filip, R.M. Raya and Y. Savourel. XLIFF Version 2.0, OASIS Standard, OASIS, 2014.
[4] H. Thompson et al. XML Schema, Part 2: Datatypes. W3C Recommendation, Oct. 2004. .
[5] International Standards Organization, (2001). ISO/IEC JTC 1/SC 34, DSDL Part 0, Overview. ISO..
[6] S. Saadatfar and D. Filip, “Advanced Validation Techniques for XLIFF 2,” Localisation Focus, vol. 14, no. 1, pp.

43–50, 2014..
[7] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan, “Keys for XML,” Computer Networks, vol. 39, no. 5, pp.

473–487, 2002..
[8] M. Arenas, W. Fan and L. Libkin, On verifying consistency of XML specifications. In PODS, 2002..
[9] M. Vincent, J. Liu, and C. Liu, “Strong functional dependencies and their application to normal forms in XML,”

TODS, vol. 29, pp. 445–462, 2004..
[10] A. Deutsch and V. Tannen. MARS: A system for publishing XML from mixed and redundant storage. In VLDB,

2003..
[11] M. Arenas and L. Libkin, “A Normal Form for XML Documents,” ACM Transactions on Database Systems, vol. 29,

no. 1, pp. 195–232, Mar. 2004..
[12] w. Fan. XML Constraints: Specificaion, Analysis and Aplications. In DEXA, 2005..
[13] H. Thompson et al. XML Schema. W3C Recommendation, Oct. 2004..
[14] J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation, Sep. 2015..
[15] International Standards Organization, (2003). ISO/IEC 19757-2:2003(E), DSDL Part 2, Regular-grammar-based

validation — RELAX NG. ISO..
[16] International Standards Organization, (2004a). ISO/IEC 19757-3, DSDL Part 3: Rule-Based Validation —

Schematron. ISO..
[17] E. van der Vlist, RELAXNG. O’Reilly Media, Inc., 2003..
[18] International Standards Organization, (2004b). ISO/IEC 19757-4, DSDL Part 4: Namespace-based Validation

Dispatching Language— NVDL. ISO..

Page 70 of 127

Best Practice for DSDL-based Validation

A journey from document to data
or : buy into one format, get two production-ready assets free

Andrew Sales

Andrew Sales Digital Publishing Limited
<andrew@andrewsales.com>

Abstract

XML is often treated as a neutral format from which to
generate other outputs: HTML, JSON, other flavours of
XML. In some cases, it can make sense to use it as a means
to auto-generate other XML-based assets which themselves
act on XML inputs, such as XSLT or Schematron schemas.

This paper will present a study of how XML and related
technologies helped a publisher to streamline the production
process for one of its products, enabling better consistency of
data capture and an enhanced customer experience. It will
describe how a legacy document-centric format was refined
to allow publication processes to run more smoothly, and
how an abstraction of the capturing format allowed other
key assets in the workflow to be generated automatically,
reducing development costs and delivering ahead of schedule.

Keywords: XSLT, Schematron, meta-programming

1. Background

This background is intended to help explain some of the
design decisions made later.

The content relating to this paper was destined for a
single online product, which was conceived to allow
corporate lawyers to compare market activity, such as
mergers and acquisitions. This valuable information is for
the most part freely available in the public domain by
virtue of regulatory or legal requirement, but value is
added to the paid-for version by providing an editorial
digest (some of the official documents can exceed 1,000
pages in length) of the key points of each transaction
helping the lawyer to assess trends, for instance which
countries or sectors work might be coming from and
how much it might be worth.

The main idea was to enable lawyers to compare
transactions of various types by differing criteria. For
example, they might want to know how many companies
incorporated in the UK banking and finance sector had
gone public in the last six months, or the typical value of
an acquisition in the mining sector.

For the first iteration of the product, the legacy
editorial and publishing systems already in place had to
be respected, because it was judged more important by
the business to launch in some form than to delay and
launch with something more tailored and functional.
This meant that there had to be two main workarounds
in the initial publishing workflow.

2. Legacy format

The first was the editorial format. The source material
comes from HTML pages and PDFs, and analysts were
used to working in a document format (in PTC
Arbortext), so for speed and convenience this continued.
Importantly, the editorial content included analysis as
free text, and so did not neatly fall into a purely data-
centric model. Some additions were made to the
governing DTD, which had originally been designed as a
generic digest format, and was used for other content
types, in order to introduce some specific semantics for
this domain: analysts could mark up e.g. countries, dates,
company names, transaction type and industry sector to
enable some comparisons - but the tagging of this
information was not controlled (such as by Schematron)
at all at source. On top of that, it was not directly
embedded in the main text, but separated out in the
metadata header. This loose association meant that the
integrity of the information was at risk and there was
scope for error.

Information could also appear “buried” in strings.
For example, to express whether all resolutions had been
passed at a company’s AGM, there were c.50 variants on
the significant value, such as:

<row>

<entry>All resolutions passed?</entry>

<entry>All resolutions proposed at the AGM were

passed apart from resolution xx...</entry>

</row>

where a yes/no value was sufficient.

doi:10.14337/XMLLondon16.Sales01 Page 71 of 127

mailto:andrew@andrewsales.com

1 And re-keyed in this way it would have been: in most instances, an expert eye was needed to ensure the correct nugget of information
was selected and if need be adjusted appropriately.

3. Legacy system

The second workaround concerned the (post-editorial)
publishing mechanism.

The editorial XML is converted to a common,
generic publishing XML format, which is then further
processed before HTML pages are generated for
publication. All editorial XML follows this same route as
a matter of policy. This meant that, while some front-end
development was possible to enable some filtering on the
added metadata mentioned above, there was limited
scope for the more in-depth comparison useful to
customers.

So a back-end application was then built to query the
selected transaction types using XSLT to produce a
spreadsheet with macros to help the user run
comparisons. This was clunky, slow, extremely sensitive
to any change in the editorial XML format, and hard to
maintain.

4. A new hope

An opportunity to address some of the data capture and
design issues presented itself when another part of the
business created a similar product platform for their local
market, this time in conjunction with a third-party
vendor. Their platform stored the data to be compared

on the back end in a (relational) database, with strict(-er)
data-typing, and crucially it was free of the in-house
production workflow constraints. Again as a quick win,
the UK arm of the business was encouraged to adopt this
platform also, and work to migrate the legacy data for
upload to the new platform ensued.

5. Migration

The rationale for migrating was threefold:

1. Although the dataset was relatively small (around
1,700 reasonably short documents), the time-and-
money cost of using expert authors to re-key1 it on
the new platform as a data entry activity would be
prohibitive.

2. Had it been simply transferred to the new platform,
the information would have resided in the supplier’s
database only, raising continuity and IP issues. I
therefore advocated retaining the canonical version
(“editorial master”) of the content in-house and
generating the new platform format from it as
needed.

3. There was a requirement to publish both the existing
full-text view, also containing other, “non-
comparable” fields, simultaneously and for this to be
in sync with the “comparable” data.

Page 72 of 127

A journey from document to data

Figure 1. Migration workflow

So it was agreed that the migration would be semi-
automatic. I wrote XSLT which extracted the relevant
information, if present in the source, into two-column
key-value pair XHTML tables for editorial review, with
additional inline semantic elements to capture the typed
data. XHTML was used because we needed a simple
format that could be easily accommodated by the
existing pipelines, with the secondary advantage that
Arbortext was already set up to handle it. Rather than
using the string value of the cells in the “key” column,
each row/@class was used as an identifier, which editors
would not normally change.

<tr class="announcementDate">

<!--key-->

 <td>Date of substantive announcement</td>

<!--value-->

 <td>

 <date day="1" month="Nov" year="2012"

 xmlns=”transaction-example”/>

 </td>

</tr>

Here @class identifies the field rather than expressing its
datatype, so that the next step in the publishing pipeline

can use this as a reliable hook independent of the field’s
name.

The datatype was constrained instead by Schematron
rules applied to each “value” column. The rules could be
shared across transaction types to some extent. Editors
reviewed the extracted data in this format in Arbortext
and only once it passed validation against the schema was
it fit to publish.

It was a long haul and messy — but there were
common fields across transaction types, so the lines of
code to write decreased as each type was tackled (they
were prioritised according to a tight release schedule, so
could not be done all at once). About 40-50% of the
fields could be migrated automatically, with the rest
adjusted or filled in by hand. After this migration, the
resulting XHTML really expressed how the data should
be captured in the first place; or so it would be natural to
assume.

Page 73 of 127

A journey from document to data

1 They found that introducing consistency for fields which had a fixed set of values helped in their task.

6. De(v|ta)il

There are two wrinkles which prevent that from
happening.

The first is that not all the information the analysts
write fits neatly into a data-centric model: they are still
authoring some discursive or other very variable text,
such as a general analysis of the transaction. This content
did not belong in the new platform’s database on the
back end, as it served no purpose to compare it across
transactions. Second, it still needed to be published on
the new platform, however, so the all-XML-shall-pass-
through-this-pipeline still had to be used to generate the
full-text version, which appeared elsewhere on the new
platform, for continuity’s and completeness’ sake. And
that pipeline consumes in-house formats most readily, so
it still had to be used, again on grounds of convenience
(cost, time etc).

The analysts who create the content had
acknowledged independently that the way in which they
captured the “comparable” data fields for the new
platform would have to change1. With the existing
editorial format having to be retained, as outlined above,
the choice I made was to modify it slightly by
introducing new elements inline and constraining their
allowed value and occurrence using Schematron at
authoring-time. To experienced XML people, this kind
of validation is the sine qua non of data quality and
integrity, but it was a significant step in this workflow, as
the only validation to date had been by a (quite
permissive) DTD. Furthermore, the CMS which stored
the content carried out no validation on receipt. So it
had been perfectly possible to publish invalid content,
something less desirable when the content did not only
have to look right.

So it was decided that for new content, this new editorial
format would be used and enforced by a Schematron
schema, making it an editorial responsibility to ensure
structurally correct content.

With the XHTML to JSON pipeline already in place
at the publication end of the workflow, I also needed to
produce XSLT which would transform the new editorial
format to XHTML. (Those for the old editorial format
could have been re-worked, but new transaction types
had been added in the meantime along with changes and
additions to the fields to be included in the new format,
so this option was less attractive.)

7. A level of indirection

The experience of the migration was like a dry run for
the new editorial format. Two assets would need creating
and managing over time:

1. editorial Schematron (this time applied at the
content-writing stage);

2. XSLT to transform editorial format to XHTML.

Each of these would need creating for around a dozen
content types, with others slated for addition.

Faced with a sizeable time estimate to create these,
based on the preceding migration work, I considered:

What if the fielded data and their respective
types could themselves be abstracted, and
this expressed as XML, from which to
generate the additional assets?

So I devised a general format that could be used for all
transaction types, expressed by a RELAX NG schema
plus Schematron schema. From this, it is possible to
write transforms to generate both the editorial
Schematron and the XSLT for creating XHTML from
the editorial XML.

Page 74 of 127

A journey from document to data

1 It isn’t a distinct datatype of its own because it was a late addition and the exact requirement was emergent; it would perhaps more
naturally betype='companyName'instead.

Figure 2. Configuration format and outputs

7.1. The format

start =

 element transaction {

 attribute type { transaction-types },

 element group {

 attribute label { text },

 element field {

 attribute id { xsd:ID },

 attribute type { data-types },

 attribute occurs

 { occurrence-indicators }?,

 attribute controlledList{ text }?,

 attribute isCompanyName

 { string "true" | "false" }?

 }+

 }+

 }

data-types = string

"date" | "country" |

"currency" | "integer" |

"string" | "boolean" |

"percentage" | "controlled-list"

occurrence-indicators = string

"?" |

"+" |

"*" |

"1"

The root element is refined for each transaction by its
@type, which is e.g. a merger and acquisition. Sections
within the data are modelled by <group>s, which have a
@label.

The ID of each field corresponds to the row/@class in
the editorial format.

field/@controlledList refers to a controlled list
contained in a separate lookup, when field/

@type='controlled-list' is specified. field/

@type='boolean' is strictly speaking a controlled list with
two allowed values, “Yes” or “No” – but since these are
very common, I used this as shorthand instead.

@isCompanyName is a flag to indicate that any trailing
text in parentheses (optionally specifying the company’s
role in a transaction, such as the acquiring party in a
takeover) should be removed.1

Note that string+ or controlled-list+ means multiple
<p>s within the XHTML <td>; a percentage or currency
combined with ‘+’ implies a range of two values.

The Schematron schema contains a few sanity checks
that e.g. @type='boolean' could only occur once for a
given field.

7.2. XSLT to generate XSLT

The transform reads in the configurations for all the
transaction types and outputs a single stylesheet (purely
for ease of distribution), using one mode per transaction
type. The skeleton structure of the XHTML output is
constructed from each configuration (titled sections
containing tables), with each KVP-containing table row
processed by the relevant datatype-specific template.

Page 75 of 127

A journey from document to data

1 I could have avoided this with IDs unique across all transaction types, but wanted to make the configurations as easy to maintain as
possible.

For an example, see Example 2, “Auto-generated
XSLT for value(s) from a controlled list”.

These comprise the only hand-crafted portion of the
editorial XML to XHTML transform.

7.3. XSLT to generate Schematron

The Schematron schema contains generic patterns which
can be applied to several fields, mainly to validate their
datatype and cardinality, as well as a small handful of
manually-created rules of either global or very specific
applicability.

For most fields, their IDs (row/@class) are stored in a
variable according to datatype, e.g.

<let name="currency-classes"

value="$lookup-classes

[@type='currency-classes']/value"/>

and each generic pattern then references the class values:

<pattern id="currency-only-cell">

<rule context="row

 [@class = $currency-classes]/entry[2]">

 <assert test="*[1]

 [self::range[value] or self::value]

 and count(value|range[value]) = 1">

 "<value-of select="../entry[1]"/>"

 must contain a single currency value or range

 of values only</assert>

 </rule>

 </pattern>

The lookup ($lookup-classes) referenced by each let
here is automatically generated from the configurations,
therefore only the configuration files need to be
maintained for the appropriate constraint to be applied
to an added or amended field.

In the case of the controlled list datatype, an abstract
pattern was used, with the class(es) and allowed value(s)
being passed in:

<pattern id="controlled-list-cell-para"

 abstract="true">

<rule context="row[@class

 = $class]/entry[2]/para">

<assert test=". = $controlled-list-values">

 "<value-of select="../../entry[1]"/>"

 must contain one of:

 <value-of

 select="string-join

 ($controlled-list-values, ', ')"/>;

 got "<value-of select="."/>"</assert>

</rule>

</pattern>

<pattern id="controlled-list_ABC-XYZ"

 is-a="controlled-list-cell-para">

 <param name="class"

 value="'marketForTheIssuersShares'

 and $transaction-type = ('ABC','XYZ')"/>

 <param name="controlled-list-values"

 value="$lookup-values

 [@type='main-aim-other']/value"/>

</pattern>

This allowed the transaction type to be added as an
optional dimension to the lookup, for instance where
fields with the same ID in different transaction types
used different controlled lists.1

Each of these concrete patterns was generated
automatically also. The controlled list lookup (referred to
in $lookup-values above) is a manually-curated XML
file.

7.4. End-to-end example

To show how this works in practice, let us consider take
an example of a field to be filled with one or more strings
from a fixed list of values.

Example 1. Configuration for field to contain value(s)
from a controlled list

<field id="favouriteXMLTechnology"

 type="controlled-list"

 controlledList="XML-technologies" occurs="+"/>

Page 76 of 127

A journey from document to data

In the editorial format this might appear as:

<row class='favouriteXMLTechnology'>

 <entry>Favourite XML technology/-ies</entry>

 <entry>

 <para>XSLT</para>

 <para>XQuery</para>

 <para>XForms</para>

 </entry>

</row>

where the hand-crafted lookup for the allowed values is:

<values type='XML-technologies'>

 <value>XForms</value>

 <value>XPath</value>

 <value>XProc</value>

 <value>XQuery</value>

 <value>XSLT</value>

</values>

The auto-generated XSLT for the field is then:

Example 2. Auto-generated XSLT for value(s) from a
controlled list

<xsl:template

 match="row[@class='favouriteXMLTechnology']"

 mode="example">

 <xsl:call-template

 name="controlled-list-multi"/>

</xsl:template>

And for reference, the relevant hand-crafted templates:

<xsl:template name="controlled-list-multi">

 <xsl:variable name="para" as="item()+">

 <xsl:apply-templates select="entry[2]/para"

 mode="html"/>

 </xsl:variable>

 <xsl:apply-templates select="." mode="datatype">

 <xsl:with-param name="value" select="$para"/>

 </xsl:apply-templates>

</xsl:template>

<xsl:template match="row" mode="datatype">

 <xsl:param name="value" as="item()*"/>

 <xsl:apply-templates select="entry[1]"/>

 <xsl:element name="td"

 namespace="http://www.w3.org/1999/xhtml">

 <xsl:sequence select="$value"/>

 </xsl:element>

</xsl:template>

Here is the accompanying Schematron:

Example 3. Auto-generated Schematron for value(s)
from a controlled list

<pattern id="XML-technologies-controlled-list"

 is-a="controlled-list-cell-para">

 <param name="class"

 value="('favouriteXMLTechnology')"/>

 <param name="controlled-list-values"

 value="$lookup-values

 [@type='XML-technologies']/value"/>

</pattern>

And finally, the XHTML output:

Example 4. XHTML output for value(s) from a
controlled list

<tr class='favouriteXMLTechnology'>

 <td>Favourite XML technology/-ies</td>

 <td>

 <p>XSLT</p>

 <p>XQuery</p>

 <p>XForms</p>

 </td>

</tr>

8. Conclusion

It was moving away from what had been regarded as a
document format to a more data-centric one with the
constraints provided by strict validation, that enabled:

1. more efficient, better quality and more consistent data
capture, including rigour in the use of allowed string
values through controlled lists;

2. fewer downstream processing errors;
3. the derivation of a configuration format for the

Schematron schema and XSLT that were needed,
which in turn allowed these assets to be managed and
maintained much more easily and efficiently.

The first two result naturally enough from following best
practice. Real-world circumstances often mean
compromises in this respect. It was the latter point that
made the difference here, and the approach arguably
would not have been accepted without the initial data
migration activity. In terms of lines of code written, the
XSLT reduced from c.5,000 from the initial migration to
c.600 for the auto-generation work. The work had been
estimated to take from 8-12 weeks; the actual time taken
was reduced to under four weeks.

Page 77 of 127

A journey from document to data

1 "Big Data for Law" project http://www.legislation.gov.uk/projects/big-data-for-law

Structure-Aware Search of UK Legislation
John Sheridan

The National Archives

Jim Mangiafico
<jim@mangiafico.com>

Abstract

We have created an application that enables searching the
UK statute book with reference to the structure of legislative
documents. Users can target individual legislative provisions
and receive direct links to the matching document
components. For example, users can search for chapters that
contain certain phrases or for sections that have certain
headings. In this paper, we describe the XML format used to
represent UK legislation and the technologies used to fulfill
the queries. We have developed a simple, domain-specific
query language to express user requests, and we use
MarkLogic to store and index the documents. We parse user
requests in XQuery and translate them into native
MarkLogic query directives, but because some of the searches
we support cannot fully be expressed as MarkLogic queries,
we sometimes construct over-inclusive queries and filter the
results at the application level. We are currently preparing
the application for public release at
research.legislation.gov.uk.

1. Introduction

The National Archives operates legislation.gov.uk, the
UK’s official legislation website, underpinned by the
government’s legislation database. There are an estimated
50 million words in the statute book, with 100,000
words added or changed every month. There has never
been a more relevant time for research into the
architecture and content of law. However researchers
typically lack the raw data, the tools, and the methods to
undertake research across the whole statute book.

As part of the “Big Data for Law” project1, funded by
the Arts and Humanities Research Council (AHRC), The
National Archives set out to develop a Legislation Data
Research Infrastructure, to enable richer and deeper
research into legislation. We found that many of those

with interesting research questions to ask lacked the
technical knowledge and skills to query the XML data
that we hold. To mediate between those people with
interesting questions, but who typically lack knowledge
of XQuery [1], and our rich XML legislation data, we
developed a powerful but easy to use application for
searching legislation documents based on their structure.
Of particular interest to us was the ability to frame
searches to find examples of commonly occurring legal
design patterns in legislation. These typically span several
provisions of an act or statutory instrument. Finding
such patterns proved beyond traditional full text search
capabilities, leading us to develop this structure aware
search application.

2. Keyword and Proximity Searches

Our application is, first of all, a complete search engine
that can fulfill simple keyword searches. A user can enter
any word or phrase and receive a page of results listing
documents that contain the given word or phrase,
including snippets of text with the search terms
highlighted. Keyword searches can contain wildcards;
they can be either case sensitive or case insensitive; and
they can be “stemmed” or “unstemmed”. Stemmed
searches match all words derived from the same word
stem. For example, a stemmed search for the word “is”
will match not only “is” but also “am”, “are”, “be”,
“been”, “being”, etc. Furthermore, multiple keyword
searches can be combined in a single query with the
boolean operators AND, OR and NOT. The search for
“appeal AND Secretary of State” matches documents
containing both the word “appeal” and the exact phrase
“Secretary of State”. We also support a common
alternative syntax for the boolean operators: “&&”, “||”
and “!”.

doi:10.14337/XMLLondon16.Sheridan01Page 78 of 127

http://www.legislation.gov.uk/projects/big-data-for-law
mailto:jim@mangiafico.com
http://research.legislation.gov.uk
http://legislation.gov.uk

2 Apache Lucene https://lucene.apache.org/
3 MarkLogic https://www.marklogic.com/

Users can also search for documents containing
words or phrases occurring within a specified proximity
to one another. Although we modeled our query syntax
loosely on that of Apache Lucene2, for simplicity and
consistency we chose a syntax for proximity searches in
which the distance in number of words precedes a
parenthetical list of terms. For example, the query
“20(appeal, Secretary of State)” matches documents
in which the word “appeal” appears not more than 20
words before the phrase “Secretary of State”. Proximity
searches expressed with rounded brackets match only
those documents in which the given terms appear in the
given order. The use of square brackets specifics an
unordered search, matching documents containing the
given words or phrases in any order, so long as they
appear within the given proximity to one another.

3. Element Searches

Because our dataset comprises highly structured
documents, represented in XML and stored in a database
designed for XML documents, we wanted to allow users
to target their searches to the structural elements of
documents. And because most elements in legal
documents contain free-form text, we wanted element-
specific queries to resemble simple, familiar keyword
searches to the extent possible. Therefore, we allow users
to limit any of the keyword searches described above to
most common structural elements by enclosing the
keyword parameters in parentheses placed after the name
of the target element. For example, the query
“title(European Union, trade)” matches documents
whose titles contains both “European Union” and
“trade”. The query “chapter(appeal, Secretary of

State)” matches all chapters that contain those terms.
The first query, because it targets a document-level
element, that is, one that appears only once in a
document, returns a list of documents. The second query
returns a list of chapters, grouped by document.

Element queries share other characteristics of simple
keyword searches. They can contain the combination of
keyword limitations with boolean operators. The query
“chapter(apple && !banana)” matches chapters
containing the word “apple” but not the word “banana”.
And element searches can be combined with other
element searches using the same operators. For instance,
the query “chapter(apple, banana) && chapter(pear,

orange)” matches chapters containing the first two words

and chapters containing the second two, in documents
that contain chapters of each sort. Also, like the
proximity searches, element searches can be either
ordered or unordered, expressed with rounded or square
brackets respectively. We currently support element
searches for all of the major structural components of
legislative documents: part, chapter, heading, para,
subpara, and schedule. We also support queries directed
at many document-level elements such as title, longtitle,
intro, headnote, and subject. And we support a variety of
other elements, such as footnote, annotation, signature,
and department.

Not only can element searches be combined with one
another; they can also be nested within one another. For
example, to search for chapters with the word “security”
in their heading, the user can submit
“chapter(heading(security))”. Element queries can be
nested to an arbitrary depth, and nested queries can be
combined in all of the ways described above. To search
for chapters with the word “security” in their heading
and the word “shareholder” anywhere in their body, a
user can enter “chapter(heading(security) &&

shareholder)”. To search for paragraphs with
subparagraphs matching two different criteria, one can
enter “para(subpara(a,b,c) && subpara(x,y,z))”. Even
proximity searches can be nested within element
searches. The query “title(5(apple,pear))” matches
documents whose titles contains the word “apple”
followed within 5 words by the word “pear”.

It should be noted that nesting does not always have
exactly the same significance. Usually it signifies a more
general ancestor/descendant relationship, but in once
case it signifies a more specific parent/child relationship.
For example, the query “part(para(...) && para(...))”
matches Part elements with both types of paragraphs as
descendants, regardless of whether there are intermediary
levels in the document hierarchy, such as chapters or
cross-headings. In contrast, the query
“part(heading(...))” matches only those Part elements
with the necessary heading as a direct child, and not
those which contain matching headings belonging to
some descendant chapter or paragraph. We hope we have
anticipated users’ expectations and that the meaning of
nested queries is unambiguous in context.

Implementing queries that target direct parent/
children relationships introduces an additional level of
complexity to our application, for the MarkLogic
database3 we use is not optimized for them. Also, our
database does not allow direct parent/child relationships

Page 79 of 127

Structure-Aware Search of UK Legislation

https://lucene.apache.org/
https://www.marklogic.com/

to be expressed in that component of a native query
which can be constructed at runtime. Because we need to
build our queries at runtime, to capture the virtually
limitless range of possibilities we give the user, we have
had to construct approximate native queries for the
database engine and then filter the results at the
application level. For example, because we cannot express
parent/child relationships adequately, we pass an over-
inclusive ancestor/descendant query to the database,
allowing it to take maximum advantage of the indexes it
keeps, and then we filter out the false positives (in this
case, descendants that are not direct children) in our
application code. We need application-level filters in
other instances as well. For instance, we allow users to
specify that a given query should ignore those parts of
documents that are amendments to other documents. A
restriction such as this requires a “negative ancestor”
query, a query for things that do not have a specified
ancestor, and negative ancestor queries are not supported
by our database. We must therefore construct the most
narrowly-tailored over-inclusive query we can, to leverage
any existing index available, and exclude those results
with the specified ancestor at the application level. We
try to avoid application-level filters except where
necessary, for they are slower than what can be done at
the database level. Also, they are tricky to implement,
especially when related to a NOT query. If a search must
be represented as an over-inclusive query combined with
a limiting filter, its negative cannot be represented with
the simple negation of the over-inclusive query, as that
would exclude too many documents.

4. Range Queries

Although most elements in legislative documents contain
natural language text, a few common query targets
contain scalar values, such as numbers and dates. Some
of these are metadata values, and may not typically be
presented to users, but others appear within the body of
the document, such as signature dates. We allow users to
construct range queries targeted at many of the common
scalar values by using the quantitative operators =, <, >,
<=, >= and !=. For example, to search for documents
from the year 2016, the user can submit “year = 2016”.
Many of the relevant scale values in legislative documents
are dates, and we support expressions involving the
“enacted” date of primary legislation and the “made”,
“laid” and “CIF” (coming into force) dates of secondary
legislation. Naturally, a range restriction can be
combined with other range restrictions and also with any

other query component using any of the boolean
operators.

We originally conceived of range queries targeted
only at stored values, that is, indexable values within the
documents as they are stored within the database. But we
have since expanded them to support a great many
computed values. For instance, if one wanted to limit
one’s search to documents with more than one schedule,
one could append “&& schedules > 1” to one’s query. It
happens that we do not store the schedule count as a
metadata value in our documents, although we could
have. Therefore, we must count the number of schedules
in each matching document ad hoc, in response to each
query request. Obviously, the performance of queries
based on computed values differs considerably from
those based on stored (and therefore indexable) values.
However, the performance of queries involving
computed values differs considerably from one to the
next, depending upon the extent to which the computed
restriction is the limiting factor in the query. A
compound query whose computed terms is not
particularly limiting, that is, which happens to match
most of the same documents matched by the other query
terms, will not run much more slowly that would a query
without the computed term. On the other hand, if the
computed term is very limiting, and the value must be
computed for many documents only to exclude them
from the results, then the query will run quite slowly.
Because we allow users to construct queries of arbitrary
complexity, any computed range restriction might cause
grave performance degradation when combined with
certain query components, but its effect on performance
might be negligible when combined with others.

Range queries based on computed values are slow to
execute, but they are easy to implement, because they
require no change to the underlying data. Consequently,
we are able to support a large number of such queries.
One can limit one’s search based on the number of
tables, footnotes or annotations in a document. One can
even restrict one’s search based on the number of days
separating the dates on which an instrument was made
and the date it came into force. The query “... && days-
made-cif > 7” matches only those statutory instruments
that came into force more than a week after being made.
Finally, we allow range queries to target the number of
“matches” to the other components in a query. For
example, the query “para(x,y,z) && matches > 2” yields
those paragraphs meeting the specified criteria only when
they appear in documents containing more than two
such paragraphs.

Page 80 of 127

Structure-Aware Search of UK Legislation

5. Counting and Grouping

Our search API, discussed above, return a list of
metadata about matching documents and document
elements. It is a “paged” API, returning only a batch of
results at a time. Sometimes, however, one wants to
know the exact number of total matches. To satisfy
inquiries of this sort we provide a count API. Requests to
this endpoint accept the same query strings describe
above, but they return only the number of matching
documents. Responses from the count API take longer to
execute, but they provide complete and accurate counts.

And the count API can count many things other than
documents. Users can specify the unit to be counted with
the “count” instruction. Here we employ a syntax similar
to proximity and element searches: one uses the term
“count” followed by a parenthetical expression signifying
the thing to be counted. For example, if one wants to
know not the total number of documents matching one’s
query but instead the total number of paragraphs in all of
the matching documents, one can append to one’s query
the instruction “count(total-paragraphs)”. Similarly,
one can count the total number of tables, footnotes,
annotations, or any other computed value recognized by
the range queries. And one may specify any number of
different counters in the same request by combining
count instructions with an AND. A query containing the
instruction “count(table-rows) && count(table-cells)”
will return both the total number of table rows and the
total number of table cells within the documents
matching the query.

Finally, counts may be grouped by a few fields known
to contain only a limited number of unique values.

Suppose that one wants to know the number of
documents matching one’s query for each year within a
given range. Or suppose one wants to know the total
number of paragraphs for each designated subject matter.
Our count API provides these results in response to the
queries “... && groupby=year” and “... &&

count(total-paragraphs) && groupby=subject”. The
former provides count information for each year, and the
latter provides count information for each unique value
in the subject field. One can group by only a few fields,
such as subject, department, and signee. And we provide
limited support for a two-dimensional grouping, so long
as one of the dimensions is year. Therefore,
“groupby=department&year” will produce a table of
results, showing the specified count for each department
in each year. Greater support for multidimensional
grouping is possible, but we imagine it would be of
limited utility.

6. Conclusion

We have tried to provide a simple syntax for expressing
complex queries directed at legislative documents. We
hope it is intuitive enough to be learned quickly yet
expressive enough to represent most of the searches
expert users would construct with a general purpose
query language such as XQuery. Additionally, we provide
results in a variety of formats, such as HTML, CSV,
JSON and RDF. We hope these tools will allow
researches to identify previously undiscovered patterns in
our legislation and improve the consistency and
accessibility of our laws.

Bibliography

[1] XQuery 1.0: An XML Query Language (Second Edition). W3C. 14 December 2010.
https://www.w3.org/TR/xquery/
Scott Boag. Don Chamberlin. F. Mary Fernández. Daniela Florescu. Jonathan Robie. Jérôme Siméon.

Page 81 of 127

Structure-Aware Search of UK Legislation

https://www.w3.org/TR/xquery/

1 http://transpect.io
2 http://xmlcalabash.com
3 http://www.xml-project.com/morganaxproc/

Interoperability of XProc pipelines
A real world publishing scenario

Achim Berndzen

<xml-project />

Gerrit Imsieke

le-tex publishing services GmbH

Abstract

Although XProc is a standard, real-life applications often use
optional steps that conformant processors need not
implement, or they use extensions. For some of the extensions
there exists a specification, EXProc. Others are processor-
specific, either bundled with the processor or written by third
parties.

transpect is a comprehensive XProc framework for
checking and converting XML and XML-based document
formats. transpect exploits both extensions shipped with the
XProc processor XML Calabash and extensions written by
le-tex.

One of this paper’s authors, Achim Berndzen, has ported
many of transpect’s XProc modules and Calabash extensions
to his own processor, MorganaXProc. He also ported a
conversion/checking application that is built on these
modules to MorganaXProc.

This paper draws on the insights that this migration has
brought forth. It presents what pipeline authors, framework
developers, and XProc processor vendors need to consider in
order to make their pipelines, software libraries, and
processors interoperable.

Keywords: XProc

1. Introduction

XProc [1] proves to be a very efficient language when it
comes to apply complex chains of operations on
sequences of XML documents. In this paper we will
evaluate the interoperability of XProc pipelines, i.e. the
possibility to migrate a complex pipeline system
developed for one XProc processor to another. We take

interoperability in this sense to be an indicator for the
maturity of XProc and its usability, which in turn is
relevant for technology decision makers, pipeline
authors, users, and the XProc community as a whole.

In order to get some assessment on the
interoperability of XProc pipelines, we focus on a real
world scenario: The migration of the transpect pipeline
package1 developed for XML Calabash 2 to MorganaXProc
3.

transpect is a framework for checking and converting
XML documents and XML-based data, such as .docx,
IDML, and EPUB, developed by le-tex, a premedia
services and software development company based in
Leipzig, Germany. transpect is based on open standards,
in particular XProc, XSLT 2.0, Relax NG, and
Schematron. It has been adopted by many publishers and
standardization bodies and is considered as the largest
XProc application worldwide [2].

transpect was developed using XML Calabash, the
XProc processor created by Norman Walsh (who is also
the chair of the W3C’s XProc working group). For a long
time XML Calabash was the only publicly available and
actively maintained XProc implementation. It has a
100% score against the XProc test suite. XML Calabash
can therefore be called the “gold standard” of an XProc
implementation.

The target of our migration project is MorganaXProc,
a new XProc processor developed by <xml-project />. It
also is a complete implementation of XProc (including
the extension steps of the EXProc.org library) which has
a very high score (99.67%) against the test suite, passing
all tests but three, all of which are related to optional and
rarely used features of the recommendation.

Having a very complex system of XProc pipelines to
be taken from a very good XProc implementation to a

doi:10.14337/XMLLondon16.Berndzen01Page 82 of 127

http://transpect.io
http://xmlcalabash.com
http://www.xml-project.com/morganaxproc/

1 See [3] , 7.4.4

fairly good one, we think there is a good chance of
finding some answers to the question of real world
interoperability of XProc pipelines.

After giving the term “interoperability” a more
precise meaning, we will set the stage for the real word
scenario and give you a brief overview of transpect – the
pipeline package to migrate. Then we will give you an
insight in what kind of problems to expect for such a
migration by looking at the W3C recommendation for
XProc, the current state of this technology and its
implementations. Based on this assessment, we will give
you a report on the real problems of the transpect
migration from one processor to another and how we
solved them. Based on our findings, we will come back to
the question of interoperability and suggest consequences
for technology decision makers and pipeline authors as
well as for the XProc community.

2. Interoperability in real world
scenarios

Before we start talking about our migration project, it
might be appropriate to get our notion of
“interoperability in real world scenarios” a little more
precise. In its origins, interoperability means the ability
of two systems to work together. The sense in which we
use the term “interoperability” here differs slightly from
its original use. It comes from W3C’s terminology in the
“Technical Report Development Process”, where a
working group is asked to “be able to demonstrate two
interoperable implementations of each feature”1 of the
technical report. This is primarily intended to make sure
that the report is so precise that two independent
implementers can build equivalent implementations on
this basis. From the position of a technology user, having
interoperable implementation means the ability to use
the technology in either implementation without any or
with only minor changes. This is the sense in which we
use the term “interoperability” in this paper. We say that
XProc pipelines are interoperable when it is possible to
migrate them from one XProc implementation to
another without any or with only minor changes.

Now, having cited the relevant paper from W3C, our
question may seem odd: XProc is a W3C
recommendation and interoperability is a requirement
for becoming a recommendation, so XProc allows
pipeline authors to write interoperable pipelines in our
sense. Certified by W3C! No further investigation
required.

However, that there can be interoperable pipelines
does not mean, that every pipeline running successfully
on one conformant processor is actually interoperable
and will also run on another conformant processor. There
are mainly two reasons to raise the question of
interoperability in real world scenarios:

First, XProc in many senses is not a fixed, but an
enabling technology. The most prominent feature of
XProc in this respect is the open or extensible step
library. Implementers are not restricted to the features
defined in the recommendation, but will typically
enhance their implementation in ways useful for pipeline
authors. And authors develop complex systems or
packages of XProc pipelines to achieve real-life aims. And
to do this, they will make use of additional features that
their XProc implementation offers, standard or not.

The second kind of doubt regarding interoperability
might come up because as already mentioned for a long
time there was only one XProc implementation publicly
available and actively maintained: XML Calabash
developed by Norman Walsh, who is also the chair of
W3C’s XProc working group. Therefore pipeline authors
did not even have the chance to test their pipelines in
different environments. Of course they may take care to
use only those features covered by the recommendation,
but in practice their conception of XProc will be what
the implementation they use offers, not the technical
standards behind the implementation. Therefore, one
might argue that we do not have enough experience
judging the question of interoperability beyond the test
suite yet.

And this throws a slightly different light on the
question of interoperability: Given that a pipeline author
has successfully developed a complex package of pipelines
using one XProc processor, how much effort does it take
to make this package usable on another XProc processor?

Why does interoperability in real world scenarios
matter? The answer to this question does obviously
depend on who you are. If you are a pipeline author,
developing XProc pipeline systems for a customer or
your own use, our question of interoperability can be
translated to the problem of write once, use everywhere.
If XProc is an interoperable technology, there is a good
chance to reuse a pipeline that is developed and tested for
one implementation with another processor. For pipeline
users interoperability means freedom of choice: If I want
to use this pipeline, am I chained to a certain XProc
processor or can I use every conformant XProc
implementation I like?

Page 83 of 127

Interoperability of XProc pipelines

1 https://github.com/le-tex/Hub
2 There is a transpect module, https://github.com/transpect/image-props-extension , that reports pixel dimensions, color space, and other

information for bitmap files. This extension has originally been written as a Calabash extension that interfaces Java libraries such as Apache
Commons Imaging, https://commons.apache.org/proper/commons-imaging/

3 transpect provides another Calabash extension, https://github.com/transpect/rng-extension , that uses a patched Jing validator that also
reports the XPath location of an error. The usual line number information does not make sense in multi-step pipelines that do not serialize the
intermediate XML documents.

For people making technology decisions,
interoperability of XProc pipelines is important, because
XProc is in many respects not a technology without
alternatives: You can do it with XProc, but you could also
use other technologies to chain together complex
operations on sequences of XML documents. XProc is
best suited for this task because it was designed for it, but
this is obviously not the only criterion in a decision for
or against the use of XProc. Interoperability might not be
the decisive criterion, but surely vendor independence
and reusability will be taken into account. Finally for the
XProc community a positive judgement about the
interoperability would be an approval of the work done,
while problems with interoperability might give hints at
future tasks.

3. transpect’s methodology and its
reliance on XML Calabash
extensions

Being a framework that is used by more than 20
publishers and standardization bodies for converting and
checking a 6- to 7-digit figure of diverse manuscript and
typeset pages per annum, transpect certainly qualifies as a
real-life XProc example. What makes it a particularly
good test case for migration and interoperability is its
reliance on optional steps and XML Calabash extensions.

transpect offers functionality and methodology for
converting and checking XML data.

The functionality part consists of roughly 25 modules
for converting .docx to a flat, DocBook-based
intermediate format1, from this format to JATS or TEI
XML, from XHTML to InDesign’s IDML, etc.

The methodology part is about configuration
management (we’ll look at that in a minute) and error
reporting – collecting errors and warnings across many
conversion steps and presenting them in an HTML
rendering of the input, at the error locations.

An example for a complex transpect conversion chain
starts from docx, goes via flat and hierarchized DocBook
to the publisher’s preferred JATS XML vocabulary and
from there to EPUB. transpect chooses to use an
intermediate XML format because it would be too costly

to implement the complex section and list
hierarchizations etc. for each XML vocabulary. It is easier
to do the heavy lifting within one vocabulary (for
example, DocBook) and convert from there to other
vocabularies such as TEI, JATS/BITS, Springer A++,
WileyML, etc.

This use of a neutral intermediate format increases
the number of conversion steps. After each conversion
step, there may be checks that report errors for the
consolidated HTML report. These checks are motivated
by different quality assurance requirements, such as:

Many upconversion operations will rely on consistent
use of certain styles in the Word or InDesign input files.
These style names may be checked against a list of
permitted styles using Schematron. After hierarchization,
another Schematron check may detect whether there are
appendices before the first book chapter, that all
references given in the bibliography are being cited, and
what else the publisher may impose as business rules. The
final BITS or JATS XML will then be validated against
the corresponding Relax NG schema. The resulting
EPUB will be checked against IDPF’s epubcheck and
additional, E-book-store-specific rules that pertain to
minimum image resolution2, maximum file size, required
metadata fields, etc.

In transpect, the first conversion step will typically
insert so-called @srcpath attributes at every paragraph,
formatted text span, image, etc. These @srcpath
attributes will be carried along through subsequent
conversion checks, including the HTML rendering of
the source content. Each Schematron and Relax NG
validation3 will record the @srcpath that is closest to the
error location. In a final step, the consolidated error
messages will be merged into the HTML rendering,
yielding the transpect HTML report.

The steps that unzip IDML or docx input files,
determine image properties and report XPath locations
for Relax NG validation errors all rely on Calabash
extensions that block an easy migration path to another
XProc processor.

The other main concept pertains to configuration
management. Before transpect’s modular approach was
pursued, converters frequently used case switches for
handling special cases (for certain imprints, book series,
individual books, …). This rendered the conversion code

Page 84 of 127

Interoperability of XProc pipelines

https://github.com/le-tex/Hub
https://github.com/transpect/image-props-extension
https://commons.apache.org/proper/commons-imaging/
https://github.com/transpect/rng-extension

1 See http://exproc.org
2 [1], 7.2
3 See [1], A.1
4 See [1], A.2

quickly unmaintainable. In other cases, the input files
were considered too unimportant to justify case switches
in the code. Therefore, they had to be converted
manually or with other tools.

In transpect, the detailed step orchestration can be
loaded dynamically or even generated for individual
production lines. This occurs frequently in multi-pass
XSLT conversions where certain production lines
necessitate additional conversion steps.

In standard XProc, the complete pipeline that will be
run must be known in advance. transpect uses XML
Calabash’s cx:eval step in order to run these dynamically
loaded innards of larger steps.

(In addition to the XProc orchestration, the applied
XSLT, CSS, style lists, Schematron rules, etc. may be
loaded dynamically from the so-called conversion
cascade.)

To summarize, the two core transpect methodology
components, error reports and cascaded configuration,
rely heavily on Calabash extensions that wrap Java
libraries and on cx:eval, a calabash extension step that
allows dynamic evaluation of pipelines.

4. Obstacles to expect

Which obstacles are to be expected when one tries to
migrate a complex pipeline system from one conformant
XProc processor to another? If you have some experience
with XProc, one thing or the other may cross your mind.
In a more systematic perspective we can deduce five
different types of obstacles for migration:

1. The distinction between required and optional steps/
features

2. Implementation-defined features in the W3C
recommendation

3. The proposed extension steps from the EXProc1

community initiative
4. Processor specific steps and author defined steps in a

second language such as Java, C, or whatever the
processor is able to understand.

5. Problems from the underlying technologies in façade-
steps

Let us shortly discuss these types to ensure a common
understanding and to get those people on board, who do
not work with XProc in their every day life:

4.1. Required and optional steps/features of
an XProc processor

As a lot of recommendations published by W3C, the
recommendation for XProc defines two levels of
conformance. First there are “required features”, forcing a
conformant implementation to implement these features
in the way defined in the recommendation. Secondly
there are “optional features” to characterize those features
a conformant processor is not required to implement.
However if the implementation chooses to cover one or
more of these features, they must conform to the
recommendation. The most prominent place for this
distinction is XProc step library: A conformant processor
must implement all 31 required steps and it may
implement one or more of the 10 optional steps. To
quote from the recommendation: “The following steps
are optional. If they are supported by a processor, they
must conform to the semantics outlined here, but a
conformant processor is not required to support all (or
any) of these steps.“2

Concerning our question of real world
interoperability, the threat is obvious: A pipeline author
could use an optional step in her pipeline, which is
supported by one processor but not implemented in the
other. The pipeline will typically fail to compile and raise
a static error. And this does concern such practically
important steps as running an XQuery expression over a
sequence of documents (<p:xquery/>) or the validation
of an XML document with Schematron, RelaxNG or
XML Schema.

4.2. Implementation-defined features in the
W3C Recommendation

A brief look at the W3C Recommendation for XProc
shows that there are all in all 47 features of XProc listed
as “implementation-defined”. 3 Additionally there are 21
features marked as “implementation-dependent”.4 We
will not discuss all these features here: to do so might be
boring to readers and they are not all relevant to the
question we discuss here. Many implementation-defined
features are concerned with the connection of a top level
XProc pipeline with the outer world, viz. the problem of
providing documents and option values to a pipeline
using the user interface of the respective implementation.
So it comes up to the question, how to invoke a pipeline

Page 85 of 127

Interoperability of XProc pipelines

http://exproc.org

1 [1], A.1
2 [1], A.2
3 This fragment is inspired by [3].
4 [4] , 5.2

in a given implementation, not whether a pipeline is able
to run on a given implementation or not.

But others may be important to the question of
interoperability, for example provision (20): “The set of
URI schemes actually supported is implementation-
defined.“1 If my pipeline system developed for processor
A relies on the availability of a certain URI scheme I
cannot expect this scheme to be available on another
processor, even though both are conformant
implementations. The same does hold for provision (46),
stating that processors may support different sets of
methods for serializing XML documents.

In practical use cases, the most challenging provision
concerning implementation-defined or implementation-
dependent features may be this: “The evaluation order of
steps not connected to one another is implementation-
dependent.”2 This might sound scary if you come from
traditional programming languages and are used to think
that the sequence of operations is program-defined, not
processor-defined. On the other hand: In XProc
everything is about sequences of documents flowing
through a sequence of steps connected by ports. And the
provision says the processor has to respect the
connections specified in the pipeline and is free to
reorganize the evaluation order of the steps that are not
connected. So everything seems fine and there is nothing
to worry about.

But when you think again, you might come up with
a pipeline fragment like this:3

<nasp:log-in-to-a-web-service/>

<nasp:send-data-to-this-service/>

Although there is no port connection between the two
steps, obviously the log-in step has to be performed
before any data is send. With some effort one might be
able to rewrite the two steps and establish a port
connection between them. But that would be totally
against XProc’s spirit: The order of steps is determined by
data flow, but here we would construct a data flow to
ensure the necessary execution order of the steps.

Other examples where the execution order is not as
the pipeline auther expects it to be is when a resource
stored with <p:store/> (that does not have an output
port) is needed in another step, yet the store step is
executed after the other step because the XProc processor
may choose to do so.

So the provision that a processor is free to rearrange
the execution order of steps not connected by ports
surely poses a great threat on interoperability: A pipeline
running perfectly well on one processor may not produce
the expected results or even fail because the other
processor has chosen to rearrange the steps in a different
order. Now, this is obviously not only a threat to
interoperability, but may also raise problems if you are
working with one processor, because the provision does
not state that the order of execution has to be stable
concerning different runs of the same pipeline. The
execution order might, for example, depend on the
latency of some web service or the file system. So even
using one processor, you might get wrong results from
different runs of the same pipeline. Certainly there are
workarounds, as one may introduce artificial connections
between steps just to control the order of execution, but
this may surely lead to more complex or even unreadable
pipelines.

One might therefore argue that the “reorder rule” is
at least a problematic aspect of the recommendation.
Norman Walsh seems to agree with this, because in XML
Calabash he provides a possibility to say that step A has
to be executed after step B even if the two steps are not
connected by ports. To do this, he introduced an
extension attribute called “cx:depends-on” containing a
whitespace separated list of step names which must be
executed before the step with the attribute is executed. As
Walsh stated4, this solution does solve the problem for
one processor, but is a threat to the interoperability of a
pipeline with other processors, because of the very nature
of extension attributes.

Extension attributes are defined in the XProc
recommendation, section 3.8. Formally an extension
attribute is an attribute used on an element in an XProc
pipeline, usually a step, where the attribute name has a
non-null namespace URI and is not in one of XProc’s
namespaces. Any implementer is free to introduce such
attributes as long as the requirements of the
recommendation are met, and any other processor
“which encounters an extension attribute that it does not
implement must behave as if the attribute was not
present.” Now the typical situation to expect when using
an extension attribute is that one processor (the one who
introduces the attribute) will behave differently than the
other processor (not knowing the attribute and therefor
ignoring it). The exact outcome of using an extension

Page 86 of 127

Interoperability of XProc pipelines

1 See [1], 5.8.1

attribute in terms of interoperability depends heavily on
the semantics of the attribute. As we can suggest that the
implementer introduced the attribute in order to get
some effect, we can expect different behaviour of the
same pipeline using different processors in all cases, but
the impact might vary: One can think of extension
attributes used for debugging purposes, invoking some
extra effect to a step without changing its “normal”
behaviour, but there might also be extension attributes
completely changing the behaviour of the step by
producing another kind of output when present. To sum
this up: Extension attributes are a potential threat to the
interoperability of pipelines as the other implementation-
defined or implementation-depended features, but their
impact cannot be judged in general but has to be
considered from case to case.

4.3. The proposed extension steps from the
EXProc community initiative

The next two possible obstacles to interoperability of
pipelines result from one of the most interesting aspects
of this language: the open step library. Apart from the
steps defined in the recommendation (as mandatory and
optional steps), there are additional steps proposed by a
complementary community initiative called EXProc. The
steps from the EXProc library differ from those in the
recommendation in at least three aspects that are
important for the question of interoperability:

• Until now, there are no procedures to decide whether
a proposed step is actually a good idea or not.
Therefore every implementer of XProc can decide on
his own, possibly resulting in different step libraries of
the XProc processors to migrate from or to.

• The definitions of the steps in the EXProc community
initiative are definitely not on the same level of
precision as the steps defined in the recommendation,
so we might expect different interpretations of the
step’s behaviour.

• Thirdly there are no tests defined for these steps, so
implementers cannot check their implementation by
running tests ensuring the expected behaviour is
actually delivered by the step’s implementation.

In terms of interoperability these steps can be put in the
same box as the optional steps defined in the
recommendation: Each implementer is free to implement
none, some or even all of them. But as these steps are not
part of the recommendation, two processors may be
conformant but implement different behaviour and

therefore produce different output for a pipeline
containing one or more of them. And this effect does not
come necessarily from an error or a bug, but may result
from different interpretations of the (rudimentary)
description of the EXProc steps.

To give you an example: EXProc.org defines a step
called <pxp:zip /> which creates a zip archive and is
expected to return a description of this archive. One
feature of this description is the size of a compressed file,
which is not actually returned by every implementation.
Some (MorganaXProc for example) just return “-1”
because they are not able to determine the size for every
type of output stream (e.g. when the zip is creates on a
web service). Is this a correct implementation of
<pxp:zip /> or not? You cannot tell this from the step’s
description. And this is certainly a possible threat to the
interoperability of pipelines, because a pipeline may (for
what ever reason) depend on knowing the correct size of
the archive.

4.4. Processor specific steps and author
defined steps in a second language

Next up on our list of obstacles to the interoperability are
processor specific steps, viz. steps that are part of the
processor’s built-in step library, but not covered by either
the recommendation or the EXProc community process.
Since they come with the processor as vendor specific
extensions, it is very unlikely that a pipeline containing
one of these steps will run (typically not even compile)
on another processor. The fact that the step did not make
it to the two libraries can be taken as a hint that only a
small group of people are interested in this step. So the
motivation for another implementer to take the step into
her processor specific library may be very low.

The second, also processor-specific threat to
interoperability comes from author-defined steps in a
second language: Typically, an XProc processor allows a
pipeline author to define atomic steps in a second
language, i.e. not in XProc but in another programming
language. And normally this will be the language in
which the processor itself is written, because this is
obviously the easiest solution. This way of enhancing
XProc’s standard library is explicitly mentioned in the
recommendation, but all details are declared to be
“implementation-dependent”1.

This is done with good reasons, because taking a
piece of say Java or C code implementing an XProc step
to a processor is only possible as a deep intervention. Any
attempt to define an interface of an XProc processor to

Page 87 of 127

Interoperability of XProc pipelines

1 See [5], p. 133
2 See http://www.saxonica.com/html/documentation9.6/sourcedocs/collections.html

another programming language would severely restrict
the implementer. To understand this, we have to
recognize we are not only facing the problem of telling
the processor which part of a second language code
should be used for a specific atomic step. This is in fact
the easiest aspect of the problem. The more complex part
is to connect the secondary language code to the
processor, so the processor can call this code when
necessary. Remember that an atomic step in XProc has

• a list of input ports, each holding a sequence of XML
documents,

• a list of options, each holding a value, and
• a list of output ports with XML documents

representing the result of the step’s performance.
How to represent this information necessary for the call
and how to represent the data, supplied in calling the
step, is highly processor specific, because it is a part of
the basic decisions an XProc implementation has to
make.

Given this, one may be tempted to say, that the piece
of second language code has nearly nothing to do with
XProc, but has a great deal to do with the processor. It is
almost impossible for an author-implemented steps used
with processor A to be runnable on processor B. So here
we have one aspect of the recommendation, which seems
to be an insuperable barrier to interoperability of
pipelines. If a pipeline needs to enhance the step library
with an author-defined step in a secondary language it is
impossible to take it to another processor without any
changes.

4.5. Problems from the underlying
technologies in façade-steps

To complete our discussion of obstacles to
interoperability we would like to mention one more
point: Apart from offering a good processing model for
XML pipelines and having a rich step library, XProc is
also designed to provide façades for other XML
technologies like XSLT, XQuery, XSL-FO, to mention
just a few.1 An XProc step like <p:xslt/> acts as a
standardized interface to activate an XSLT
transformation on an XML document and to retrieve the
transformation result. These technologies are mostly
older and therefore presumably more mature than XProc,
but there is no conclusive reason to see them as perfect.
And consequently all the obstacles to interoperability in
our sense that are connected to the XML technologies

used (inaccurateness in the recommendation,
implementation-defined features, idiosyncrasies of the
implementation) will also directly constrain the
interoperability of XProc pipelines using these
technologies.

To give a concrete example of this type of problem,
one might refer to Saxon’s implementation of the
collection function2 where a file URI invokes a catalog-
resolving process, while a directory URI might have
query elements to select specific files from the folder.
These very useful mechanisms are used quite a lot, but
they are not standardized. The threat to interoperability
here does not rise directly from anything in the XProc
recommendation, but from the fact that there is a
<p:xslt/>-step defined for which different XProc
processors may use different third party
implementations.

5. Back to our real world example:
What obstacles to expect?

Now having looked at possible obstacles of migration to
expect from the knowledge of XProc and its
specification, which of them did we actually expect to
matter for our migration project?

As we said, both XProc implementations, XML
Calabash and MorganaXProc, implement all required
members of the step library as well as the optional library
and the step libraries proposed by EXProg.org. XML
Calabash has a perfect score of 100% conformance with
the test suite, MorganaXProc is almost equivalent with
99.67%. The three tests where MorganaXProc fails cover
optional features (PSVI and XML 1.1.), which are not
relevant for our project. So there seems to be a fairly
good chance to prove interoperability of XProc by
successfully migrating transpect from XML Calabash to
MorganaXProc.

On the other hand it was clear from our very start
that we had to face problems concerning our migration
project in at least four points:

The first point has nothing or very little to do with
XProc, but with the practical requirements of complex
XProc pipeline systems to be deployed to different users:
resource management. Real live XProc pipelines are
typically no self-containing files, but have links to some
sources outside the pipeline. For example a pipeline may
import a library with XProc steps declarations, call an
XSLT stylesheet stored in another file or use an

Page 88 of 127

Interoperability of XProc pipelines

http://www.saxonica.com/html/documentation9.6/sourcedocs/collections.html

1 http://xmlcatalogs.org

Schematron schema stored in yet another file. This is a
typical situation for a complex pipeline system because
one may put the resource into the XProc pipeline
document itself, but in production contexts this is not an
option for reasons related to readability, maintenance and
storage size.

XProc as a language has only rudimentary support for
this kind of situation. One may do all the references with
relative URIs because XProc will resolve all relative URIs
by using the pipeline’s base URI. This might work for
some relatively small systems of pipelines but is of course
difficult to maintain in complex systems.

To cope with the problem of resource or dependency
management, at least two different additions to XProc
are in the field: XML Catalog1 and the EXPath
packaging system [6]. The common basic idea is to use
some kind of virtual or canonical URI in pipelines to
point to external resources and then to have a system for
resolving this virtual URI to the “real” URI of the
requested resource. Now unfortunately transpect uses
XML Catalog, which is not supported by MorganaXProc,
which in turn uses the EXPath packaging system. XML
Calabash also supports the latter via an extension
developed by Florent Georges [7]. So the problem does
not seem insuperable, but there is definitely some work
to be done to get the pipeline system from XML
Calabash to MorganaXProc.

The second source of problems, which was clear from
the start, are user-written steps in a secondary language,
here in Java. transpect comes with four additional steps,
which are quite necessary for the tasks to perform:

1. <tr:unzip/> has the task to extract a complete zip file
or a single contained file to a specified destination
folder. This task cannot be performed by
<pxp:unzip/>, because the latter is designed to
produce an XML document on the result port. The
task of <tr:unzip/> on the other hand is to unzip the
complete archive with XML documents, graphic files
and so on to a specific location in the file system.

2. <tr:validate-with-rng/> uses a patched version of
“jing.jar” to generate a report of the validation, where
each error has its location in the document expressed
as XPath instead of line numbers. So here we get a
detailed report of the validation result, while the
optional step <p:validate-with-relax-ng/> in the XProc
recommendation is just designed to make sure that
the document passes the validation.

3. <tr:image-identify/> reads image properties from
raster images and

4. <tr:image-transform/> transforms raster images.

It might be unusual for a typical XProc pipeline system
to depend on user-written extension steps in a secondary
language, but XProc does offer this mechanism and so
any migration project like ours has to be aware of it. As
both XML Calabash and MorganaXProc are written in
Java and the user-written steps are in Java as well, our
concrete project does not have to face the full range of
problems. But there is still the problem of connecting the
user-written code to two implementations with a very
different inner life.

The third problem rises from the above-mentioned
differences in the implementation-specific step library.
XML Calabash supports all in all more than 25 steps
neither mentioned in the recommendation nor being
part of the EXProc community process. In contrast
MorganaXProc supports only two special or processor
specific extension steps. Surprisingly only two steps
proved to be relevant: transpect uses XML Calabash’s
extension steps <cx:eval/> and <cx:message/> quite a lot.
And MorganaXProc does not support either of the steps,
if we are to speak strictly.

Just a quick description for those of you not perfectly
familiar with XML Calabash’s extension library:
<cx:eval/> evaluates a dynamically constructed pipeline.
This clearly adds a new level of possibilities to XProc: You
can construct a pipeline within XProc, using XProc’s
steps or XSLT or XQuery and then you can execute this
pipeline within the XProc environment. The second step
<cx:message/> is much more boring: It simply writes a
message out to the console. Two quite useful steps.

What does it mean when we say that MorganaXProc
does not support these two steps if one is speaking
strictly? The obvious problem is that the names of the
two steps are in a namespace and that this namespace is
connected or represented by an URI starting with
“http://xmlcalabash.com/”. One might argue that this
namespace belongs to XML Calabash and that therefore
no other processor should use it. This is because it is up
to XML Calabash and its developer to define the
semantics of any step in this namespace. And it is also
the exclusive right of the namespace’s owner to redefine
the semantics without consent of any other person and
without prior announcement. So it is presumably a wise
decision of any other implementer, not to use this
namespace, because the semantics of the steps
implemented might change and his implementation is
not keeping up with this change. Given this line of
argumentation, which is surely disputable, XML

Page 89 of 127

Interoperability of XProc pipelines

http://xmlcatalogs.org
http://xmlcalabash.com/extension/steps/library-1.0.xpl

1 [1], 4.8
2 See [4], 5.6

Calabash and MorganaXProc cannot have common steps
beyond the scope of the recommendation and the
EXProc.org process. Even if both implementers choose to
implement a step with exactly the same behaviour, these
never ever will be the same step, because they have
different names in different namespaces.

This argumentation might be too strongly rooted in
linguistic theories for our practical purposes. But it also
gives us a hint of how to solve the problem: That an
identical concept (here: step) is expressed by different
names in different languages is a known situation in
linguistics. In fact it is the authority for translating one
word from one language into another word in another
language.

The problem with <cx:message/> in the context of
migration does not seem too big, since these messages do
not contribute to the results of any pipeline. One may
simply ignore the step when the pipeline runs on a
processor that does not know how to execute it. To raise
the excitement: We found another solution.

Now while <cx:message/> might be ignored,
<cx:eval/> surely is a foreseeable burden for the migration
because transpect deeply depends on it and there is no
workaround in sight using “conventional XProc”.

The last problem we expected comes from the
extension attribute “depends-on” introduced by XML
Calabash, which is heavily used in transpect. As
mentioned, this attribute allows pipeline authors to state
that step B must be executed after step A, even when no
input port of B is connected to any output port of A. At
the first sight this does not seem to be a problem at all as
MorganaXProc does not do any reordering or parallel
processing of steps. It simply executes the steps in the
physical order written in the pipeline, i.e., in document
order. But on second thought one might imagine a
pipeline author relying on the attribute and its semantics
while writing a pipeline that should not be executed in
the physical order of the steps. Luckily MorganaXProc
also supports an extension attribute “depends-on”. Here
we have the problem with the different namespaces and
therefore with the different attributes again. But the
recommendation holds the key to an easy solution: “A
processor which encounters an extension attribute that it
does not implement must behave as if the attribute was
not present.” So XML Calabash is advised to ignore an
attribute in MorganaXProc’s namespace and
MorganaXProc must ignore the attribute belonging to
XML Calabash’s namespace. Consequence: We can have
a step with both attributes to enforce execution order,

each processor just reacting to the attribute that it
recognizes.

6. Off to the lab: Found problems

Expectations are one thing; reality in most cases is
another. So: What types of additional problems did we
actually face when trying to migrate transpect?

The first thing that struck us when starting the actual
migration process was that there is no defined way in the
recommendation to import extension steps. Although
XML Calabash and MorganaXProc both support the
complete range of atomic extension steps of EXProc.org,
you cannot compile a pipeline created for XML Calabash
with MorganaXProc. The reason for this is that, according
to the recommendation, the “processor must know how
to perform.”1 Neither XML Calabash nor MorganaXProc
know how to perform say <pxf:mkdir/> without any
import. They fail with XS0044: “… the presence of
atomic steps for which there is no visible declaration may
raise this error”.

How can we make the declaration visible in XML
Calabash and MorganaXProc? Surprisingly neither
EXProc.org nor the recommendation defines a strategy.
XML Calabash chooses to incorporate all extension steps
into a global library to be imported by “http://
xmlcalabash.com/extension/steps/library-1.0.xpl”.2
MorganaXProc chooses to use the namespace URI of the
extension library also for the import. And both
processors do not actually read the step declarations from
the URI, but have an internal representation of the steps
to be imported when the URI is found on a <p:import/>.
Now this obviously makes the migration of a pipeline
importing one of these steps very difficult as the URI
used in the import is a “special trigger” for one processor,
but seems to be a regular URI pointing to a library for
the other. Currently the URI used by XML Calabash
actually points to a textual representation of the pipeline
to be imported. But that may change over time. The URI
used by MorganaXProc does not point to a library and
since the URI starts with “http://exproc.org”, there is no
way to create such a textual representation for the
processor’s implementer.

One consequence of this situation is that you cannot
have a pipeline using both ways of importing the step
running on both processors. MorganaXProc accepts the
“special trigger” of XML Calabash (as there currently is a
file at the designated position), but XML Calabash will

Page 90 of 127

Interoperability of XProc pipelines

1 [1], 7.1.31

not accept a pipeline using “http://exproc.org/proposed/
steps/file” to import the step library. It will correctly raise
a static error (err:XS0052), because there is no library at
this URI.

The second type of problem we found trying to run
transpect on MorganaXProc was a different behaviour of
steps from the standard library in the two processors.
This came as a big surprise, because the steps in the
standard library seem to be well defined in the
recommendation and the conformity of an
implementation seems to be guaranteed by passing the
respective test in the test suite. However this is not true
for at least three steps, where XML Calabash and
MorganaXProc have different interpretations and
therefore implement different behaviour.

The first step is <p:store/> which is used to write a
serialized version of the document on the step’s input
port to a URI named by the step’s option “href”.
According to the recommendation, a dynamic error
(err:XC0050) must be raised, “if the URI scheme is not
supported or the step cannot store to the specified
location.” The differences in interpreting the step’s
definition apply to the error conditions in which the
processor has to raise “err:XC0050”. Supposing the URI
scheme used is “file”, what to do, if the document is to
be stored into a folder that does not exist? XML Calabash
creates the folder hierarchy to store the file while
MorganaXProc sees itself unable to store the file at the
specified position and therefore raises “err:XS0050”.

There are good arguments for both interpretations:
MorganaXProc takes a very literal approach to the
provisions in the recommendation reading: The serialized
version of the document must be storable at the specified
location or an error must be raised. This seems to be a
legitimate reading of the recommendation. XML
Calabash obviously has a broader conception of “storing
at a specified location” which includes creating the
folders necessary to do so. One basic argument for this
interpretation may come from the fact that <p:store/>
does not only support URI scheme “file” but may also
support “http” and that there is no concept of folders
associated with “http”. As URIs are opaque here, an
XProc processor cannot ask for a parent folder to exist.
So creating the folder hierarchy with “file” is perfectly
legitimate. Another argument in support for the
interpretation put forward by XML Calabash comes from
the fact that there is no way to create a folder in the
XProc standard library. Therefore pipelines could never
put their results into a specific folder unless the user
created this folder before running the pipeline. And even

when we take into account that there is a step
<pxf:mkdir/> defined in the EXProc.org extension
library, the solution XML Calabash found would
comprise only one step, while with MorganaXProc one
has to call at least two steps.

Looking deeper into this problem, we found that the
different interpretations do not only apply to <p:store/>
but also to <pxf:copy/> and <pxf:move/>. XML Calabash
will copy or move a resource to the designated URI and
will at the same time make sure that the respective parent
resources will be created. Now MorganaXProc is also
consistent with its interpretation, so it will raise
“err:FU01” if the resource cannot be copied or moved to
the position in the file system because the folder
hierarchy necessary to do so does not exist.

To find different possibilities of interpretation with a
step in the standard step library was quite astonishing,
but as hinted above, the provisions concerning <p:store/>
are not the only source of argumentation. The second
step where XML Calabash and MorganaXProc differ in
the interpretation of the recommendation is <p:xslt/> in
very special cases making use of XSLT 2.0 (or higher).
According to the recommendation, for <p:xslt/>, the
“primary result document of the transformation appears
on the result port. All other result documents appear on
the secondary port.”1 But what is supposed to happen if a
stylesheet only produces result documents on the
secondary port? What is to be found on the result port?
Does my stylesheet have to produce a result for the
primary port?

As the primary output port “result” is a non-sequence
port, the answer is clearly “yes”, but XML Calabash and
MorganaXProc disagree on the position, where the
required error “XD007” appears. XML Calabash will
only complain if one tries to connect the primary output
port to a non sequence input port, but does accept an
xslt stylesheet producing no primary result. So a
<p:sink/> after <p:xslt/> solves everything. This can be
called a consumer oriented approach, because XML
Calabash will raise the error only if another step tries to
consume or read the non-existing result of <p:xslt/>.
MorganaXProc on the other hand implements a
producer-oriented approach and will raise the necessary
error at the moment an XSLT stylesheet completes
without a result for the primary port. One argument for
this strategy is that it makes the resulting error message
more readable, especially in cases, when the xslt-
stylesheet is not literally part of the pipeline but
imported via <p:document/>. But this is surely a case to
argue about because the recommendation does not say a

Page 91 of 127

Interoperability of XProc pipelines

1 [9], p. 16

processor has to enforce an atomic step to produce a
result document. So here MorganaXProc is stricter in the
interpretation of the recommendation than XML
Calabash (or may be even wrong taking into account
Norm Walsh’s double role).

And we found a third step in the standard library
where XML Calabash and MorganaXProc have different
interpretations of the recommendation and therefore
implement a different behaviour. As in the other two
cases, it is a very special situation where this difference
appears: There is a note in the section about <p:http-
request/> asking implementers “to support as many
protocols as practical“ for method “get”. Especially
protocol “file” should be supported to allow pipelines to
use computed URIs. Consequently both XML Calabash
and MorganaXProc support this feature. But what is
expected to happen when the file resource supplied for
“get” does not exist?

Here XML Calabash and MorganaXProc take different
approaches as the first throws an error (as it is required
for <p:load/> or <p:document/>) while MorganaXProc
returns a <c:response/> document with status “404”, as
required when <p:http-request/> is used with another
protocol. As in the other cases, you can argue for both
solutions and you will not find decisive information in
the recommendation. Surely it is a minor or exotic
situation, but concerning our question of interoperability
we have to state that a pipeline relying on the behaviour
of one processor will not produce the same (expected)
result on the other processor.

We found a fourth difference in interpretation and
therefore in implementation with <pxf:mkdir/> from the
EXProc.org library. This step is supposed to create a
directory, and should fail or return a <c:error/> if the
directory cannot be created. Now what is to happen
when the directory already exists? MorganaXProc will fail,
while XML Calabash will not. You can argue for both
solutions, so here we have one case where the description
of EXProc.org definitely needs to be enhanced or
reference tests will be useful.

Another unexpected problem rises from the fact that
XOM, the object model for XML used in MorganaXProc
is even stricter than the S9Apis used by XML Calabash.
When you try to load a document with a namespace
declaration like “xmlns:d=’dummy’”, MorganaXProc will
fail with err:XD0011. This is because XOM does not
regard a document as a well-formed XML document
when there is a missing scheme in the URI of a
namespace declaration. The URI has to be in
conformance with RFC 3986, which states: “Each URI

begins with a scheme name that refers to a specification
for assigning identifiers within that scheme.”1 The only
way to get XOM and consequently MorganaXProc to
accept this document is to change the namespace
declaration to something like “http://dummy”.

7. Problems solved: Lifting the
burdens of migration

Having listed the problems we had to face when trying to
migrate transpect from XML Calabash to MorganaXProc,
let us now look at the solutions we found. No fear! We
will not discuss every detail of our migration here. We
will focus on those problems we take to be typical for
migration projects and which therefore may throw a light
on the question of interoperable XProc pipelines. We also
believe we have found some recipes which might be
interesting for other XProc projects.

7.1. Resource management

The first problem we had to address in order to get
transpect running on MorganaXProc relates to resource
management. As transpect heavily relies on XML Catalog
to resolve imports and other resources (e.g. loading
stylesheets for XSLT or schema documents for
validation), it was impossible to run it out of box with
MorganaXProc, which does not support XML Catalog.
We had four options to solve this problem:

The first option was to rewrite all references to
external resources in the pipelines to relative URIs
resolved by the used XProc processor. This would have
taken quite a while, but is obviously the easiest
alternative. We do no longer rely on XML Catalog as an
additional tool to XProc but only use the tools built into
the language. But there are good reasons why le-tex chose
not to go this way but made use of XML Catalog when
transpect was originally developed: Using a resource
management system is a reasonable solution when you
deal with large pipeline systems to be maintained and
deployed into different user contexts.

Knowing that we needed some kind of resource
management for transpect the second option was to use
the EXPath packaging system (supported by
MorganaXProc) and XML Catalog (supported by XML
Calabash) side by side. This was actually the first step
taken to make transpect run with MorganaXProc: We
rewrote the dispatching rules in the catalog files of XML
Catalog for the EXPath system, which took about half an

Page 92 of 127

Interoperability of XProc pipelines

hour’s time. This seems to be a reasonable solution for
some cases but makes it obviously more difficult to
maintain the transpect libraries in the future: Every
change in the dependency must be marked in two files,
which is an error prone process. Since XML Catalog and
the EXPath packaging system both use XML as their base
format, one might think about an XSLT stylesheet doing
this work automatically, but even then one might forget
to invoke the stylesheet resulting in a broken delivery for
one of the supported processors.

Having taken the decision to rely on just one system
for resource management, there are some arguments to
use the EXPath packaging system for transpect. The most
obvious one is that there is an implementation for both
processors. This option would have taken a rather short
time to fix the problems once and for all. We would just
have to rewrite the resource management for transpect
using EXPath and we are done. However this option was
not taken. One argument against this solution was that
XML Calabash does not support the EXPath packaging
system out of the box, but only via an extension. As a
consequence the process of delivering transpect (which
includes XML Calabash) would become somewhat more
difficult because the additional software would have to be
packed and delivered, too. The other argument against
this solution in the broader perspective of interoperable
XProc pipeline is that it creates an isolated application.
There might be use cases where the XProc project for
some reason or another has to use XML Catalog and
cannot move to the EXPath packaging system. So we
would not provide a solution for these situations.

Having this broader perspective in mind, we finally
convinced ourselves to add native support for XML
Catalog to MorganaXProc. This was obviously the most
expensive option because providing different kinds of
resources to different types of steps is one of the basic
tasks an XProc processor has to fulfil. Therefore a lot of
code has to be written in different classes in order to get
the task done, always trying not to interfere with the
existing support for the EXPath packaging systems. As
MorganaXProc provides a pluggable file system, allowing
users to add support for special kinds of external
resources (i.e. databases etc.), implementing XML
Catalog for MorganaXProc was a non-trivial task.

Taking on this task might not be justified for just the
special case of migrating transpect from XML Calabash to
MorganaXProc. But as discussed above, resource
management is a general requirement for complex XProc
pipeline systems and so we can expect other projects to
face a similar problem. As we already said: Resource
management does not have anything to do with XProc as
a language, but when you look at large, real-life projects,

there will always be some kind of resource management
involved. So we think our solution for the problem is
also a contribution to enhance interoperability of real-life
XProc projects. And of course it introduces an additional
feature for users of MorganaXProc, so it is a win-win
situation.

7.2. Divergent interpretations of the
recommendation

While we are at it, we decided to make some further
changes to MorganaXProc in order to enhance
interoperability. As discussed above, XML Calabash and
MorganaXProc take different approaches when it comes
to store, copy or move a resource to a location that does
not exist in the file system. XML Calabash will create the
necessary folders while MorganaXProc will raise an error
because it sees itself unable to store, copy, or move the
resource. As the recommendation does only say a
processor has to raise an error if the resource cannot be
created, but does not explicate these conditions, both
interpretations seem to be fully justified. However they
lead to non-interoperable pipelines, allowing a pipeline
executable with MorganaXProc to be executed with XML
Calabash but not vice versa.

It would be possible to rewrite the pipelines to make
them interoperable as both processors implement
<pxf:mkdir/> which is used to create folders. But as we
have shown above, there is also an interpretation problem
with this step, as XML Calabash will not raise an error
when the folder to be created already exists while
MorganaXProc will complain. So the rewrite would be a
little bit more complicated:

1. Check whether the parent folder exists, if not create
it.

2. Store/copy/move the resource.

Anyone familiar with XProc sees a lot of lines to be
written to make this happen. Of course one could declare
three new steps in a <p:library/> doing this task until the
divergent interpretations are ruled out, but this would
not be very handy and at the time of writing there is no
time horizon in sight for an authorized judgement. As it
is also no principle question of the understanding of the
steps and as the interpretation put forward by XML
Calabash leads to shorter pipelines, MorganaXProc’s
behaviour was adapted to XML Calabash. From release
0.9.5.10 on MorganaXProc will create all necessary paths
for store, copy and move and thereby reduce the burdens
of migration.

Page 93 of 127

Interoperability of XProc pipelines

1 http://www.saxproject.org

7.3. User-defined steps in second language

This leads us to the first point where pipeline authors
have to do some work. In our discussion of transpect we
mentioned the fact that it relies on four additional XProc
steps for which a Java implementation is supplied. As
XProc comes with a quite large library of built-in steps
and there are additional libraries defined by EXProc.org,
it is surely not typical for every XProc project to
introduce new steps written in a second language. But it
might be necessary to do this in some cases, as we saw
with the four steps in transpect that cannot be expressed
using XProc.

As explained above, it is quite impossible for a user-
defined step written in Java etc. to run on more than one
processor. Therefore if you need this kind of extension to
XProc, you will always face the task of providing an
implementation for every processor that the step is
expected to run on. So in our special case, having
implementations of the four steps for XML Calabash, we
had to develop four additional classes for MorganaXProc
so they could be called from the transpect pipelines.

Can one think of an easier solution? Maybe, but that
would surely be a topic of another paper. What might be
interesting for the themes discussed here is that we can
distinguish three different tasks to fulfil when providing a
piece of secondary language as implementation for an
XProc step: Firstly, you have to tell the processor that a
declared step with a given signature is to be performed
using the secondary language code. Secondly, when the
step is called, you have to provide a mechanism of
connecting the actual documents on the input ports and
the option values from the XProc processor to the user
written code, so the code can access the documents and
options and create the result documents, which in turn
must be sent back, so the processor knows what
documents are on the output port. And thirdly you have
to implement the step’s logic itself, i.e. provide a piece of
code taking the input values (ports and options) and
produce the result values.

Now while the first and the second task are
inherently processor dependent, the third is not. Actually
it might be quite useful to separate the concerns for
maintenance reasons. Our proposed strategy to have
different implementation of the same step for each
processor will face problems when bugs have to be
removed or additional functionality is to be provided.
The implementer always has to make the changes twice
and has to provide different tests for her implementation.
To solve these kinds of problems we developed an

alternative solution by separating the “connect task”
(steps 1 and 2) from the “execution task” (step 3). Our
implementation of each step actually does not consist of
two Java classes (one for XML Calabash and one for
MorganaXProc), but of three. The third class implements
the step’s logic while the other two serve the task of
connecting this logic to the respective processor. So we
just have one class to maintain as long as the step’s
signature is not changed.

While having some benefits, our solution is obviously
only possible because both processors, XML Calabash
and MorganaXProc, are written in Java and therefore any
implementation of extension steps will most likely also
consist of Java code. It is very difficult to hold on to our
type of solution when it comes to implement an XProc
step for two processors written in different programming
languages. And there is another drawback of our
solution, which concerns efficiency: As we chose to
implement the step’s functionally in a separate class used
by the processor specific class which makes the
connection to the processors we had to find a common
representation for XML documents in Java. As we said
above, XML Calabash uses the object model introduced
by Saxon while MorganaXProc relies on XOM. So the
document inputs coming from the two processors to our
two connection-classes are in different object models, but
we obviously need a common object model for the
implementing-class to make sense. At the current level of
development we used the most common object model
possible: the Java string class. So currently we serialize the
document to strings in the connection-classes, perform
string operations in the implementing-class and then
build the needed object model from the resulting string
in the connection-classes.

This process of serialization and building is surely not
the most efficient way, to say the least. We shall think of
better ways to do this, probably using the class
“ContentHandler” from the saxproject1. But we think
that our solution even in its current state may serve as a
blueprint for other projects, which have to enhance
XProc with secondary code on one hand and try to avoid
a vendor lock-in on the other hand.

7.4. A short look at the remaining agenda

Let us just see, which problems are still on the agenda
now:

1. Namespace declarations without scheme names
2. Missing primary results for <p:xslt/>

Page 94 of 127

Interoperability of XProc pipelines

http://www.saxproject.org

1 [1], 3.9

3. Divergent step libraries for messaging and executing
pipelines

4. Different import mechanisms for EXProc.org libraries
5. Implementation specific extension attributes as

“depends-on”
6. Different interpretations of the expected behaviour of

<pxf:mkdir/>
7. Different error behaviour for non-existing files in

<p:http-request/>
Now the first two problems have to be solved by hand
because there is obviously no workaround. The XOM
object model used in MorganaXProc will not build a
document having a namespace declaration with an URI
not conforming to RFC 3986, notably not having a
scheme name. So there is no other way than go to the
source files and correct the namespace declaration – or
avoid these kinds of declarations right from the start.

Handwork also seems to be required when it comes
to make sure every stylesheet in <p:xslt/> produces a
document to appear on the primary output port. This is
due to the above-mentioned mechanism in
MorganaXProc to raise an error about the missing result
immediately after finishing stylesheet execution. We
could invent a work-around by putting every <p:xslt/>
into a <p:try/> and then writing a <p:catch/> to check
out whether the error results from a missing document
and if so to provide this document. And we could avoid
manual adaptations by writing a pipeline or an XSLT
stylesheet wrapping every occurrence of <p:xslt/> into the
descripted code. This would be a viable solution, but the
price for the automation would be very high: There
would be 20+ lines of code around every <p:xslt/>
dramatically affecting the readability of our pipelines.
And: The <p:try/> will slow down the performance of
our pipelines if it is not actually needed, i.e. when the
pipeline runs with XML Calabash or the <p:xslt/> does
produce a proper result for the primary output port. So
we should use the workaround only for those cases where
no proper result is produced. And as those cases can only
be inspected by hand, it seems to be much easier to
change the stylesheets found directly than to write a
wrapper around the <p:xslt/> using these stylesheets.

And what about the other problems? While we
rejected the idea of using automation to make our
pipelines interoperable for the special case of supplying
missing primary results for <p:xslt/> it seems to be a
good idea for the other cases. And it works. So let us see
how to use XProc to make XProc pipelines interoperable!

7.5. XProc to the rescue

In order to make XProc pipelines that are running
successfully on XML Calabash also usable on
MorganaXProc we actually need two XProc pipelines:

The first pipeline, actually a library, is called “xproc-
iop.xpl”. The basic task of this library is to bridge the
“namespace gap” between steps in the implementation
specific libraries of two (or more) XProc processors. So
the use case here is the mentioned fact that XML
Calabash and MorganaXProc do have steps performing
(nearly) the same operations, but having different names
or being in different namespaces. The library establishes a
common ground by declaring steps in a publicly available
namespace, which can be used in either processor. The
body (or subpipeline) of the step is then just a call of the
respective step in the step library of the XProc processor
actually running. Here is an excerpt from the library for
one step, just to illustrate the idea:

<p:declare-step type="iop:message"

 name="message">

 <p:input port="source" sequence="true"/>

 <p:output port="result" sequence="true"/>

 <p:option name="message" required="true"/>

 <!-- if XML Calabash is used -->

 <cx:message p:use-when=

 "p:system-property('p:product-name')

 = 'XML Calabash'">

 <p:with-option name="message"

 select="$message"/>

 </cx:message>

 <!-- if MorganaXProc is used -->

 <mod:report p:use-when=

 "p:system-property('p:product-name')

 = 'MorganaXProc'">

 <p:with-option name="message"

 select="$message"/>

 </mod:report>

</p:declare-step>

We declare a step named <iop:message/> which can be
used in pipelines running on either processor. The rest
relies on the attribute “p:use-when” which triggers a
conditional element exclusion if it’s value is false. To
quote from the recommendation: “If the attribute is
present and the effective boolean value of the expression
is false, then the element and all of its descendants are
effectively excluded from the pipeline document.”1 As the
exclusion has to be done before any static analysis of the
pipeline, XML Calabash actually will just see its known

Page 95 of 127

Interoperability of XProc pipelines

1 See the declarations in http://xmlcalabash.com/extension/steps/library-1.0.xpl
2 https://github.com/xml-project

<cx:message/> while MorganaXProc will just see
<mod:report/>. Because this is done even before
compiling the library, we do not have to fear any loss in
the pipeline’s performance. The other step currently
implemented is <iop:eval/> which serves as a bridge
between <cx:eval/> (XML Calabash) and <mocc:eval/>
(MorganaXProc).

Additionally this library could be used to force a
common behaviour of the two processors for
<pfx:mkdir/> (if the folder to be created does already
exist) and/or <p:http-request/> (when trying to get a
non-existing file). As it is not totally clear which
behaviour is expected, we have not incorporated a
solution in our prototype of the library, but you can
easily think of a private or in-house-version of this library
declaring a step to enforce the behaviour your pipelines
rely on.

Another important aspect of our solution is that it
copes with the (hopefully) transient need for this kind of
library. Suppose the working group decides to make
something like <cx:message/> or <mod:report/> part of
the standard library as a step in the XProc namespace,
then all you have to do is to replace the subpipeline with
a call of the newly introduced step. Or: You might run a
pipeline over all of your pipelines to replace every call to
<iop:message/> with a call to the new step. So our
solution does not only work for the moment, but can
also be adapted to future developments.

Of course you have to change your pipeline currently
running successfully on one processor in order to use our
solution. You have to insert a <p:import/> to make our
library visible and you have to change the respective step
names to the library-declared steps. Here our second
pipeline, called “interoperator.xpl” comes into play. If
you develop a new pipeline from scratch you will
probably not need “interoperator.xpl”, but if you want an
existing pipeline to be interoperable, you can use it to
solve your problems. So what does Interoperator do?

Interoperator relies on the fact that every XProc
pipeline is an XML document. Therefore we can use
XProc’s technology to make XProc pipelines
interoperable. Our pipeline will request a pipeline’s URI
as an option and do all the necessary changes in this
pipeline to make it run with XML Calabash and
MorganaXProc. And of course it will not only change the
pipeline itself but also all pipelines and libraries
imported. So you just have to call Interoperator once
with the top most pipeline of your project and what you

get as a result is an interoperable pipeline system running
on both processors.

We will not bore you discussing the pipeline step by
step so let us just sum up the tasks to do:

• Make import of XML Calabash’s extension library
conditional, so it is only used when the processor is
actually running.

• Add attribute “mox:depends-on” to every step that has
an attribute “cx:depends‑on” and vice versa.

• Rename every step <cx:message/> to <iop:message/>
• Rename every step <cx:eval/> to <iop:eval/>
• Add <p:import/> for “xproc-iop.xpl” if its needed.
• Add <p:import/> for “http://exproc.org/proposed/

steps/os” (conditional import when running
MorganaXProc) provided a step from the library is
used.

• Add <p:import/> for “http://exproc.org/proposed/
steps/file” (conditional for MorganaXProc only),
provided a step from this library is used.

• Add <p:import/> for “http://exproc.org/proposed/
steps” (conditional for MorganaXProc only), provided
a step from this library is used.

• Make sure all EXProc.org-steps are used with their
“exproc.org”-namespace. This step is necessary
because XML Calabash offers proprietary namespaces
for the File and the OS libraries.1 Since the
“xmlcalabash.com/xxx” and the “exproc.org/…/xxx”
namespaces contain the same step declaration, one
can either rename the steps with a <p:rename/> or
rename the whole namespace (<p:namespace-
rename/>).

• Rename steps <cx:zip/> to <pxp:zip/>, <cx:unzip/> to
<pxp:unzip/> and <cx:nvdl/> to <pxp:nvdl/>. This is
necessary because for convenience reasons XML
Calabash allows these steps also to be used with the
“Calabash extension namespace”. This is handy when
you actually use XML Calabash but restrains
interoperability of the respective pipelines.

This is a pretty long list, but remember: You have to call
Interoperator only once for every pipeline (or pipeline
system since imports are respected) and you get a
pipeline runnable on both processors. So you do not
have to worry about loss of performance. The pipeline
will only be increased by a few lines for the additional
import statements that are only used when the respective
XProc processor is in operation.

We will release both pipelines on github2, so anyone
can use it for her/his XProc projects. It will also serve as a

Page 96 of 127

Interoperability of XProc pipelines

http://xmlcalabash.com/extension/steps/library-1.0.xpl
https://github.com/xml-project

basis to enhance interoperability of XProc pipelines. So
anyone who finds other obstacles to interoperability may
contribute by creating an issue or better by sending a pull
request with an improved version of the pipelines. This is
of course not only restricted to the task of making
pipelines from XML Calabash runnable on
MorganaXProc and vice versa, but does also apply to
other XProc processors. And the two pipelines also may
serve an additional purpose: In some aspects the
particular state of the two pipelines at any given time
might be taken as an indicator for the state of
interoperability, so they may also be seen as a tool to
document the obstacles to interoperability of XProc
pipelines.

8. Conclusions from our projects

We dug deep into the inner life of XProc as a technology,
examined aspects of the anatomy of two XProc
processors and we got two XProc pipelines helping us to
make other XProc pipelines interoperable. What lessons
are to be learned for migration projects in particular and
what about our starting point, the question of
interoperability of XProc pipelines?

If you are a pipeline author who wants or has to
develop interoperable XProc pipelines, there are a lot of
conclusions to be drawn: First, probably as always, there
is the KISS-principle, in our case spelled out as: keep it
standard, stupid. If you can solve your problems by
writing XProc pipelines which only rely on the standard
library and which only use those features marked in the

recommendation as “required”, you are pretty safe. If
these restrictions do not work for you, we showed
obstacles you might run into. The two pipelines we
developed for our project, both document the difficulties
to be expected and serve as a tool to cope with the
problems of interoperability. So if we translate our
opening question into the question, whether it is possible
to develop a complex and interoperable XProc pipeline
system, the answer is obviously “yes”. We proved it by
successfully migrating transpect from XML Calabash to
MorganaXProc.

From this, we can obviously also proclaim good news
for pipeline users and technology decision makers: Our
two pipelines should in most cases solve the problem of
taking pipelines from one processor to the other without
deeper skills in XProc or actually, without any knowledge
at all. So as a pipeline-user you have the freedom of
choice: If you invest a little work, you can use your
XProc pipeline with any processor you like. And finally:
If you are a technology decision maker taking into
consideration using XProc, you do not need to worry
about vendor independence and reusability of pipelines.
There are minor obstacles, but they are easy to overcome.

And what lessons are to be learned for the XProc
community? As we have shown, even very complex
pipeline system can be transformed to be interoperable.
The Working Group and everybody involved in the
process of developing XProc did a great job. But as we
saw also, there are some things left to be done. The sheer
necessity of the two XProc pipelines to make transpect
work on the two XProc processors shows we are not
completely finished with making XProc a fully useful and
interoperable language.

Bibliography

[1] XProc. An XML Pipeline Language. 11th May 2010. World Wide Web Consortium (W3C).
http://www.w3.org/TR/xproc/

[2] Private communication by XML Prague 2016 participants involved in XProc development and specification.
[3] W3C Technical Report Development Process. 14 October 2005. World Wide Web Consortium (W3C).

http://www.w3.org/2005/10/Process-20051014/tr.html
[4] Norman Walsh. Wiki editing with XProc. 07th March 2010.

http://norman.walsh.name/2010/03/07/wikiEdit
[5] Norman Walsh. XML Calabash Reference. 09 June 2015.

http://xmlcalabash.com/docs/reference/
[6] James Fuller. Diaries of a desperate XProc Hacker. Managing XProc dependencies with depify.

XML London 2015.
doi:10.14337/XMLLondon15.Fuller01

Page 97 of 127

Interoperability of XProc pipelines

http://www.w3.org/TR/xproc/
http://www.w3.org/2005/10/Process-20051014/tr.html
http://norman.walsh.name/2010/03/07/wikiEdit
http://xmlcalabash.com/docs/reference/
http://dx.doi.org/10.14337/XMLLondon15.Fuller01

[7] Packaging System. EXPath Candidate Module 9 May 2012.
http://expath.org/spec/pkg

[8] Florent Georges. EXPath Packaging System: the on-disk repository layout. 15 November 2009.
http://fgeorges.blogspot.de/2009/11/expath-packaging-system-on-disk.html

[9] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Resource Identifier (URI): Generic Syntax. The
Internet Society. January 2005.
https://www.ietf.org/rfc/rfc3986.txt

Page 98 of 127

Interoperability of XProc pipelines

http://expath.org/spec/pkg
http://fgeorges.blogspot.de/2009/11/expath-packaging-system-on-disk.html
https://www.ietf.org/rfc/rfc3986.txt

Using XForms to Create, Publish, and Manage
Linked Open Data

Ethan Gruber

American Numismatic Society
<gruber@numismatics.org>

Abstract

This paper details the numismatic thesaurus, Nomisma.org,
and its associated front-end and back-end features. The
application's architecture is grounded in XML technologies
and SPARQL, with XForms underpinning the creation,
editing, and publication of RDF. Its public user interface is
driven by the XML Pipeline Language in Orbeon, enabling
transformation of RDF/XML and SPARQL XML responses
into a wide array of alternative serializations, driving
geographic visualizations and quantitative analyses in other
digital numismatic projects.

Keywords: Semantic Web, XForms, Numismatics

1. Introduction

Nomisma.org is a collaborative project to define the
intellectual concepts of numismatics following the
principles of Linked Open Data: URIs for each concept
with machine-readable serializations (RDF/XML, Turtle,
JSON-LD, etc.) conforming to a variety of relevant
ontologies (like SKOS: the Simple Knowledge
Organization System) [SKOS]. What began as a
prototype created in 2010 by Sebastian Heath and
Andrew Meadows (then of New York University and the
American Numismatic Society, respectively) to
demonstrate the potential of applying semantic web
technologies to numismatic research has evolved into the
standard thesaurus for the discipline, driven by a
scientific committee of scholars and information
technologists, and adopted by a growing number of
cultural heritage institutions. These Nomisma-defined
concepts, and the software architecture built upon them,
are the backbone for projects such as Coinage of the
Roman Republic Online (CRRO) and Online Coins of
the Roman Empire (OCRE), which seek to define all
typologies of the Roman Republic and Empire,
facilitating the aggregation of coins from museum and

archaeological databases that are related to these
typologies.

2. Numismatic Concepts as Linked
Open Data: A Brief Introduction

Numismatics as a discipline emerged during the
Medieval period and gradually became more scientific
over the centuries. By the late 18th century, the
classification methodology had evolved into system still
used today [GRUBER]. Coins have historically been
categorized by a variety of individual attributes: the
manufacture process, material, monetary denomination,
production place (or mint), date, entities responsible for
issuing the coin (whether individual rulers or corporate
organizations), and the iconography and inscriptions (or
“legend” in numismatic terminology) on the front and
back (obverse and reverse) of the coin. The combination
of each of these individual attributes comprised a coin
“type,” and types were often uniquely numbered,
thematically organized, and published in volumes of
printed books. For example, Roman Republican coins
have been published in numerous volumes over the last
century, but the standard reference work for the period
remains Michael Crawford's 1974 publication, Roman
Republican Coinage (RRC). Collections of Republican
coins therefore refer to standard type numbers from
RRC, e. g., 244/1, a silver denarius minted in Rome in
134 B.C. These numbers were once printed in collection
inventories or cards associated with each coin, but are
now inserted into bibliographic fields in museum
databases.

These databases, however, are authored in the native
language of the collection. The Roman emperor,
Augustus, is the same entity as Auguste in French or ア
ウグストゥス in Japanese. In order to perform large-
scale analyses of related coins across many different
databases, each with its own terminology, the discipline
needed to rethink authority control, and so the Linked
Open Data approach to taxonomies was adopted.

doi:10.14337/XMLLondon16.Gruber01 Page 99 of 127

mailto:gruber@numismatics.org
http://nomisma.org
http://numismatics.org/crro
http://numismatics.org/crro
http://numismatics.org/ocre
http://numismatics.org/ocre

Augustus could be represented by a URI,
http://nomisma.org/id/augustus (with a CURIE of
nm:augustus), defined as a foaf:Person in the Friend of a
Friend ontology [FOAF]. This URI serves both as a
unique, language-agnostic identifier for the entity, but
also a web page where both human- and machine-
readable information can be extracted. Below we discuss
the RDF data models that comprise the Nomisma
information system, organized into three broad divisions:
concepts in the Nomisma.org thesaurus, coin types
published in OCRE, CRRO, and other projects, and the
model that defines physical coins.

2.1. The Data Models

2.1.1. Thesaurus

We implement a variety of data models for different
types of data objects, mixing and matching classes and
properties from numerous ontologies. The SKOS
ontology was implemented for modeling the intellectual
concepts of numismatics, which include not only the
rulers responsible for issuing coinage, but each of the
aforementioned categories: manufacture method,
material, mint, denomination, field of numismatics
(broad cultural areas, like Greek or Roman), and many
others. Many of these categories are specific to the
discipline, and are therefore defined by classes in a
numismatic ontology (http://nomisma.org/ontology#,

prefix: nmo) developed and published by the
Nomisma.org scientific committee.

Other more generalizable types of data objects are
bound to classes from other common ontologies. People
and organizations carry foaf:Person and
foaf:Organization classes, respectively, historical periods
are defined by CIDOC-CRM, a conceptual reference
model from the cultural heritage domain [CRM], the
W3C Org ontology [ORG] has been implemented for
defining the role a person plays with respect to the
issuing of coinage (e.g., Roman emperor, king, or
magistrates of various titles).

With respect to RDF properties, preferred labels and
definitions may be inserted in as many languages as
necessary to facilitate multilingual interfaces, and
concepts may be linked hierarchically via skos:broader.
And, importantly, Nomisma uses SKOS properties like
exactMatch to link to identical concepts in other linked
data systems (such as Geonames, OCLC's Virtual
International Authority File (VIAF), Wikidata, and the
Getty vocabularies), which enable the integration of
coins into a wider array of cultural heritage projects, such
as Pelagios Commons. While typical SKOS properties
are implemented within instances within Nomisma,
properties from other ontologies are implemented
conditionally upon the class of object. Mints and regions
may bear coordinates from the W3C basic geo (WGS84)
vocabulary [WGS84] or from the UK's Ordnance Survey
ontology in the form as geoJSON [OSGEO].

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix nm: <http://nomisma.org/id/> .

@prefix nmo: <http://nomisma.org/ontology#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

nm:byblus a nmo:Mint;

rdf:type <http://www.w3.org/2004/02/skos/core#Concept>;

dcterms:isPartOf <http://nomisma.org/id/greek_numismatics>;

skos:prefLabel "Byblus"@en,

"Byblos"@fr;

skos:definition "The mint at the ancient site of Byblus in Phoenicia."@en;

skos:closeMatch <http://dbpedia.org/resource/Byblos>,

<http://pleiades.stoa.org/places/668216>,

<http://www.geonames.org/273203>,

<http://collection.britishmuseum.org/id/place/x30547>,

<http://vocab.getty.edu/tgn/7016516>,

<http://www.wikidata.org/entity/Q173532>;

geo:location <http://nomisma.org/id/byblus#this>;

skos:broader <http://nomisma.org/id/phoenicia>;

Page 100 of 127

Using XForms to Create, Publish, and Manage Linked Open Data

http://nomisma.org/id/augustus
http://nomisma.org/ontology#
http://www.geonames.org
http://viaf.org
http://viaf.org
https://www.wikidata.org/
http://vocab.getty.edu
http://commons.pelagios.org/

skos:altLabel "Byblos"@en.

nm:byblus#this a geo:SpatialThing;

geo:lat "34.119501"^^xsd:decimal;

geo:long "35.646846"^^xsd:decimal;

dcterms:isPartOf <http://nomisma.org/id/phoenicia#this>

The Org ontology has been applied to connect people
with dynasties and corporate entities, including their
roles within these organizations and dates these offices
have been held. Dublin Core Terms such as
dcterms:isPartOf and dcterms:source have been applied
for hierarchical linking and bibliographic references,
respectively. The thesaurus models are stable, but do
evolve to meet increased demands by our users. At the
moment, the system is deficient in tracking data
provenance, and we do plan to implement PROV-O
soon [PROVO].

2.1.2. Coin Types

Just as individual concepts have been defined by URIs, so
too are more complex coin types. RRC 244/1 is
represented by http://numismatics.org/crro/id/rrc-244.1,
an instance of an nmo:TypeSeriesItem in the Nomisma
ontology, which contains a variety of properties
connecting the type to individual categorical attributes
(concepts in the Nomisma thesaurus) and literals for the
obverse and reverse legends, symbols, and iconographic
descriptions. Below is the RDF/Turtle representing RRC
244/1:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix nmo: <http://nomisma.org/ontology#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix nm: <http://nomisma.org/id/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

<http://numismatics.org/crro/id/rrc-244.1>

rdf:type <http://www.w3.org/2004/02/skos/core#Concept>;

skos:prefLabel "RRC 244/1"@en;

skos:definition "RRC 244/1"@en;

dcterms:source nm:rrc;

nmo:representsObjectType nm:coin;

nmo:hasManufacture nm:struck>;

nmo:hasDenomination nm:denarius;

nmo:hasMaterial nm:ar;

nmo:hasIssuer nm:c_abvri_gem_rrc;

nmo:hasMint nm:rome;

nmo:hasStartDate "-0134"^^xsd:gYear;

nmo:hasEndDate "-0134"^^xsd:gYear;

nmo:hasObverse <http://numismatics.org/crro/id/rrc-244.1#obverse>;

nmo:hasReverse <http://numismatics.org/crro/id/rrc-244.1#reverse>.

<http://numismatics.org/crro/id/rrc-244.1#obverse>

nmo:hasLegend "GEM X (crossed)";

dcterms:description "Helmeted head of Roma, right. Border of dots."@en;

nmo:hasPortrait <http://collection.britishmuseum.org/id/person-institution/60208>.

<http://numismatics.org/crro/id/rrc-244.1#reverse>

nmo:hasLegend "C·ABVRI";

dcterms:description "Mars in quadriga, right, holding spear, shield and reins in left hand

 and trophy in right hand . Border of dots."@en;

nmo:hasPortrait <http://collection.britishmuseum.org/id/person-institution/59284>.

Page 101 of 127

Using XForms to Create, Publish, and Manage Linked Open Data

http://numismatics.org/crro/id/rrc-244.1

2.1.3. Physical Coins

The RDF model for physical coins implements properties
from several ontologies, but the Nomisma ontology is the
most prominent. The complexity of the model is variable
depending on the condition of the coin ands the
certainty by which it may be linked to a URI for a coin
type. If the type RRC 244/1, http://numismatics.org/
crro/id/rrc-244.1, is an nmo:TypeSeriesItem, then
physical specimens that represent this typology are linked
with the nmo:hasTypeSeriesItem property. By semantic
reasoning, a physical coin of the type RRC 244/1 is a
denarius minted in Rome and issued by the magistrate,
C. Aburius Geminus, even if these URIs are not explicit
within the RDF of http://numismatics.org/collection/
1978.64.316. On the other hand, many archaeologically
excavated coins are worn beyond certain attribution. In
these cases, what information that may be ascertained are
made explicit in the triples for a coin. The portrait may
be identifiable as the emperor, Vespasian, but an illegible
legend prevents linking to a specific coin type. This coin
is still available for query alongside other positively
identified coins of Vespasian within the Nomisma.org
SPARQL endpoint.

In addition to recording the type URI or typological
characteristics of a coin, metrological data, like weight
and diameter, may also be included. These measurements
are vital for large-scale (both in terms of time and space)
economic analyses. If the coin has been photographed,
foaf:thumbnail and foaf:depiction may be used to link to
images. Finally, geodata (whether coordinates and/or a
gazetteer URI) related to the find spot may be included,
if known. In the event that the coin was found within a
hoard (dcterms:isPartOf ?hoard), the find coordinates
may be extracted from the triples for the hoard via the
graph [NMDOCS].

2.2. Gradual Acceptance and Implementation
by the Community

A growing body of institutions are adopting Nomisma
URIs as standard identifiers for numismatics. The four of
the five largest collections of ancient coins in world
(American Numismatic Society, Bibliothèque nationale
de France, British Museum, and Berlin Münzkabinett)
are in various stages of implementation, as are a handful
of European coin find databases (such as the UK's
Portable Antiquities Scheme and the German Antike
Fundmünzen Europa), and smaller museums such as the
University of Virginia and University College Dublin.
For a full list of contributors, see the Nomisma.org
datasets list.

The landscape of digital numismatics has progressed
significantly in the six years since the launch of
Nomisma, and we are hopeful that, over the next
decades, this information system will include millions of
coins, enabling scholars to perform large-scale economic
analyses of 800 years of Roman coinage distributed from
Scotland to India. We hope (or expect) these technical
methodologies will open pathways for similar research
questions in other fields of numismatics. The foundation
for these sophisticated query interfaces is a combination
of XML and Semantic Web technologies, bound together
in a collection of XML Pipelines, XSLT stylesheets, and
Javascript/CSS for the public user interface, all of which
are open source (on Github) and built on other open
source server applications and open web standards.

3. Architecture

Nomisma.org's architecture is based on an adaptation of
XRX (XForms, REST, XQuery), with SPARQL
substituted for XQuery. It utilizes a variety of well-
supported and documented open source Java-based
server applications. Apache Solr facilitates faceted
browsing, search-oriented web services, and a geospatial
extension to the SPARQL endpoint. Apache Fuseki (part
of the Jena project) is the triplestore and SPARQL
endpoint. Orbeon XForm s is the core middleware that
connects Solr, Fuseki, and external REST services—in
both the front-end with XML pipelines and the back-end
XForms engine. The SPARQL endpoint was deployed in
production in early 2013, enabling us to aggregate
Roman Imperial coins from the American Numismatic
Society and Berlin Münzkabinett in an early version of
OCRE (which contributed to a successful three-year,
$300,000 bid with the National Endowment for the
Humanities the following year). Orbeon was
implemented before this–in early 2012—to deal with
challenges surrounding the creation and maintenance of
Nomisma IDs.

The architecture is modular. The greatest advantage
of XForms, a W3C standard, is that the author may
focus solely on the MVC functionality of the web form;
the client-side Javascript and CSS and server-side code
are inherent to the XForms processor, and so migration
from one platform to another should, at least in theory,
require little effort. Apache Fuseki was chosen for its ease
of deployment, but it may be swapped with any
SPARQL 1.1-compliant endpoint. Replacing Solr with
another search index would be more difficult, but any
application that supports REST interactions via the
XForms engine is suitable.

Page 102 of 127

Using XForms to Create, Publish, and Manage Linked Open Data

http://numismatics.org/crro/id/rrc-244.1
http://numismatics.org/crro/id/rrc-244.1
http://numismatics.org/collection/1978.64.316
http://numismatics.org/collection/1978.64.316
http://numismatics.org
http://www.bnf.fr/en/collections_and_services/numi_eng/s.coins.html
http://www.bnf.fr/en/collections_and_services/numi_eng/s.coins.html
http://britishmuseum.org
http://ww2.smb.museum/ikmk/
https://finds.org.uk/
http://afe.fundmuenzen.eu/
http://afe.fundmuenzen.eu/
http://coin.lib.virginia.edu
http://digital.ucd.ie/view/ucdclm:10
http://nomisma.org/datasets
https://github.com/nomisma/framework
http://lucene.apache.org/solr/
https://jena.apache.org/documentation/serving_data/
http://www.orbeon.com

Figure 1. Creating nm:dirham, after importing from Wikidata

3.1. XForms for CRUD operations of RDF

When Nomisma.org launched in 2010, it was published
entirely in Docuwiki, an open source wiki framework.
The URI for the mint of Rome, http://nomisma.org/id/
rome, was created by hand-editing XHTML embedded
with RDFa properties in a single textarea element in an
HTML web form. This presented some problems: there
was no check for well-formedness of XHTML fragments,
so malformed XML could break a web page, and the
particular XHTML document model might be
inconsistent and not translate into the the appropriate
RDF model using the W3C's RDFa 1.1 distiller.

Ensuring data consistency was a primary concern,
and so we developed an XForms application to handle
the editing of these XHTML+RDFa fragments. By
curbing direct human editing of XTHML, we eliminated
malformed XML problems outright. XForms bindings
enabled stricter validation based on XPath, for example:

• To require one English SKOS Preferred Label and
Definition

• Restrict labels and definitions in other languages to a
maximum of one

• Latitudes and longitudes must be decimal numbers
between -180 and 180

• A variety of conditionals that restrict certain RDF
properties to particular classes of data object; e. g.,
that geographic coordinates apply only to
skos:Concepts that represent regions or mints

Since linking Nomisma URIs to concepts in other
systems is a vital feature of Five-Star Linked Open Data,
we implemented a variety of simple lookup mechanisms
that pass search keywords from the web form to XForms
submissions in order to query external APIs (for example,
of the Getty Vocabularies and British Museum SPARQL
endpoints, Wikidata's XML response, or VIAF's RSS
feed). These widgets simplified the process by which
skos:exactMatch or skos:closeMatch URIs might be
integrated into Nomisma data, reducing errors in
manually transcribing URIs into the web form.
Wikidata's REST API is especially useful, as we are able
to extract article titles in many languages to rapidly
assemble a list of skos:prefLabels (Figure 1, “Creating
nm:dirham, after importing from Wikidata”). These
lookup mechanisms are authored in the form of XBL
components in Orbeon, and can be (and have been)
easily reimplemented in other XForms applications, such
as xEAC and EADitor , which are archival publishing
frameworks.
In addition to external lookups, the editing interface
includes internal lookup mechanisms that query

Page 103 of 127

Using XForms to Create, Publish, and Manage Linked Open Data

https://www.w3.org/2012/pyRdfa/
https://github.com/ewg118/xEAC
https://github.com/ewg118/eaditor

Nomisma's own SPARQL endpoint or Atom feed to link
to broader concepts, to associate a concept with a field of
numismatics (e.g., to say that a denarius is part of
Roman numismatics; nm:denarius dcterms:isPartOf

nm:roman_numismatics), or to associate a person with a
dynasty or organization.

Upon clicking the 'Save' button, the data model was
serialized into an XML file and written to the filesystem
(as opposed to an XML or NoSQL database), in order
that commits could be made nightly to a Github
repository for our data [NMDATA]. The Github
backups remain an integral part of the data publication
workflow today.

The framework eventually grew to incorporate Solr
and a SPARQL endpoint. The 'Save' button then hooked
into several additional XForms actions and submissions.
The source model (XForms instance) is transformed by
XSLT into an XML document conforming to Solr's
ingestion model, and posted into Solr's REST interface.
Next, the XForms engine constructs a SPARQL query to
purge triples associated with the URI from the endpoint,
which is posted to the endpoint via the SPARQL/Update
protocol. Finally, the updated RDF is posted into the
endpoint.

In 2014, we begin the transition of migrating from
Heath and Meadows' original XHTML+RDFa
document model into RDF/XML that conforms proper
RDF ontologies, including the introduction of the
formal Nomisma ontology developed by Karsten Tolle, a
computer scientist at the University of Frankfurt. The
model was separated from the view, making it easier to
extend the functionality of the public user interface
without interfering with the RDFa distillation or exports
into other serializations of linked data, like Turtle or
JSON-LD. The APIs were rewritten and made
dramatically more efficient, having eliminated the need
to preprocess XHTML+RDFa into RDF/XML before
delivering content to OCRE or other projects.

The XForms editing interface was adapted to RDF/
XML, which led to improved consistency of the data,
since our export APIs (XSLT transformations of
XHTML into other formats) did not always account for
every imaginable permutation of RDFa properties
jammed into a document model. Today, Nomisma.org's
APIs serve out large quantities of RDF data to other
American Numismatic Society or partner projects for
web maps, multilingual interfaces, etc., as efficiently as
possible.

3.2. Batch Concept Creation

Nomisma's XForms back-end functions well for
managing individual skos:Concepts. It is an intuitive
system used primarily by academics to create or update
identifiers required for existing digital numismatics
projects. When creating new projects, however, we had a
need to create potentially hundreds of new identifiers for
mints, rulers, denominations, etc. Academics are
accustomed to working in spreadsheets, and the author
was often tasked with writing one-off PHP scripts to read
spreadsheets as CSV and process data into RDF.

In summer 2015, this functionality was ported into a
new XForms application [NMBATCH]. This application
requires a Google spreadsheet that conforms to some
basic requirements, which must be published to the web
so that it can be made available as an Atom feed through
the Google Sheets API. All IDs in the spreadsheet must
be the same class of data object (for example, a mint or
denomination). Each column heading will be read from
Atom in the XForms engine, and the user may choose to
map a column to a permitted list of RDF properties
(Figure 2, “Mapping spreadsheet columns to RDF
properties”). There are some XPath controls on the
properties that are available for selection—there must be
an English preferred label and definition, latitude and
longitude are only available for mints, and other
conditions described in the Github wiki. If the mapping
itself is valid, the user may click a button to validate each
row of the spreadsheet. The XForms engine ensures that
latitudes and longitudes are valid decimal numbers, that
each row has a preferred label and definition, that a URI
under a skos:broader mapping does conform to the
appropriate RDF Class. After this phase of validation,
the application will display a list of validation errors, or if
there are none, present the user with a button to publish
the data into Nomisma. The publication workflow
transforms each Atom entry element into RDF/XML,
writes and updates the file on the disk, publishes the data
to Solr, and creates or updates the triples in the SPARQL
endpoint.
The publication process includes an additional feature
where any SKOS matching property with a Wikipedia
URL or DBpedia URI is parsed, and a series of API calls
are executed to extract preferred labels and alternative
authority URIs from Wikidata. This feature has enabled
us to enhance concepts that have already been published;
we can execute a SPARQL query of all Nomisma IDs
with a DBpedia URI to download CSV, upload the CSV
to Google Sheets, and then re-run the spreadsheet
through the XForms import mechanism to pull labels
and other URIs from Wikidata into Nomisma. This is

Page 104 of 127

Using XForms to Create, Publish, and Manage Linked Open Data

Figure 2. Mapping spreadsheet columns to RDF properties

one reason projects like OCRE and CRRO are available
in Arabic.

3.3. Public User Interface

The front-end of Nomisma.org is delivered through
Orbeon's Page Flow Controller and XML Pipeline
Language (XPL). URIs for concepts are constructed by a
pipeline that aggregates the source RDF file from the
filesystem with, and, depending on whether the concept
is mappable, two SPARQL query responses to ascertain
whether there are mints or findspots connected with the
skos:Concept. This aggregate XML model is passed
through XSLT in order to generate an HTML5 web
page. The URI for Julius Caesar,
http://nomisma.org/id/julius_caesar, therefore includes
the RDF transformed into HTML5+RDFa, plus a map
rendered with the Javascript library, Leaflet, which shows
a layer for mints that struck coins issued by Casesar, a

heatmap showing the geographic distribution of all
locations where coins of Caesar have been found, and
two additional layers (off by default) that show points for
hoards (three or more coins found in the same
archaeological context) or individual coin finds. These
layers are generated by Nomisma APIs that interface with
the SPARQL endpoint, passing the XML response from
the endpoint through a pipeline to transform it into
geoJSON. Additionally, when available, the URI web
page will display a list of coin types associated with the
skos:Concept, including thumbnails of coins from
partner institutions.

The browse page and Atom feed are both generated
by XPL which send request parameters to Solr's REST
interface, and pipe the XML response through XSLT
into the appropriate view (HTML or Atom). There are
additional pages for the current and previous versions of
the formal ontology, APIs, documentation, and the
SPARQL endpoint. We strive to make data available in

Page 105 of 127

Using XForms to Create, Publish, and Manage Linked Open Data

http://nomisma.org/id/julius_caesar
http://nomisma.org/browse
http://nomisma.org/feed/

as many formats through as many protocols as possible.
A user may request alternative serializations by
appending an extension on a concept URI, e. g.,
http://nomisma.org/id/augustus.jsonld, to receive JSON-
LD by REST, but concept URIs, the browse page,
ontology URI, and SPARQL endpoint offer interactivity
by Content Negotiation. Content Negotiation is vital for
conforming to linked data framework standards, and
these advanced HTTP features are possible with
Orbeon's XPL.

4. Results

According to a 2014 survey by OCLC, Nomisma.org is
one of the most heavily-used Linked Open Data systems
in the Library, Archive, and Museum sector, behind
OCLC's own VIAF and Worldcat.org services (100,000+
requests per day), and in the same range as the British
Library's British National Bibliography service, at
between 10,000-50,000 requests per day [OCLC].
Nomisma's load has doubled since then, serving between
40,000-50,000 API calls per day (including about as

many SPARQL queries, though there is some overlap
between API and SPARQL requests), nearly all of which
are from non-search robot machines that facilitate
dynamic mapping and multilingual interfaces in a wide
variety of numismatic projects. The architecture uses
both SPARQL and Solr to their natural advantages while
minimizing SPARQL's known scalability limitations.
Nomisma.org has suffered approximately three minutes
of downtime in three years, which is remarkable
considering it runs on a Rackspace cloud server with only
4 GB of RAM and an annual budget of little more than
$1,000.

We are aware that we will likely need to upgrade our
infrastructure eventually, as our triplestore will grow
exponentially in the coming years as more institutions
become involved in the numismatic linked data cloud.
We strive to continually build more sophisticated query
and visualization interfaces that, in turn, require greater
server resources. Numismatics has technologically
evolved dramatically over the last half-decade, and its
march toward Big Data is inevitable, finally making it
possible to conduct research in ways that have been
dreamed about for centuries.

Bibliography

[WGS84] Dan Brickley, ed. W3C Semantic Web Interest Group: Basic Geo (WGS84 lat/long) Vocabulary.
2003. World Wide Web Consortium (W3C).
https://www.w3.org/2003/01/geo/

[FOAF] Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.99. 14 January 2014.
http://xmlns.com/foaf/spec/

[CRM] Nick Crofts, Martin Doerr, Tony Gill, Stephen Stead, and Matthew Stiff, eds. Defintion of the
CIDOC Conceptual Reference Model. November 2011. ICOM/CIDOC Documentation Standards
Group.
http://www.cidoc-crm.org/html/5.0.4/cidoc-crm.html

[GRUBER] Ethan Gruber. Recent Advances in Roman Numismatics. 15 May 2013. MA Thesis, University of
Virginia.
doi:10.5281/zenodo.45328

[NMDOCS] Ethan Gruber. How to Contribute Data.
http://nomisma.org/documentation/contribute

[NMBATCH] Ethan Gruber. Import/Update IDs. 28 July 2015.
https://github.com/nomisma/framework/wiki/Import-Update-IDs

[PROVO] Timothy Lebo, Satya Sahoo, and Deborah McGuinness, eds. PROV-O: The PROV Ontology. 30
April 2013. World Wide Web Consortium (W3C).
https://www.w3.org/TR/prov-o/

[SKOS] Alistair Miles and Sean Bechhofer, eds. SKOS Simple Knowledge Organization System. 18 August
2009. World Wide Web Consortium (W3C).
https://www.w3.org/2004/02/skos/

[NMDATA] Nomisma.org. Nomisma Data. Created 2012. Github.org repository.

Page 106 of 127

Using XForms to Create, Publish, and Manage Linked Open Data

http://nomisma.org/id/augustus.jsonld
https://www.w3.org/2003/01/geo/
http://xmlns.com/foaf/spec/
http://www.cidoc-crm.org/html/5.0.4/cidoc-crm.html
http://dx.doi.org/10.5281/zenodo.45328
http://nomisma.org/documentation/contribute
https://github.com/nomisma/framework/wiki/Import-Update-IDs
https://www.w3.org/TR/prov-o/
https://www.w3.org/2004/02/skos/

https://github.com/nomisma/data
[OSGEO] Geometry Ontology. Ordnance Survey.

http://data.ordnancesurvey.co.uk/ontology/geometry/
[ORG] Dave Reynolds, ed. The Organization Ontology. 16 January 2014. World Wide Web Consortium

(W3C).
https://www.w3.org/TR/vocab-org/

[OCLC] Karen Smith-Yoshimuri. Linked Data Survey results 1 – Who’s doing it (Updated). 4 September
2014. OCLC.
http://hangingtogether.org/?p=4137

Page 107 of 127

Using XForms to Create, Publish, and Manage Linked Open Data

https://github.com/nomisma/data
http://data.ordnancesurvey.co.uk/ontology/geometry/
https://www.w3.org/TR/vocab-org/
http://hangingtogether.org/?p=4137

Dynamic Translation of Modular XML
Documentation Using Linked Data

Simon Dew

STANLEY Black and Decker Innovations Limited
<simonjabadaw@gmail.com>

Abstract

STANLEY Black and Decker Innovations had a
requirement to produce and maintain DocBook-based
documentation, which is translated into up to 10 languages.
Documents are built by transclusion from several source files,
some of which may be stored remotely. Each document may
contain SVG illustrations which also needed translation.

We selected XLIFF as a translation file format. To keep
maintenance effort to a minimum, we needed tools that
enabled dynamic translations, i.e. translations made at
publication time without skeleton files. We also needed tools
that could find the correct translations for each translatable
element after all the source files (including remote source
files) had been transcluded into a single document.

This article describes the solutions we developed. These
included markup (mostly ITS 2.0) in the source
documentation, linked data (using RDF/XML) to identify
the translation resources, and a set of XSLT stylesheets to
handle the transformations.

Keywords: XML, Translation, DocBook, SVG, ITS,
XLIFF, Linked Data

1. Introduction

XML-based documentation often requires translation
and localisation. The QRT team at STANLEY Black and
Decker Innovations had a requirement to produce and
maintain modular documentation in up to 10 languages.
Any translated document might be published in up to 4
different brandings, for a number of different varieties of
a product, in several different output formats, e.g. PDF,
CHM, web help; and each document might contain
illustrations which also needed translation. This article
describes the solutions we developed to minimise the
effort and cost required to do this.

2. Background

2.1. Translation File Format

We required an open source format to store translations.
We considered two main standards: the GNU gettext
standard and the XLIFF file format.

The GNU gettext standard is an internationalisation
and localisation system, released by the GNU project and
based on earlier work by Sun Micrososystems [gettext]. It
uses text files known as Portable Objects to hold
translation strings. Commonly used for user interfaces in
UNIX-like operating systems.

XLIFF (XML Localisation Interchange File Format)
is a data exchange standard for localisation, originally
designed for passing localisation data between translation
tools [XLIFF]. It’s an XML-based file format,
standardised by OASIS (the Organization for the
Advancement of Structured Information Standards) in
2002.

We chose the XLIFF file format because:

1. Commercial translation houses can use XLIFF
comfortably with their proprietary translation tools;

2. XLIFF being XML-based can be transformed using
XSLT [XSLT], and it made sense to use this with our
DocBook XML documentation [DocBook] and SVG
images [SVG].

2.2. Traditional XLIFF Workflow

The traditional XLIFF workflow demands that the source
document is converted into a skeleton file which contains
the structure of the document, and an XLIFF file which
contains the translation units themselves, as shown in
Figure 1, “Translation with skeleton file”.

doi:10.14337/XMLLondon16.Dew01Page 108 of 127

mailto:simonjabadaw@gmail.com

Figure 1. Translation with skeleton file

a

translation
template

skeleton

source
document

translators translated
text

fr

es

zh

 Filters store the non-translatable portions in special
files called skeletons.

 --[IBM]

The XLIFF file is sent to the translators. After
translation, the translated XLIFF files are combined with
the skeleton file to create translated documents in each of
the target languages, as shown in Figure 2, “Merge with
skeleton file”.

Figure 2. Merge with skeleton file

a

skeleton

translated
text

translated
documents

fr

es

zh

fr

es

zh

The translated documents are then processed to create
the desired output formats, as shown in Figure 3,
“Publishing translated documents”.

Figure 3. Publishing translated documents

build
process

translated
documents

published
documents

fr

es

zh

fr

es

zh

 The translated XLIFF must now be merged with the
skeleton file to produce a translated document in the
desired output format.

 --[IBM]

This means, however, that the skeleton file and the
translated documents become resources which must
themselves be maintained:
 Translated file is checked into XML repository
 --[Tektronix]

Maintaining skeleton files and a large number of
translated files can become a problem, especially when
authors have to produce several different versions of the
documentation, e.g. for different brandings or product
variants.

2.3. Dynamic Translations

One solution to the problem of maintenance of
translated documentation is to use dynamic translations.
The translation strings are extracted from the source file,
but no skeleton file is produced, as shown in Figure 4,
“Translation without skeleton file”.

Page 109 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

Figure 4. Translation without skeleton file

translation
template

source
document

translators translated
text

fr

es

zh

At publication time, the build tool takes the structure of
the source document and replaces the source text with
the corresponding translated text, including any inline
markup, as shown in Figure 5, “Publishing translated
documents dynamically”.

Figure 5. Publishing translated documents
dynamically

build
process

published
documents

source
document

translated
text

fr

es

zh

fr

es

zh

The advantage of fully dynamic translation is that
elements can be moved around or deleted in the source
document and these structural changes are reflected
automatically in the translated publications, without the

need to regenerate the skeleton file or update
intermediate translated source files.

Dynamic translation is used with some GNU gettext
workflows. For example, authors who write
documentation in the Mallard XML format [Mallard]
can use this approach to publish documentation to yelp,
the GNOME help viewer [Yelp]. Authors can place
translated PO files into a specific subdirectory and add
instructions to a configuration file so the build process
can translate the document into that language:
 This integrates the British English language

translation with the yelp.m4 build process, so that
the translations from the PO file are used to create
translated Mallard pages during the make process. As
with the basic integration, the translated pages are
validated during make check and installed in the
install directory during make install.

 --[Yelp]

2.4. Problem

However, we faced two problems before we could adopt
this approach:

1. We weren’t aware of any solution that would enable
dynamic translation using XLIFF files.

2. A further problem arises with modular
documentation, i.e. documents that are built at
publication time from several source files, all
transcluded into the main assembly document. Some
of these source files may be stored remotely. The
publication process thus needs to know where to find
the correct translation for every translatable element
in the main document after all the document source
files have been transcluded into a single document.
See Figure 6, “Problem with translating modular
documentation”.

Page 110 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

Figure 7. Dynamic translation using linked data

build
process

published
documents

translated
text

assembly
document

source
documents

fr es zh

fr es zh

fr es zh

fr

es

zh

Figure 6. Problem with translating modular
documentation

translated
text

assembly
document

source
documents

?

fr

es

zh

build
process

published
documents

fr

es

zh

3. Design

We designed a solution based around linked data to
identify the translation files for each document,
document part or image; markup in the source
documentation to identify the correct translation for
each translatable element; and a set of tools to handle the

translation process. See Figure 7, “Dynamic translation
using linked data”.

3.1. Design: Linked Data

Each source document can use linked data to identify the
XLIFF files that contain translations of the elements
within the document. We wanted linked data to reuse
established vocabularies wherever possible.

If necessary, specific parts of a document (e.g.
document chunks which have been transcluded from a
remote location) can use linked data to identify the
XLIFF files that contain translations of the elements
within that part.

Linked translation data takes the form of RDF/XML
statement(s) [RDF/XML]. We chose RDF/XML because
of the flexibility that the markup offers, and in the hope
that we may find further ways to analyse our translations
using linked data tools in future, e.g. to analyse
translation coverage.

3.2. Design: Markup

Each translatable element must contain markup that
identifies the corresponding translation unit in the
XLIFF file.

3.3. Design: Tools

Translation will take place as part of the document build
process, after transcluding the document modules into a
single document, and before transforming the document
into its publication format. The solution must therefore

Page 111 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

1 http://itstool.org
2 http://okapi.opentag.com

include an automatic translation tool which can be used
as part of the document publication build process.

For each translatable element in the document, the
automatic translation tool must find the correct XLIFF
file for the correct language, and replace the inline
content of the element with the translated content from
the XLIFF file.

The solution must include tools to prepare the source
documentation for translation, i.e. by adding translation
markup automatically; and to extract the translatable
strings to an XLIFF file so that it can be sent to
translators.

The solution must also include tools for the
management of XLIFF files: for example, comparing the
source file to the translation file when the source file has
changed; merging completed translations into the
existing translation files; and purging duplicate
translation units from existing translation files.

3.4. Related Work

As stated previously, we were aware of gettext for
handling dynamic translations. However, gettext is not
aimed at XLIFF files, and does not address the issue of
translating modular documentation.

We were also aware of the ITS Tool1 package for
maintaining translation files. This package provided
useful inspiration, particularly the use of ITS
(Internationalisation Tag Set) rules files to identify
translatable elements [ITS]. However, this package is also
aimed at gettext Portable Objects rather than XLIFF
files, and does not address the issue of translating
modular documentation.

The Okapi Framework2 is a suite of tools for
managing XLIFF files, particularly useful for extracting
XLIFF translatable units from a wide variety of file
formats. It does not handle dynamic translation, or
provide any solution to the issue of translating modular
documentation.

3.5. Design Decision: Mapping Elements to
Translation Units

When converting from the source documentation to
XLIFF, the preparation tools need to be able to
determine what a translatable element is, and how the
translatable elements map to XLIFF translation units.

One approach would be to convert all elements
containing text nodes into translation units. However
this might lead to highly segmented text, which would
create difficulties for translators.

To aid translators, and to keep the implementation
simple, we decided to define a reasonable set of elements
for each supported file type as “block” elements. Each
block element maps to a single translation unit. So for
example, in DocBook XML, a para or a title element
would be a block element. Child elements of block
element are “inline” elements, contained within the
XLIFF translation unit.

The ITS 2.0 standard provides the Elements Within
Text data category, which can be used to determine
which elements in a file are block elements and which are
inline. We decided to define a standard ITS rules file for
the file formats we use. The XLIFF preparation tools
must use this ITS rules file to map the elements in the
source document to translation units in an XLIFF file.
The XLIFF preparation tools must be able to use
different ITS rules files if necessary.

3.6. Design Decision: Inline Markup

Elements from foreign namespaces are not permitted
within translated text in an XLIFF file. XLIFF supports
two strategies for marking up inline elements. These may
be called “raw” (escaped) markup and “cooked”
(transformed) markup.

With raw markup, inline XML elements in the
source document are marked up in the XLIFF file as
escaped text. Escaped start and end tags can be wrapped
within XLIFF bpt and ept elements; escaped standalone
tags can be surrounded by XLIFF ph elements. The
escaped markup has to be unescaped when inserting text
into the translated document.

With cooked markup, inline XML elements in the
source document are transformed into XLIFF elements.
Inline elements with content can be transformed into
XLIFF g elements; inline elements with no content can
be transformed into XLIFF x elements. Since we want to
do without a skeleton file, the XLIFF maintenance tools
would have to store the g and x elements with enough
information to be able to transform them losslessly back
into the original inline elements, with the original
namespace, local name and attributes. We decided that
when using cooked markup, we would use the ctype
attribute to record the original namespace and local

Page 112 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

http://itstool.org
http://okapi.opentag.com

3 http://virtaal.translatehouse.org

name of inline elements. XLIFF permits attributes from
foreign namespaces.

We prefer using raw inline tags in our XLIFF files in-
house. When using an XLIFF-capable editor such as
Virtaal3, we found it useful to see the full content of any
inline markup. We decided to use raw (escaped) inline
markup as the primary format for XLIFF files. However
our translation houses preferred to work with cooked
(transformed) inline markup. We decided that our
maintenance tools must therefore be able to round-trip
XLIFF files, i.e. convert an XLIFF file from one format
to the other, preserving the structure of the inline
elements.

3.7. Design Decision: Nested Block Elements

Our primary documentation format, DocBook XML,
allows nested block elements. For example, a DocBook
para element can contain a footnote element, which in
turn can contain another para element. This could be
handled by XLIFF, e.g. by representing the inner block
element as an inline element, and using the xid attribute
to refer to another translation unit. We decided however,
for the sake of simplicity, not to implement this at first.
We decided to enforce a local writing convention that
authors could not nest para elements. If necessary, we
would use a simpara element within a para element. The
XLIFF preparation tool must regard simpara as an inline
element.

Similarly, we decided to enforce a local writing
convention that no attributes could contain translatable
text.

4. Solution

We implemented this design as part of a broader
document localisation and publication project, which
was known within STANLEY Black and Decker
Innovations as PACBook.

PACBook is released under version 3.0 of the GNU
Lesser General Public License [LGPL]. It is available
from the PACBook repository on GitHub at
https://github.com/STANLEYSecurity/PACBook.

The parts of PACBook which implement dynamic
translation for XML documents using linked data are
described here. Full documentation for the entire project
is available from the PACBook repository on GitHub.

4.1. Implementation: Linked Data

To be able to translate an XML document using this
solution, authors must add a translation statement to the
metadata section of the XML document. So, for a
DocBook 5.0 document, you would add it to the info
element at the start of the document. For an SVG image,
you would add it to the metadata element at the start of
the image.

We use terms from the Bibliographic Ontology
(BIBO) to identify the document, document part or
image that needs translation. [BIBO]

We use terms from the VIVO Integrated Semantic
Framework vocabulary to specify the location of the
XLIFF files which contain the translations for this
document, document part or image. [VIVO]

4.1.1. Linked Data for a Document

A typical translation statement for a DocBook XML
document is shown in Example 1, “Translation statement
for a DocBook document”.

• The bibo:Document property declares that this file is a
document and that it is the subject of this statement.

• The vivo:hasTranslation property declares that this
document has translations associated with it. The
optional xml:base attribute can be used to indicate
where all the translations are.

• The translation resources are indicated by the rdf:li
elements. For each translation, the xml:lang attribute
represents the language; the rdf:resource attribute
shows the URI of the XLIFF file which contains the
translation in that language. The rdf:resource

attribute may contain an absolute or relative URI; if

Page 113 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

http://virtaal.translatehouse.org
https://github.com/STANLEYSecurity/PACBook

Example 1. Translation statement for a DocBook document

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:bibo="http://purl.org/ontology/bibo/"

 xmlns:vivo="http://vivoweb.org/ontology/core#">

 <bibo:Document rdf:about="">

 <vivo:hasTranslation xml:base="http://DBK/Topics/512_Series/xlate/">

 <rdf:Alt>

 <rdf:li xml:lang="de" rdf:resource="ac_de.xliff"/>

 <rdf:li xml:lang="es" rdf:resource="ac_es.xliff"/>

 <rdf:li xml:lang="fr" rdf:resource="ac_fr.xliff"/>

 <rdf:li xml:lang="nb" rdf:resource="ac_nb.xliff"/>

 <rdf:li xml:lang="nl" rdf:resource="ac_nl.xliff"/>

 <rdf:li xml:lang="sv" rdf:resource="ac_sv.xliff"/>

 <rdf:li xml:lang="zh" rdf:resource="ac_zh.xliff"/>

 </rdf:Alt>

 </vivo:hasTranslation>

 <!-- Other RDF properties ... -->

 </bibo:Document>

</rdf:RDF>

relative, it is combined with the xml:base attribute of
the vivo:hasTranslation property to define the full
URI.

• Note that you need to declare the rdf, bibo and vivo
namespaces. The namespace URIs are shown in
Example 1, “Translation statement for a DocBook
document”.

The DocBook 5.0 schema allows foreign namespaces
within the info element, so there is no need to extend
the DocBook 5.0 schema to add the translation
statement.

4.1.2. Linked Data for an Image

You would use bibo:Image instead of bibo:Document in a
translation statement that applies to an SVG file.

SVG files allow elements in foreign namespaces
anywhere, so similarly there is no need to extend the
SVG schema to add the translation statement.

4.1.3. Linked Data for Document Parts

You can also specify a translation statement for part of a
file. The easiest way to do this is to add it to the metadata
section for that part. So, in a DocBook file, you would
add a translation statement that only applies to a
particular chapter to the info element at the start of the
chapter. This would override any translation statement at
the start of the book. If the chapter is transcluded from a
different location, its translation statement can be
transcluded along with it.

You would use bibo:DocumentPart instead of
bibo:Document in a translation statement that only
applies to part of a document.

4.2. Implementation: Markup

In the source documents, authors mark up translatable
elements using an attribute from the XLIFF namespace,
namely xlf:id. The xlf:id attribute corresponds to the
ID of a single, unique translation unit in an XLIFF file.
There’s no requirement that the value of xlf:id should be
unique in the source document.

We also allow all the local attributes from the ITS
namespace in the source documents. ITS local attributes
are used as specified by the ITS 2.0 recommendation,
e.g. to mark up localisation notes and terminology, or to
indicate whether a translatable element should be
translated.

Page 114 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

Note

Why do we use xlf:id? The ITS 2.0 recommendation
stipulates that:
 The recommended way to specify a unique

identifier is to use xml:id or id in HTML.

 --[ITS]

However, after transclusion, the same translatable
element may appear more than once in the document.
Obviously two elements cannot have the same xml:id.

Further, if the xml:id of an element were changed
or fixed up after transclusion, it would be more
difficult to use the xml:id to find the correct
translation unit for that element.

Typical markup of translatable elements in a DocBook
XML document is shown in Example 2, “Markup of
translatable elements”.

Example 2. Markup of translatable elements

<important xmlns="http://docbook.org/ns/docbook"

 xmlns:its="http://www.w3.org/2005/11/its"

 xmlns:xlf="urn:oasis:names:tc:xliff:document:1.2"

 version="5.0-variant PACBook"

 its:version="2.0">

 <title its:translate="no"/>

 <itemizedlist>

 <listitem>

 <para xlf:id="u00182">Risk of explosion if

 battery is replaced by an incorrect type.

 Use only 12V sealed lead acid battery.</para>

 </listitem>

 <listitem>

 <para xlf:id="u00183">Dispose of used

 batteries in accordance with local and

 national regulations.</para>

 </listitem>

 </itemizedlist>

</important>

Note that you need to declare the its and xliff

namespaces. The namespace URIs are shown in
Example 2, “Markup of translatable elements”.

Note also that documents which use the ITS 2.0 local
attributes must have an its:version attribute set to 2.0.

We’ve created a custom extension to the DocBook
5.0 schema which adds these attributes. The custom
extension is implemented in a Relax NG schema called
pacbook.rng [RELAX NG]. This is available at the

PACBook repository on GitHub. Documents using this
extended schema must have a version attribute set to
5.0-variant PACBook.

SVG files allow attributes in different namespaces, so
there is no need to create a custom schema to allow these
attributes in SVG files.

4.3. Implementation: Tools

We implemented the translation tools using XSLT
stylesheets. These XSLT stylesheets are available from the
PACBook repository on GitHub. The stylesheets can be
divided into three groups:

1. Stylesheets which enable authors to prepare a
document for translation.

2. Stylesheets which translate the source document as
part of the build process.

3. Stylesheets for the management of XLIFF files.

A full description of each XSLT stylesheet is beyond the
scope of this article. A brief overview of each stylesheet is
given here. Full documentation on each of them can be
found in the PACBook repository on GitHub.

4.3.1. Preparation Stylesheets

1. XlateMarkup.xsl. Adds xlf:id attributes to a file.
This stylesheet uses an ITS rules file to identify the
translatable elements. The location of the ITS rules
file is specified by stylesheet parameter. Each xlf:id
attribute is given a unique consecutive numerical
value. The latest numerical value is stored in an XML
file whose location is also specified by stylesheet
parameter.

2. XlateExtract.xsl. Extracts all translatable elements to
an XLIFF file. The XLIFF file can then be sent to
translators.

3. XlateDiff.xsl. Compares a source document to an
existing XLIFF file and creates a new XLIFF file
containing only the new and changed translation
units. This is useful when a source document has
changed.

4. XlateMerge.xsl. Merges complete translations from a
translated XLIFF file into an existing XLIFF file. This
is useful when a XLIFF file comes back from the
translators.

Page 115 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

1 http://ant.apache.org

Figure 8. Build process

Transclusion Translation Validation Conditional
profiling Publication

4.3.2. Build Stylesheets

1. XlateConvert.xsl. Translates the document to a single
language, specified by stylesheet parameter. This
stylesheet uses the linked translation data in the
document to work out which XLIFF file to use when
translating each element.

2. XlateCombine.xsl. Creates inline multilingual
translations. Similar to XlateConvert.xsl; however,
this stylesheet translates the document to each of the
languages specified by the stylesheet parameter and
combines each translation inline.

3. XlateID.xsl. Fixes up xml:id attributes in
multilingual translations. It simply adds the current
language code to the end of all xml:id and link
attributes. This is useful if you use a two-step build
process to create multilingual translations, first
translating the source document into several languages
and then combining the translations into a larger
document.

4.3.3. XLIFF Management Stylesheets

1. XliffDupe.xsl. Removes duplicate translation units
from an XLIFF file. Duplicate translation units can
occur in an XLIFF file that has been extracted from a
source document with repeated identical translatable
elements, e.g. translatable elements that have been
transcluded into more than one location. This
stylesheet performs a deterministic deduplication; if
more than one translation unit has the same ID, the
first is kept and the rest are discarded.

2. XliffPurge.xsl. Removes completed translation units
from an XLIFF file. This is useful when an XLIFF file
has been partially translated, e.g. by an in-house
translation memory, and you want to remove the
translated strings before sending the XLIFF file for
translation.

3. XliffRaw.xsl. Escapes inline markup in an XLIFF file
— preferred by some translation houses.

4. XliffTemp.xsl + XliffTag.xsl. Unescapes inline
markup in an XLIFF file — if required.

5. Xliff2CSV.xsl. Exports an XLIFF file to CSV.
6. XL2Xliff.xsl. Imports from a Microsoft Excel 2003

XML file to XLIFF.

4.4. Solution: Build Process

We use Apache Ant1 build scripts to automate the
transclusion, profiling, translation and publication
process.

We maintained a library of build scripts to handle the
build process. Each major documentation project then
had its own master build script, that called on the build
scripts library to publish the required outputs for each
document in the required languages.

These build scripts have not been released as part of
the PACBook project. A full description of the build
scripts is outside the scope of this article. However, in
most cases the build process carried out the following
steps, as illustrated in Figure 8, “Build process”.

1. Transclude document modules into the assembly
document.

2. If required, translate the complete document to a
single specified language.

3. Validate the translated document.
4. Perform conditional profiling.
5. Perform any final steps and convert to the output

format.

Note

It’s necessary to validate the document after
translation, as translated elements include inline
markup. Any errors in the inline markup will be
copied into the translated document.

We also use separate build scripts to handle the
translation and conversion of images. These are called
from the master build script for a particular
documentation project.

Page 116 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

http://ant.apache.org

2 http://xmlgraphics.apache.org/batik/tools/rasterizer.html
3 http://xmlsoft.org/XSLT/xsltproc2.html
4 http://www.saxonica.com

Within the image build scripts, we use the Apache
Batik SVG Rasterizer2 to convert translated SVG files
into the formats required for publication, e.g. PNG.

There’s no intrinsic reason why the build process has
to be written in Apache Ant. Since each step involves an
XML document, and the output of each step becomes
the input of the next step, the ideal solution is probably
an XProc pipeline [XProc].

5. Conclusion

This article outlined a solution that STANLEY Black and
Decker Innovations developed to enable dynamic
translation of XML documentation using XLIFF files,
and to find the correct translations for each translatable
element when the XML documentation consists of
modular document source files that are transcluded into
a single document.

5.1. Benefits

The solution outlined in this article was used successfully
within STANLEY Black and Decker Innovations over
several years to handle document translation and to
manage XLIFF files. However, as an in-house project, the
XSLT stylesheets have not had the benefit of scrutiny
from outside users.

The solution gives a great deal of freedom to authors
to create their own strategy for associating XLIFF files
with source documents. You could use single monolithic
XLIFF files for all translations across all projects, or
separate XLIFF files for every topic, or anything in
between. Like any solution which allows linking or
transclusion, it’s best for each author to find the right
balance between content reuse and maintainability.

The XLIFF files that were produced by this solution
could be passed directly on to our translation house.
More importantly, completed translations could be
dropped into our documentation source control with
very little intervention. This vastly minimised author
effort, translation errors and the number of files to
maintain. Translation costs were also reduced as common
content and its associated translations could be shared
more easily between several documents.

5.2. Issues

The translation stylesheets currently find the correct
XLIFF file for each translatable element by searching up
through the XML element hierarchy to find the nearest
ancestor element that contains a translation statement.
We’d also like to be able to associate translation
statements with a particular part of the document by
using the rdf:about attribute to refer to an element’s
xml:id attribute. This is not yet implemented.

The markup was originally designed for DocBook
XML and SVG. Some work would be required to adapt
it for different documentation standards, such as HTML
[HTML]. The markup could easily be adapted to work
with HTML 5, perhaps using data attributes. We haven't
investigated how the linked translation data could be
adapted to work with HTML 5.

The stylesheets were written in XSLT 1.0 and EXSLT
[EXSLT]. This is because at first we performed the
transformations using xsltproc3, which doesn’t support
later versions of XSLT. We later migrated to Saxon4 to
perform XSLT transformations, so it should be possible
to migrate the stylesheets to XSLT 2.0 or XLST 3.0,
which may make some of the XSLT code simpler.

The solution as described is designed to work with
large scale, context-free transclusion, i.e. transcluding
chapters or sections, which are then translated after
transclusion. Small-scale, parametrised transclusion, i.e.
transcluding words or phrases, raises an entirely different
set of linguistic problems, which this article does not
attempt to address. However, the PACBook project
includes further markup and stylesheets which attempt
to solve the linguistic problems associated with
parametrised transclusion. For more information, see the
PACBook repository on GitHub.

5.3. Future Development

To finish on a personal note: Stanley Black and Decker
Innovations was wound down at the end of July 2015,
although I’ve continued to do documentation work with
Stanley Black and Decker. I’ve cloned the PACBook
GitHub repository at https://github.com/janiveer/
PACBook, so that development on the project can
continue. I’d be very interested to make contact with
people who are working in similar areas and would be
interested in collaboration. If anyone would like to
contribute, please contact the author.

Page 117 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

http://xmlgraphics.apache.org/batik/tools/rasterizer.html
http://xmlsoft.org/XSLT/xsltproc2.html
http://www.saxonica.com
https://github.com/janiveer/PACBook
https://github.com/janiveer/PACBook

References

[XLIFF] XLIFF Version 1.2.
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html
OASIS XLIFF Technical Committee. OASIS Standard. 1 February 2008. Accessed 2016-03-04.

[gettext] GNU gettext 0.19.7.
https://www.gnu.org/software/gettext/manual/index.html
Free Software Foundation. 28 December 2015. Accessed 2016-04-26.

[DocBook] The DocBook Schema Version 5.0.
http://docs.oasis-open.org/docbook/specs/docbook-5.0-spec-os.html
DocBook Technical Committee. OASIS Standard. 1 November 2009. Accessed 2014-03-09.

[RELAX NG] RELAX NG Specification.
https://www.oasis-open.org/committees/relax-ng/spec-20011203.html
James Clark and Murata Makoto. OASIS Committee Specification. 3 December 2001. Accessed
2016-05-03.

[Mallard] Mallard 1.0.
http://projectmallard.org/1.0/index
Shaun McCance and Jim Campbell. Project Mallard. 23 July 2013. Accessed 2014-03-09.

[SVG] Scalable Vector Graphics (SVG) 1.1 (Second Edition).
https://www.w3.org/TR/SVG/
Erik Dahlström, et al. W3C Recommendation. 16 August 2011. Accessed 2016-03-5.

[IBM] XML in localisation: Use XLIFF to translate documents.
http://www.ibm.com/developerworks/library/x-localis2
Rodolfo Raya. IBM developerWorks. 22 October 2004. Accessed 2016-02-06.

[Tektronix] Improving Localization Process at Tektronix Using XML and XLIFF: A Case Study.
http://www.moravia.com/files/download/
Improving_Localization_Process_at_Tektronix_Using_XML_and_XLIFF.pdf
Anette Hauswirth (Moravia Worldwide) and Bryan Schnabel (Tektronix). 11 January 2008. Accessed
2016-02-06.

[Yelp] Introduction to Mallard: Build System Integration.
http://en.flossmanuals.net/introduction-to-mallard/build-system-integration
FLOSS Manuals. Accessed 2016-02-06.

[XProc] XProc: An XML Pipeline Language.
http://www.w3.org/TR/xproc
Norman Walsh, Alex Milowski, and Henry S. Thompson. W3C Recommendation. 11 May 2010.
Accessed 2014-03-09.

[XSLT] XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt
James Clark. W3C Recommendation. 16 November 1999. Accessed 2014-03-09.

[EXSLT] EXSLT.
http://exslt.org
Jeni Tennison, Uche Ogbuji, Jim Fuller, and Dave Pawson, et al. 14 October 2003. Accessed
2016-05-03.

[ITS] Internationalization Tag Set (ITS) Version 2.0.
https://www.w3.org/TR/its20
David Filip, et al. W3C Recommendation. 29 October 2013. Accessed 2016-03-04.

[BIBO] Bibliographic Ontology Specification Revision 1.3.
http://bibliontology.com

Page 118 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html
https://www.gnu.org/software/gettext/manual/index.html
http://docs.oasis-open.org/docbook/specs/docbook-5.0-spec-os.html
https://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://projectmallard.org/1.0/index
https://www.w3.org/TR/SVG/
http://www.ibm.com/developerworks/library/x-localis2
http://www.moravia.com/files/download/Improving_Localization_Process_at_Tektronix_Using_XML_and_XLIFF.pdf
http://www.moravia.com/files/download/Improving_Localization_Process_at_Tektronix_Using_XML_and_XLIFF.pdf
http://en.flossmanuals.net/introduction-to-mallard/build-system-integration
http://www.w3.org/TR/xproc
http://www.w3.org/TR/xslt
http://exslt.org
https://www.w3.org/TR/its20
http://bibliontology.com

1 https://launchpad.net/~tiheum

Bruce D’Arcus and Frédérick Giasson. Structured Dynamics. 4 November 2009. Accessed
2016-03-05.

[VIVO] VIVO-ISF Ontology version 1.6.
http://vivoweb.org
Open Research Information Framework. 13 December 2013. Accessed 2016-03-05.

[RDF/XML] RDF 1.1 XML Syntax.
http://www.w3.org/TR/rdf-syntax-grammar
Fabien Gandon and Guus Schreiber. W3C Recommendation. 25 February 2014. Accessed
2016-03-05.

[HTML] HTML5.
http://www.w3.org/TR/html
Ian Hickson, Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle Navara, Edward O’Connor,
and Silvia Pfeiffer. World Wide Web Consortium (W3C). 28 October 2014. Accessed 2016-03-05.

[LGPL] GNU Lesser General Public License Version 3.
http://www.gnu.org/licenses/lgpl.html
Free Software Foundation, Inc. 29 June 2007. Accessed 2016-03-05.

Faenza icons by Matthieu James1.

Page 119 of 127

Dynamic Translation of Modular XML Documentation Using Linked Data

https://launchpad.net/~tiheum
http://vivoweb.org
http://www.w3.org/TR/rdf-syntax-grammar
http://www.w3.org/TR/html
http://www.gnu.org/licenses/lgpl.html

Parse Earley, Parse Often
How to Parse Anything to XML

Steven Pemberton

CWI, Amsterdam

Abstract

Invisible XML, ixml for short, is a generic technique for
treating any parsable format as if it were XML, and thus
allowing any parsable object to be injected into an XML
pipeline. Based on the observation that XML can just be
seen as the description of a parse-tree, any document can be
parsed, and then serialised as XML. The parsing can also be
undone, thus allowing roundtripping.

This paper discusses issues around grammar design, and
in particular parsing algorithms used to recognise any
document, and converting the resultant parse-tree into
XML, and gives a new perspective on a classic algorithm.

1. Introduction

What if you could see everything as XML? XML has
many strengths for data exchange, strengths both
inherent in the nature of XML markup and strengths
that derive from the ubiquity of tools that can process
XML. For authoring, however, other forms are preferred:
no one writes CSS or Javascript in XML.

It does not follow, however, that there is no value in
representing such information in XML. Invisible XML
[1] [2], is a generic technique for treating any (context-
free) parsable document as if it were XML, enabling
authors to write in a format they prefer while providing
XML for processes that are more effective with XML
content. There is really no reason why XML cannot be
more ubiquitous than it is.

Ixml is based on the observation that XML can just
be seen as the description of a parse-tree, and so any
document can be parsed, and serialised as XML.

Thus can a piece of CSS such as

body {

 color: blue;

 font-weight: bold;

}

with ixml be read by an XML system as

<css>

 <rule>

 <selector>body</selector>

 <block>

 <property>

 <name>color</name>

 <value>blue</value>

 </property>

 <property>

 <name>font-weight</name>

 <value>bold</value>

 </property>

 </block>

 </rule>

</css>

or as

<css>

 <rule>

 <selector>body</selector>

 <block>

 <property name="color" value="blue"/>

 <property name="font-weight" value="bold"/>

 </block>

 </rule>

</css>

The choice is yours. Similarly an arithmetic expression
such as

a×(3+b)

can be read as

<expr>

 <prod>

 <letter>a</letter>

 <sum>

 <digit>3</digit>

 <letter>b</letter>

 </sum>

 </prod>

</expr>

doi:10.14337/XMLLondon16.Pemberton01Page 120 of 127

and a URL such as

http://www.w3.org/TR/1999/xhtml.html

could be read as

<uri>

 <scheme>http</scheme>

 <authority>

 <host>

 _{www}

 _{w3}

 _{org}

 </host>

 </authority>

 <path>

 <seg>TR</seg>

 <seg>1999</seg>

 <seg>xhtml.html</seg>

 </path>

</uri>

Previous presentations on ixml have centred on the
basics, the design of grammars, and round-tripping back
to the original form. This paper discusses a suitable
parsing algorithm, and gives a new perspective on a
classic algorithm.

2. Parsing

Parsing is a process of taking an essentially linear form,
recognising the underlying structure, and transforming
the input to a form that expresses that structure. The fact
that the resulting structure is represented by a tree means
that converting it to XML is a relatively simple matter.

There are many parsing algorithms with different
properties such as speed, run-time complexity, and space
usage [3]. One of the most popular is LL1 parsing; in
particular, the "1" in this name refers to the fact that you
can parse based only on the knowledge of the next
symbol in the input, thus simplifying parsing.

Consider the following example of a grammar
describing a simple programming language.

A grammar consists of a number of 'rules', each rule
consisting, in this notation, of a name of the rule, a
colon, and a definition describing the structure of the
thing so named, followed by a full stop. The structure
can consist of one or more 'alternatives', in this notation
separated by semicolons. Each alternative consists of a
sequence of 'nonterminals' and 'terminals' separated by
commas. Nonterminals are defined by subsequent rules;

terminals, enclosed in quotes, are literal characters that
have to be matched in the input.

program: block.

block: "{", statements, "}".

statements: statement, ";", statements; empty.

statement: if statement; while statement;

 assignment; call; block.

if statement: "if", condition, "then", statement,

 else-option.

else-option: "else", statement; empty.

empty: .

while statement: "while", condition, "do",

 statement.

assignment: variable, "=", expression.

call: identifier, "(", parameters, ")".

parameters: expression, parameter-tail; empty.

parameter-tail: ",", expression, parameter-tail;

 empty.

This grammar is almost but not quite LL1. The problem
is that the rules 'assignment' and 'call' both start with the
same symbol (an identifier), and so you can't tell which
rule to process just by looking at the next symbol.

However, the language is LL1. This can be shown by
combining and rewriting the rules for assignment and
call:

statement: if statement; while statement;

 assignment-or-call; block.

assignment-or-call: identifier, tail.

tail: assignment-tail; call-tail.

assignment-tail: "=", expression.

call-tail: "(", parameters, ")".

Now the decision on which rule to use can be taken
purely based on the next symbol.

One of the reasons that LL1 parsing is popular, is
that it is easy to translate it directly to a program. For
instance:

procedure program = { block; }

procedure block = { expect("{"); statements;

 expect("}")}

procedure statements = {

 if nextsym in statement-starters

 then {

 statement;

 expect(";");

 statements;

 }

}

procedure statement = {

 if nextsym="if" then ifstatement;

Page 121 of 127

Parse Earley, Parse Often

 else if nextsym="while" then whilestatement;

 else if nextsym=identifier

 then assignment-or-call;

 else if nextsym="{" then block;

 else error("syntax error");

}

etc. (This example is much simplified from what an
industrial-strength parser would do, but demonstrates
the principles).

However, rather than writing the parser as code, you
can just as easily write what could be seen as an
interpreter for a grammar. For instance:

procedure parserule(alts) = {

 if (some alt in alts has nextsym in starters(alt))

 then parsealt(alt);

 else if (some alt in alts has empty(alt)

 then do-nothing;

 else error("syntax error");

}

procedure parsealt(alt) = {

 for term in alt do {

 if nonterm(term) then parserule(def(term));

 else expectsym(term);

 }

}

One disadvantage of LL1 parsing is that no rule may be
left-recursive. For instance, if the rule for 'statements'
above were rewritten as

statements: statements, statement, ";"; empty.

this could not be parsed using LL1. It is easy to see why
if you convert this to code, since the procedure would be:

procedure statements = {

 if nextsym in statement-starts {

 statements;

 statement;

 expect (";");

 }

}

in other words, it would go into an infinite recursive
loop. In the case of a statement list, there is no problem
with expressing it as a right-recursive rule. However,
there are cases where it matters. For example, with
subtraction:

subtraction: number; subtraction, "-", number.

If we rewrite this as

subtraction: number; number, "-", subtraction.

then an expression such as

3-2-1

would mean in the first case

((3-2)-1)

and in the second

(3-(2-1))

which has a different meaning.
To overcome this problem, grammars that are to be

parsed with LL1 methods must have a notation to
express repetition. For instance:

statements: (statement, ";")*.

subtraction: number, ("-", number)*.

which can be translated to procedures like this:

procedure subtraction = {

 number;

 while (nextsym="-") do {

 skipsym;

 number;

 }

}

Another disadvantage of LL1 and related techniques is
that there has to be an initial lexical analysis phase, where
'symbols' are first recognised and classified. If not, then
the level of terminal symbols that are available to the
parser are the base characters, such as letters and digits,
etc., meaning that for instance if the next character is an
"i" you can't tell if that starts an identifier, or the word
"if".

Finally, a problem with these techniques is the need
to understand the LL1 conditions, express a grammar in
such a way that they are satisfied, and the need to have a
checker that determines if the grammar indeed satisfies
the conditions before using it [4] [5].

3. General Parsing

To summarise the advantages of LL1 parsing: it is fast, its
run-time complexity is low, proportional only to the
length of the input, and it is easy to express as a program.

However the disadvantages are that it can only
handle a certain class of restricted languages, it requires
the author of a grammar to understand the restrictions
and rewrite grammars so that they match, and it requires
a lexical pre-processing stage.

To overcome these disadvantages we have to consider
more general parsing techniques.

Page 122 of 127

Parse Earley, Parse Often

One classic example is that of Earley [6], which can
parse any grammar, for any language. (There is actually
one restriction, that the language is context-free, but
since we are only using grammars that express context-
free languages, the issue doesn't apply here).

Although the Earley algorithm is well-known, it is
apparently less-often used. One reason this may be so is
because the run-time complexity of Earley is rather poor
in the worst case, namely O(n³). However, what
potential users who are put off by this number do not
seem to realise is that it is a function of the language
being parsed, and not the method itself. For LL1
grammars, Earley is also O(n), just like pure LL1 parsers.

So what does Earley do?

4. Pseudo-parallelism

Modern operating systems run programs by having many
simultaneously in store simultaneously (242 on the
computer this text is being written on), and allocating
brief periods of time (a fraction of a second) to each in
turn. A program once allocated a slot is allowed to run
until it reaches the end of its execution, its time
allocation runs out, or the program asks to do an
operation that can't be immediately satisfied (such as
accessing the disk). Programs that are ready to run are
added to one or more queues of jobs, and at the end of
the next time slot a program is selected from the queues,
based on priority, and then allowed to run for the next
slot. Because the time slots are so short by human
measure, this approach gives the impression of the
programs running simultaneously in parallel.

Earley operates similarly. Just as the example earlier, it
is an interpreter for grammars, with the exception that
when a rule is selected to be run, all of its alternatives are
queued to run 'in parallel'. When an alternative is given a
slot, it is allowed to do exactly one task, one of:

• note that it has nothing more to do and restart its
parent (that is, terminating successfully)

• start a new nonterminal process (and wait until that
completes successfully)

• match a single terminal (and requeue itself)
• note that it cannot match the next symbol, and

effectively terminate unsuccessfully.
The queue contains each task with the position in the
input that it is at. The queue is ordered on input
position, so that earlier input positions get priority. In
this way only a small part of the input stream needs to be
present in memory.

There is one other essential feature: when a rule starts
up, its name and position is recorded in a trace before
being queued. If the same rule is later started at the same
position, it is not queued, since it is either already being
processed, or has already been processed: we already
know or will know the result of running that task at that
position. This has two advantages: one is pure
optimisation, since the same identical process will never
be run twice; but more importantly, this overcomes the
problem with infinite recursion that we saw with LL1
parsers.

To take an example, suppose the rule statement is
being processed at the point in the input where we have
the text

a=0;

Processing statement mean that its alternatives get
queued: namely if statement, while statement,
assignment, call, and block.

With the exception of assignment and call, all of
these fail immediately because the first symbol in the
input fails to match the initial item in the alternative.

Assignment and call both have as first item
'identifier'. Identifier gets queued (once) and
succeeds with the input 'a', so both alternatives get
requeued. Since the next symbol is '=', call fails, and
assignment gets requeued (and eventually succeeds).

5. The structure of tasks

Each task that gets queued has the following structure:

• The name of the rule that this alternative is a part of
(e.g. statement);

• The position in the input that it started;
• The position that it is currently at;
• The list of items in the alternative that have so far

been successfully parsed, with their start position;
• The list of items still to be processed.

When a task is requeued, its important parts are its
current position, and the list of items still to be
processed. If the list of items still to be processed is
empty, then the task has completed, successfully.

Page 123 of 127

Parse Earley, Parse Often

6. Earley

So now with these preliminaries behind us, let us look at
the Earley parser (here expressed in ABC [7]):

HOW TO PARSE input WITH grammar:

INITIALISE

START grammar FOR start.symbol grammar AT start.pos

WHILE more.tasks:

 TAKE task

 SELECT:

 finished task:

 CONTINUE PARENTS task

 ELSE:

 PUT next.symbol task, position task IN sym, pos

 SELECT:

 grammar nonterminal sym:

 START grammar FOR sym AT pos

 sym starts (input, pos): \Terminal, matches

 RECORD TERMINAL input FOR task

 CONTINUE task AT (pos incremented (input, sym))

 ELSE:

 PASS \Terminal, doesn't match

So let us analyse this code line-by-line:

START grammar FOR start.symbol grammar AT start.pos

All grammars have a top-level start symbol, such as
program for the example programming language
grammar. This line adds all the alternatives of the rule for
the start symbol to the queue.

WHILE more.tasks:

While the queue of tasks is not empty, we loop through
the following steps.

TAKE task

Take the first task from the queue.

SELECT:

There are two possibilities: the rule has nothing more to
do, and so terminates successfully, or there are still
symbols to process.

finished task:

 CONTINUE PARENTS task

The task has nothing more to do, so all the parents of
this task (the rules that initiated it) are requeued.

ELSE:

Otherwise this task still has to be processed.

PUT next.symbol task, position task IN sym, pos

We take the next symbol (terminal or nonterminal) that
still has to be processed, and the current position in the
input we are at.

SELECT:

The next symbol is either a nonterminal or a terminal.

grammar nonterminal sym:

 START grammar FOR sym AT pos

The symbol is a nonterminal, so we queue all its
alternatives to be processed at the current position.

Otherwise it is a terminal:

sym starts (input, pos): \Terminal, matches

 RECORD TERMINAL input FOR task

 CONTINUE task AT (pos incremented (input, sym))

If the symbol matched the input at the current position,
then we record the match in the trace, and requeue the
current task after incrementing its position past the
matched characters.

ELSE:

 PASS

Finally, it was a terminal, but didn't match the next
symbol in the input, and so the task doesn't get
requeued, and so effectively terminates (unsuccessfully).

7. The Trace

The result of a parse is the trace, which is the list, for all
positions in the input where a task was (re-)started, of
the tasks that were (re-)started there. This is the list that
is used to prevent duplicate tasks being started at the
same position, but also effectively records the results of
the parse.

So for instance, here is an example trace for the very
first position in the input (before dealing with any input
characters), for the example grammar:

program[1.1:1.1]: | block

block[1.1:1.1]: | "{" statements "}"

Two rules have been started, one for program, and
consequently one for block.

The positions have been recorded as line-

number.character-number, and here represent the
position where we started from, and the position up to
which we have processed for this rule, in this case, both
of them 1.1.

After the colon are two lists, the items in the
respective rule that have already been processed (none yet

Page 124 of 127

Parse Earley, Parse Often

in this case), and the items still to be processed, the two
separated in this output by a vertical bar.

In parsing a very simple program, namely {a=0;},
after parsing the first opening brace, this will be in the
trace:

block[1.1:1.2]: "{"[:1.2] | statements "}"

signifying that we have parsed up to position 1.2, and
that we have parsed the open brace, which ends at 1.2.

Later still, after we have parsed the semicolon we will
find in the trace

block[1.1:1.6]: "{"[:1.2] statements[:1.6] | "}"

which signifies we have matched the opening brace up to
position 1.2, something that matches 'statements' up to
1.6, and there only remains a closing brace to match.

And finally at the end, we will find

block[1.1:2.1]: "{[:1.2] statements[:1.6] "}[:2.1]

which since the 'to do' list is empty signifies a successful
parse from position 1.1 to 2.1.

Since it is only completed (sub-)parses that we are
interested in, here is the complete trace of all successful
sub-parses for the program {a=0;}:

1 1.1

2 1.2

3 empty[1.2:1.2]: |

4 statements[1.2:1.2]: empty[:1.2] |

5 1.3

6 identifier[1.2:1.3]: "a"[:1.3] |

7 variable[1.2:1.3]: identifier[:1.3] |

8 1.4

9 1.5

10 assignment[1.2:1.5]: variable[:1.3] "="[:1.4]

 expression[:1.5] |

11 statement[1.2:1.5]: assignment[:1.5] |

12 expression[1.4:1.5]: number[:1.5] |

13 number[1.4:1.5]: "0"[:1.5] |

14 1.6

15 statements[1.2:1.6]: statement[:1.5] ";"[:1.6

] statements[:1.6] |

16 empty[1.6:1.6]: |

17 statements[1.6:1.6]: empty[:1.6] |

18 2.1

19 block[1.1:2.1]: "{"[:1.2] statements[:1.6] "}

 "[:2.1] |

20 program[1.1:2.1]: block[:2.1] |

8. Serialising the Parse Tree

So the task of serialising the trace, is one of looking at the
list in the trace for the last position in the input for a
successful parse for the top level symbol of the grammar,
and working from there downwards:

SERIALISE start.symbol grammar

 FROM <start position> TO <end position>

where the procedure SERIALISE looks like this:

HOW TO SERIALISE name FROM start TO end:

 IF SOME task IN trace[end] HAS

 (symbol task = name AND finished task AND

 start.position task = start):

 WRITE "<", name, ">"

 CHILDREN

 WRITE "</", name, ">"

CHILDREN:

 PUT start IN newstart

 FOR (sym, pos) IN done task:

 SELECT:

 terminal sym: WRITE sym

 ELSE:

 SERIALISE sym FROM newstart TO pos

 PUT pos IN newstart

For our example program, this will produce:

<program>

 <block>{<statements>

 <statement>

 <assignment>

 <variable>

 <identifier>a</identifier>

 </variable>=<expression>

 <number>0</number>

 </expression>

 </assignment>

 </statement>;<statements>

 <empty/>

 </statements>

 </statements>}</block>

</program>

The simple task of adapting this to the exact needs of
ixml as described in earlier papers is left as an exercise for
the reader.

Page 125 of 127

Parse Earley, Parse Often

9. Conclusion

The power of XML has been the simple and consistent
representation of data, allowing widespread
interoperability.

What ixml shows is that with a simple front-end,
XML can be made even more powerful by making all
parsable documents accessible to the XML pipeline.

References

[1] Invisible XML.
doi:10.4242/BalisageVol10.Pemberton01
Steven Pemberton. Presented at Balisage: The Markup Conference. Balisage. Montréal, Canada. August 6 - 9,
2013.

[2] Data just wants to be (format) neutral.
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
109-120. Steven Pemberton. XML Prague. Prague, Czech Republic. 2016.

[3] The Theory of Parsing, Translation, and Compiling.
ISBN 0139145567.
V. Alfred Aho. D. Jeffrey Ullman. Prentice-Hall. 1972.

[4] Grammar Tools.
http://www.cwi.nl/~steven/abc/examples/grammar.html
Steven Pemberton. 1991.

[5] A Syntax Improving Program.
doi:10.1093/comjnl/11.1.31
M. J Foster. Computer Journal. 11. 1. 31-34. 1967.

[6] An Efficient Context-Free Parsing Algorithm.
doi:10.1145/362007.362035
Jay Earley.

[7] The ABC Programmer's Handbook.
ISBN 0-13-000027-2.
Leo Geurts. Lambert Meertens. Steven Pemberton. Prentice-Hall. 1990.

Page 126 of 127

Parse Earley, Parse Often

http://dx.doi.org/10.4242/BalisageVol10.Pemberton01
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
http://www.cwi.nl/~steven/abc/examples/grammar.html
http://dx.doi.org/10.1093/comjnl/11.1.31
http://dx.doi.org/10.1145/362007.362035

Charles Foster (ed.)

XML London 2016
Conference Proceedings

Published by
XML London

103 High Street
Evesham

WR11 4DN
UK

This document was created by transforming original DocBook XML sources
into an XHTML document which was subsequently rendered into a PDF by

Antenna House Formatter.

1st edition

London 2016

ISBN 978-0-9926471-3-1

http://antennahouse.com

	XML London 2016
	Table of Contents
	General Information
	Preface
	Dealing with unlimited XML feeds using XSLT 3.0 streaming
	1. Disclaimer
	2. An introduction
	3. Setting up the environment
	3.1. Quick guide to the commandline syntax of Exselt
	3.1.1. Commandling switches for stylesheet invocation
	3.1.2. Commandline switches for stylesheet invocation
	3.1.3. Commandline switches to manipulate streaming behavior

	3.2. Running the examples
	3.3. Boilerplate for the examples

	4. Understanding difference between global context item and initial match
 selection.
	4.1. Relation between streaming, global context item and initial match
 selection

	5. Reading an uninterrupted stream
	5.1. Elaborating on the time-ticker

	6. Challenges with uninterruped streaming
	6.1. Dealing with errors

	7. Processing a twitter feed
	7.1. Getting the Twitter descriptions
	7.2. Processing the result
	7.3. Accumulating data of the Twitter feed
	7.4. Accessing the global context item to set defaults for the accumulator
	7.5. Expanding on the Twitter feed example

	8. Conclusion
	Bibliography

	XML, blockchain and regulatory reporting in the world of finance
	1. Background
	1.1. XML in regulatory reporting
	1.2. Fintech innovation and blockchain
	1.3. Distributed ledgers history
	1.4. What is a distributed ledger?
	1.5. What can you use distributed ledgers for?
	1.6. Blockchain challenges
	1.7. The opportunity for distributed ledgers
	1.7.1. Smart contracts and Distributed Autonomous Organisations

	2. Thesis
	3. Technical Description
	3.1. Infrastructure - Stone Circle
	3.1.1. Stone Circle
	3.1.2. Stoneface

	4. The Stone Circle algorithm
	4.1. Stones
	4.2. Stone Chain

	5. Blockchain operations
	5.1. Adding a new transaction
	5.1.1. File Upload
	5.1.2. Preliminary Chain
	5.1.3. Main Chain

	5.2. Verifying the hash for a given file

	6. Summary and the future

	Pioneering XML-first Workflows for Magazines
	1. Introduction
	1.1. Content-Based Publishing
	Note
	1.2. Design-Based Publishing

	2. Metadata for Magazines
	3. The Impact of the iPad
	4. Mobile Comes of Age
	5. Developing a Magazine Authoring Schema
	Bibliography

	CALS table processing with XSLT and Schematron
	1. Background
	2. Introduction to table validity
	2.1. Context constraints
	2.2. Referential integrity constraints
	2.3. Structural constraints

	3. XSLT processing of CALS tables
	3.1. Row distance calculation
	3.2. Vertical column infringement processing
	3.3. Forward looking morerows processing
	3.4. Caching the table data for use in schematron
	3.5. Using the accumulator data in schematron
	3.6. Performance summary

	4. Schematron processing
	4.1. Schematron phases
	4.2. Issues with schematron granularity

	5. Acknowledgements
	References

	Language-aware XML Aggregation
	1. Motivation
	1.1. Outline

	2. Patch Semantics in a Generative Context
	3. Requirements of a Language-aware Merge
	3.1. Equality of nodes
	3.2. Node Accumulation & Aggregation
	3.3. Result of the analysis

	4. The MergeSchema
	4.1. Building the MergeSchema
	4.2. Nesting of Handlings
	4.3. Reduction of Redundancy
	4.4. Further MergeSchema Features

	5. LeXeMe
	5.1. Preserving the Document Order
	5.2. Limitations to the Implementation

	6. Industrial Experiences
	7. Conclusion
	8. Related Works
	Bibliography

	Linked Data Templates
	1. Introduction
	2. Distributed web as read-write Linked Data
	2.1. A protocol for the web of data
	2.2. Ontology-driven Linked Data
	2.3. LDT design

	3. Application ontologies
	4. Templates
	5. Processing model
	5.1. HTTP bindings
	5.1.1. Example

	6. Future work
	7. Conclusions
	Bibliography

	Scalability of an Open Source XML Database for Big Data
	1. Introduction
	2. Electronic Health Records in XML
	3. Scalability of the XML Database
	3.1. Database Size
	3.2. XQuery Formulation and Indexing
	3.3. Query Execution Time

	4. Extension to Big Data Scale
	4.1. Federated Search
	4.2. Using XML Pipelines
	4.3. Using Iteration Within XForms

	5. Conclusions
	Bibliography

	Best Practice for DSDL-based Validation
	1. Introduction
	2. Analysis of the XML Data Model
	2.1. XLIFF Structure
	2.2. XML Constraints
	2.2.1. Keys and foreign keys
	2.2.2. Functional Dependencies
	2.2.3. Data Types
	2.2.4. Progressive Constraints

	3. Implementing XML Constraints
	3.1. XML Schema
	3.2. DSDL framework
	3.2.1. RelaxNG
	3.2.2. Schematron
	3.2.3. NVDL

	4. Conclusion
	Bibliography

	A journey from document to data
	1. Background
	2. Legacy format
	3. Legacy system
	4. A new hope
	5. Migration
	6. De(v|ta)il
	7. A level of indirection
	7.1. The format
	7.2. XSLT to generate XSLT
	7.3. XSLT to generate Schematron
	7.4. End-to-end example

	8. Conclusion

	Structure-Aware Search of UK Legislation
	1. Introduction
	2. Keyword and Proximity Searches
	3. Element Searches
	4. Range Queries
	5. Counting and Grouping
	6. Conclusion
	Bibliography

	Interoperability of XProc pipelines
	1. Introduction
	2. Interoperability in real world scenarios
	3. transpect’s methodology and its reliance on XML
 Calabash extensions
	4. Obstacles to expect
	4.1. Required and optional steps/features of an XProc processor
	4.2. Implementation-defined features in the W3C Recommendation
	4.3. The proposed extension steps from the EXProc community initiative
	4.4. Processor specific steps and author defined steps in a second language
	4.5. Problems from the underlying technologies in façade-steps

	5. Back to our real world example: What obstacles to expect?
	6. Off to the lab: Found problems
	7. Problems solved: Lifting the burdens of migration
	7.1. Resource management
	7.2. Divergent interpretations of the recommendation
	7.3. User-defined steps in second language
	7.4. A short look at the remaining agenda
	7.5. XProc to the rescue

	8. Conclusions from our projects
	Bibliography

	Using XForms to Create, Publish, and Manage Linked Open Data
	1. Introduction
	2. Numismatic Concepts as Linked Open Data: A Brief Introduction
	2.1. The Data Models
	2.1.1. Thesaurus
	2.1.2. Coin Types
	2.1.3. Physical Coins

	2.2. Gradual Acceptance and Implementation by the Community

	3. Architecture
	3.1. XForms for CRUD operations of RDF
	3.2. Batch Concept Creation
	3.3. Public User Interface

	4. Results
	Bibliography

	Dynamic Translation of Modular XML Documentation Using Linked Data
	1. Introduction
	2. Background
	2.1. Translation File Format
	2.2. Traditional XLIFF Workflow
	2.3. Dynamic Translations
	2.4. Problem

	3. Design
	3.1. Design: Linked Data
	3.2. Design: Markup
	3.3. Design: Tools
	3.4. Related Work
	3.5. Design Decision: Mapping Elements to Translation Units
	3.6. Design Decision: Inline Markup
	3.7. Design Decision: Nested Block Elements

	4. Solution
	4.1. Implementation: Linked Data
	4.1.1. Linked Data for a Document
	4.1.2. Linked Data for an Image
	4.1.3. Linked Data for Document Parts

	4.2. Implementation: Markup
	Note
	4.3. Implementation: Tools
	4.3.1. Preparation Stylesheets
	4.3.2. Build Stylesheets
	4.3.3. XLIFF Management Stylesheets

	4.4. Solution: Build Process
	Note

	5. Conclusion
	5.1. Benefits
	5.2. Issues
	5.3. Future Development

	References

	Parse Earley, Parse Often
	1. Introduction
	2. Parsing
	3. General Parsing
	4. Pseudo-parallelism
	5. The structure of tasks
	6. Earley
	7. The Trace
	8. Serialising the Parse Tree
	9. Conclusion
	References

