

Vivliostyle
Open Source, Web Browser based CSS

Typesetting Engine

Shinyu Murakami
Johannes Wilm

Vivliostyle Inc.
http://www.vivliostyle.com

Typical input/output requirements for
publishing

Input:
● Word processor
● Web-based editor

Output:
● Ebook
● Web
● Print

Formats used in workflow

Input:
● Word processor: DOC/DOCX
● Web-based editor: (X)HTML

Output:
● Ebook: EPUB (XHTML)
● Web: (X)HTML
● Print: PDF

Typical workflows

Some examples:
● DOC → XML → XHTML/PDF
● DOC → LaTeX → PDF (but what about HTML/EPUB?)
● HTML → XML → XHTML/PDF
● HTML → XML → PDF → HTML

Common issues with conversion:
● Labor intensive
● Every conversion is likely causing some problems. More

conversions = more problems

One solution: Switch to XHTML as
main format for long text content

Input:
● Word processor: DOCX/DOC
● Web-based editor: XHTML

Output:
● Ebook: XHTML
● Web: XHTML
● Print: XHTML

Style XHTML for output

Cascading Stylesheets can format XHTML for
different output

● Epub/Web: Existing CSS rules (first release 1996)
● Print:

Additionally three CSS specs:

– CSS Paged media

– Generated Content for Paged Media

– CSS Page Floats

Why has XHTML/CSS for print not
had its breakthrough so far?

There are existing solutions for XHTML/CSS for
print:

● PDFreactor
● PrinceXML
● Antenna House Formatter
● Pagination.JS
● Simplepagination.JS

Renderer-from-scratch solutions

In this category:
● PDFreactor
● PrinceXML
● Antenna House Formatter

Issues:
● High development costs
● Use their own proprietary extensions to do print with CSS (not entirely inter-

operable)
● Bugs/issues different in each browser/rendering engine, not easy to obtain

visual feedback during document creation
● Cannot keep up with web browsers in terms of general features

Browser-as-PDF-renderer solutions

In this category:
● Pagination.JS (sophisticated, requires CSS Regions)
● SimplePagination.JS (simpler, no need for CSS Regions)

Advantages:
● Can run both headless on server and in the browser for direct visual feedback
● Lower development costs as all development is focused on JavaScript addons

on top of existing rendering engines
● The CSS bugs that do exist are the same as those found in regular browsers

Issues:
● Very book specific
● Configuration of all print-related settings through JavaScript function arguments,

not CSS

The way forward

1. Create a Browser-as-PDF-renderer solution
that is

1.generic in nature,

2.reads configuration options by parsing CSS,

3.Follows existing web standards

2.Participate in the creation of print-related
specifications to ensure interoperability
between solutions

Vivliostyle
Current status

Regular browser rendering

Rendering using Vivliostyle.js

Including footnotes, headers and
page numbers

Supports non-Latin text directions

Initial work on W3C specs

But will this work in the long-run?

Common argument:

“Browser makers don't care about print, and the example of
CSS Regions in Chrome shows we cannot trust them to not
remove features we need”

Answer:

“It is true that browser makers may not ever care about pages
or print. But the 'Extensible Web Manifesto' [1] may help us get
primitives useful to us. Even if we do not get them, browsers
already contain enough general non-print features that can be
reutilized for our benefit.”
[1] https://extensiblewebmanifesto.org/

What is the Extensible Web
Manifesto?

● A set of principles of how the creation of web standards should change,
supported by many of the members of the CSS Working Group as well as
the browser creators

● Fundamental change:
– First, stable primitives JavaScript developers should first get access to stable

primitives through defined specs,

– Later specs on a higher level are developed in close feedback cycles with
JavaScript developers who can implement the new features in JavaScript as polyfills

Print specifications
– may end up being implemented in browsers once fully stable,

– or they may only ever be implemented in JavaScript.

Either way, it will allow us to do rendering for print output using common browser
engines

Vivliostyle Inc.

Web: http://www.vivliostyle.com

Email: info@vivliostyle.com
Vivliostyle.js is developed by Toru Kawakubo and based on Peter

Sorotokin's Adaptive Layout implementation

mailto:info@vivliostyle.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

