
XML LONDON 2014
CONFERENCE PROCEEDINGS

UNIVERSITY COLLEGE LONDON,
LONDON, UNITED KINGDOM

JUNE 7–8, 2014

XML London 2014 – Conference Proceedings
Published by XML London
Copyright © 2014 Charles Foster

ISBN 978-0-9926471-1-7

Table of Contents
General Information. 7

Sponsors. 8

Preface. 9

Benchmarking XSLT Performance - Michael Kay and Debbie Lockett. 10

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream -
Abel Braaksma. 24

From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries -
Matt Kohl, Sandro Cirulli and Phil Gooch. 53

XML Processing in Scala - Dino Fancellu and William Narmontas. 63

XML Authoring On Mobile Devices - George Bina. 76

Engineering a XML-based Content Hub for Enterprise Publishing -
Elias Weingärtner and Christoph Ludwig. 83

A Visual Comparison Approach to Automated Regression Testing - Celina Huang. 88

Live XML Data - Steven Pemberton. 96

Schematron - More useful than you’d thought - Philip Fennell. 103

Linked Data in a .NET World - Kal Ahmed. 113

Frameless for XML - The Reactive Revolution - Robbert Broersma and Yolijn van der Kolk. 128

Product Usage Schemas - Jorge Luis Williams. 133

An XML-based Approach for Data Preprocessing of Multi-Label Classification Problems -
Eduardo Corrêa Gonçalves and Vanessa Braganholo. 148

Using Abstract Content Model and Wikis to link Semantic Web, XML, HTML, JSON and CSV -
Lech Rzedzicki. 152

JSON and XML: a new perspective - Eric van der Vlist. 157

 Hello, we’re your
 Enterprise NoSQL

 database
 solution.

Say hello to the new generation.

POWERFUL & SECURE | AGILE & FLEXIBLE | ENTERPRISE-READY | TRUSTED

www.marklogic.com . sales@marklogic.com

Are you stuck �xing

YESTERDAY
Or are you solving for

TOMORROW?
The world’s largest banks use MarkLogic to get a 360-degree view
of the enterprise, reduce risk and operational costs, and provide

better customer service. What are you waiting for?

C

M

Y

CM

MY

CY

CMY

K

MarkLogic- DataLeadershipEvent-A4-v01b.pdf 1 11/21/2013 3:29:18 PM

Intuitive web-
based XML-editor

Xeditor allows you to intuitively

create complex and structured

XML documents without any

technical knowledge using a

configurable online editor simi-

lar to MSWord with real-time

validation.

www.xeditor.com

XML is not dead, but alive “ ”

www.3ksoftware.com
www.xmlidc.com
info@3ksoftware.com

3KsoftwareUSA, Inc.
Suite 375,
3 Twins Dolphin Drive,
Redwood City, CA, 94065

3Ksoft
3F, Hyundai Topics Bldg,
44-3, Bangi-dong,
Songpa-gu, Seoul, Korea

1 System N System

DB
Model

XML
Content
Model

Web Service

Search

EAI

Security

Big Data

N-Screen

Web App

Legacy Technology

SOAXML™ Technology

XML
View

Resume

P DB P
HTML
View

Resume

E DB
XML
View

Name:
Address:
HP:

Name:
Address:
HP:

Web
Programmer

End User

Structured Data

Structured /
Unstructured Data

General Information
Date

Saturday, June 7th, 2014
Sunday, June 8th, 2014

Location
University College London, London – Roberts Engineering Building, Torrington Place, London, WC1E 7JE

Organising Committee
Kate Foster, Socionics Limited
Dr. Stephen Foster, Socionics Limited
Charles Foster, MarkLogician (Socionics Limited)

Programme Committee
Abel Braaksma, AbraSoft
Adam Retter, Freelance
Charles Foster (chair), MarkLogician
Dr. Christian Grün, BaseX
Eric van der Vlist, Dyomedea
Jim Fuller, MarkLogic
John Snelson, MarkLogic
Lars Windauer, BetterFORM
Mohamed Zergaoui, Innovimax
Norman Walsh, MarkLogic
Philip Fennell, MarkLogic

Produced By
XML London (http://xmllondon.com)

Sponsors

Gold Sponsor

• MarkLogic - http://www.marklogic.com

Silver Sponsors

• Xeditor - http://www.xeditor.com

• 3Ksoftware - http://www.3ksoftware.com

• oXygen - http://www.oxygenxml.com

Bronze Sponsors

• Antenna House - http://www.antennahouse.com

• Saxonica - http://www.saxonica.com

http://www.marklogic.com
http://www.xeditor.com
http://www.3ksoftware.com
http://www.oxygenxml.com
http://www.antennahouse.com
http://www.saxonica.com

Preface
This publication contains the papers presented during the XML London 2014 conference.

This is the second international XML conference to be held in London for XML Developers – Worldwide, Semantic
Web and Linked Data enthusiasts, Managers / Decision Makers and Markup Enthusiasts.

This 2 day conference is covering everything XML, both academic as well as the applied use of XML in industries
such as finance and publishing.

The conference is taking place on the 7th and 8th June 2014 at the Faculty of Engineering Sciences (Roberts
Building) which is part of University College London (UCL). The conference dinner and the XML London 2014
DemoJam is being held in the Jeremy Bentham Room at UCL, London.

The conference is held annually using the same format, with XML London 2015 taking place in June next year.

— Charles Foster
Chairman, XML London

1 XT-Speedo - https://github.com/Saxonica/XT-Speedo/

Benchmarking XSLT Performance
Michael Kay

Saxonica

Debbie Lockett

Saxonica

Abstract

This paper presents a new benchmarking framework for
XSLT. The project, called XT-Speedo1, is open source and we
hope that it will attract a community of developers. The
tangible deliverable consists of a set of test material, a set of
test drivers for various XSLT processors, and tools for
analyzing the test results. Underpinning these deliverables is
a methodology and set of measurement objectives that
influence the design and selection of material for the test
suite, which are also described in this paper.

1. Objectives and Motivation

Performance of XSLT is, of course, important, though
we need to qualify that by pointing out that performance
is not the only thing that matters.

For Saxonica as a developer of one of the leading
XSLT engines, performance is not actually our number
one objective. Our first objective is standards
conformance; the second is usability, and performance
comes third. This means that we will (almost!) never
sacrifice standards conformance in order to achieve
improved performance, and we are prepared to take a
performance hit in order to improve usability, for
example by maintaining extra run-time information that
is needed only for diagnostics when things go wrong.

We choose these priorities because we think this is
what the market wants. We are probably rather obsessive
about corner cases when it comes to standards
conformance, but being obsessive about cases that most
users don't care about means that we almost always get
things right in the more common cases where users care a
lot. Standards conformance is typically a major objective
for vendors who can't take their place in the market for
granted, and for Saxonica, achieving standards
conformance was what gave us a place at the top table of
XSLT vendors alongside the likes of Microsoft and IBM.

As for usability, we believe that far more users notice sub-
standard usability than notice sub-standard performance.
Most users only care that performance is good enough,
not that it is the best available. If one processor runs a
transformation in 0.1s and another does the same work
in 0.2s, most users won't notice the difference. They are
much more likely to end up using your product because
they discover, from experience, that its error messages are
more helpful.

But even though performance is our third priority,
it's still extremely important. Saxonica has users running
some seriously impressive workloads, and when we get
things wrong, they notice.

In measuring performance, our main objective is to
avoid regression between successive releases. Such
regression is probably the most obvious source of
complaints; the last thing users want if they move
forward to a new release is to find that their particular
workload runs more slowly. Although we have always
included some performance tests in our standard quality
assurance checklist before release, experience has shown
that these are inadequate, and too many mistakes slip
through.

Another significant objective is to be able to test the
impact of product changes. When we introduce a change
(perhaps a new optimization) that is designed to improve
performance,we will often do some ad-hoc tests to ensure
that the particular test case it is tackling shows the
expected improvement. But assessing the overall impact
of the change is much more difficult.

doi:10.14337/XMLLondon14.Kay01Page 10 of 162

https://github.com/Saxonica/XT-Speedo/

1 A description of the XSLTMark benchmark, including an acknowledgement of the problems in using it for cross-product comparisons
http://www.xml.com/pub/a/2001/03/28/xsltmark/index.html

2 A set of XSLTMark results from 2001 http://www.xml.com/pub/a/2001/03/28/xsltmark/results.html
3 XSLTMark II http://xsltbenchmarking.masicek.net

Some readers may be surprised that we do very little
competitive benchmarking of our own product against
products from other vendors. We did more of this in the
early days, before Saxon became well established. One
explanation is that the primary reason people adopt
Saxon has always been that they want access to XSLT
2.0, and are switching from a product that only supports
XSLT 1.0. In that situation, the only thing they want to
be sure of is that the change will not cause an
unacceptable performance hit. We've had lots of positive
feedback from users making this transition, and very
little negative feedback, so we haven't felt any pressure to
improve our competitive position, although we have
always been aware that some of the competitors'
products have excellent performance.

As regard competitive performance, it's worth
emphasizing that this is not a race in which the winner
takes all. Firstly, speed is not a one-dimensional metric,
so there will never be a single winner regardless what you
choose to measure. Secondly, being within 5% of the
leader is good enough for all practical purposes, since if
two products differ only by 5% in performance, then
users will choose between the products based on other
factors. If a user has a performance problem, it's most
unlikely that a 5% improvement will solve it.

2. Previous work

There have been previous benchmarking environments
for XSLT.

An early attempt was the XSLTMark benchmark
from Datapower, which later became part of IBM.
Datapower offered this as a free download from their web
site for a number of years, but it disappeared at around
the time of the IBM acquisition. The licensing terms
were unspecified, so although we (and no doubt others)
have continued to use this benchmark in-house, we have
no authority to make it public. XSLTMark suffered a
common problem when comparing results across
different products: different drivers measured different
things. For some products, the cost of compiling the
stylesheet was included in the execution cost, for others it
was discounted. This made product comparisons fairly
useless, but it was still a useful tool for comparing
successive releases of the same product.12

XSLT processors have come on a long way since
2001, but it's very hard to find any more recent data that
compares their performance.

Another benchmarking effort that appeared on the web
and then disappeared leaving very little trace was
Bumblebee. The main problem with this effort was that
the drivers were not open source, and there was
insufficient information provided to create your own
drivers. We used it in Saxonica for a while, but when we
found that we couldn't update or tweak the drivers to
experiment with different settings, we abandoned it.

Sarvega published results of a benchmarking study in
2003, but the results were only available on a commercial
basis, and the tools needed to reproduce the results were
not made available at all.

A more recent effort is XSLTMark II3, produced by
Viktor Mašíček as an M.Sc thesis at Charles University,
Prague. Mašíček is concerned to measure more than just
performance, but although he recognizes the importance
of other qualities such as usability, he does not attempt
any scientific measurement. He also on occasions fails to
distinguish correctness from usability, for example when
he commends XSLT 1.0 processors that reject XSLT 2.0
constructs rather than ignoring them, which might well
be the right thing to do from a usability perspective, but
happens to be non-conformant with the XSLT 1.0
specification.

On performance, Mašíček's reported results suffer
from a failure to distinguish the different factors that
contribute to execution time. In the case of Java
processors, he makes insufficient effort to discount the
effects of Java VM warm-up time; for example, he
reports Saxon-HE 9.4 as running three times slower than
Saxon 6.5, an effect which can only be explained by the
fact that Saxon-HE is larger and therefore takes longer to
load. For some workloads this start-up cost matters to
users, but for production web sites running thousands of
transformations per hour, as well as for one-off
transformations of very large documents, start-up cost is
irrelevant. The same arguments apply to the cost of
stylesheet compilation; Mašíček makes no attempt to
distinguish compilation time from execution time, but
for many workloads, compilation time can be ignored.

Another problem with Mašíček's benchmark is that
he runs every processor in the same environment (PHP).
For processors that are not designed to run in this
environment, this creates an artificial overhead. For
example, to invoke Java processors he uses what is
essentially a command-line invocation. The overhead of
invoking a Java processor in this way swamps the actual
transformation cost, so the measurements are entirely
untypical of what can be achieved in a native Java
environment.

Page 11 of 162

Benchmarking XSLT Performance

http://www.xml.com/pub/a/2001/03/28/xsltmark/index.html
http://www.xml.com/pub/a/2001/03/28/xsltmark/results.html
http://xsltbenchmarking.masicek.net

1 XMark benchmark http://www.xml-benchmark.org/index.html
2 XQuery benchmarks survey http://leo.saclay.inria.fr/events/EXPDB2006/PAPERS/Afanasiev.pdf

Nevertheless Mašíček's work is valuable, in particular the
collection of stylesheets that he has collected, and our
work builds on this.

Other relevant work includes benchmarks for
XQuery and XPath. For XQuery the XMark benchmark1

is the best known. This includes a test data generator
which can be used to create data files of different sizes,
which therefore enables measurement of how query
performance scales with data size. This is particularly
useful to enable comparison of strategies for join
optimization in different products. We have used this
benchmarking framework extensively in Saxonica, and
have adapted some of the 20 queries to XSLT, but they
are not very typical of real-world XSLT workloads and
this limits their usefulness.

A more recent paper from 2006 surveys XQuery
benchmarks2. This paper contains much useful discussion
of the characteristics of a good benchmark and the kind
of information it can yield if analysed intelligently; in
particular, the importance of determining the way in
which performance varies (for example, with document
size or query complexity) rather than collecting simple
numbers.

3. The design of the XT-Speedo
benchmark

The XT-Speedo benchmark has been designed to
measure the performance of different products for a
broad range of test transformations. In particular we have
chosen to measure the time for three processes (where
possible): compiling the stylesheet, file to file transform,
and tree to tree transform. Since different vendors may
have varying priorities, and since it is interesting in itself
to see the difference in performance for these different
parts of the transform process, we considered taking
these three measurements to be useful.

We have produced XT-Speedo benchmark packages on
the Java and .NET platforms, and in C/C++, to run
different test drivers for the different products which are
available in different environments. For each
environment, the packages each contain a class to run the
benchmark tests (called Speedo on Java, and RunSpeedo
on .NET), and an abstract class called IDriver, which is
subclassed for each product-under-test. The IDriver
interface defines methods to compile a stylesheet, to load
a schema, to build a source document, and to run tree-
to-tree or file-to-file transformations.

Not every product supports all these options. Some,
obviously, are not schema-aware. Some, such as Altova's
RaptorXML, do not provide an explicit interface to
compile the stylesheet (perhaps they rely on caching
instead). Some, such as James Clark's XT, do not separate
tree construction from transformation. A further
complication is that we want to compare the
performance of all processors when running XSLT 1.0
tests, but we are also interested in XSLT 2.0 and XSLT
3.0 performance, so we have to accommodate the fact
that for different processors, we may have different
subsets of the measurements, available over different
subsets of the tests. We therefore use XML-based catalog
files to control which tests are run, using which
processors.

The design of the benchmark is illustrated by the
following schematic:

Page 12 of 162

Benchmarking XSLT Performance

http://www.xml-benchmark.org/index.html
http://leo.saclay.inria.fr/events/EXPDB2006/PAPERS/Afanasiev.pdf

Figure 1. Architecture diagram

The main command line input for the Speedo
benchmark (i.e. input for the 'run' method of the Speedo
class) is the tests catalog file and the drivers catalog file.
An option is also provided to supply the location of the
output directory for result files. Further options are
provided to select which test cases from the catalog to use
— primarily by providing a regular expression name
pattern, but also for example by choosing to skip tests
which are slow.

The tests catalog ("catalog.xml") identifies a collection of
test cases, gleaned from various sources, plus some newly
created ones. Each test case is a particular transformation
for the product to process. The catalog contains a
description of the test transformation, links to the source
XML file and XSL stylesheet (and in some cases, an XSD
schema), and an XPath assertion to be applied to the
output of the transformation to check the results are
plausible. (It's not a primary aim of this exercise to check
the conformance of processors to the specification; but
we want to weed out results that are wildly out, especially
cases where the processor fails to perform the
transformation at all.)

Page 13 of 162

Benchmarking XSLT Performance

The drivers catalog ("drivers.xml") contains the driver
data, including: name, implementation class,
implementation language, XSLT version. This is where
initialization option settings and test run options can be
added. In the case of Saxon, we might have several entries
in the drivers catalog that run Saxon with different
configuration options (optimization on or off, bytecode
generation on or off, and so on), allowing us to assess the
impact of these configuration switches. The drivers
catalog can also indicate that particular tests should not
be run with a particular driver (because they are known
to crash, for example, or because they are excessively
slow.)

Because different processors run in different
environments, collecting a full set of data for all
processors requires more than one program run. As a
minimum, there will be three runs, one for Java
processors, one for .NET, and one for C/C++. But if we
want to measure different versions of Saxon, or
performance on different hardware or operating
systems,then additional runs will be needed. (We have
experimented with a mechanism that calibrates the
hardware speed and adjusts performance measurements
to compensate for differences. However, this mechanism
is not fully operational.)

Each execution of the benchmark runs all the selected
tests from the test catalog (as selected by the specified
configuration), and produces one XML results document
per driver. For each test case, measurements are taken for
the times (in milliseconds) to perform three processes:
compiling the stylesheet, file to file transform, and tree to
tree transform. Each test case is run multiple times (by
default set at 20) and the average times for these
processes are taken, in order to eliminate warm-up time
and aberrations caused by activities such as garbage
collection. (For Java in particular, hotspot compilation
causes dramatic improvements in execution time the
more often the code is run, with performance often
stabilizing only after a minute or so.) These average
process times are recorded in the result file, indexed by
the test cases, where the level of success of the test run is
also recorded - 'success' if the run is fine, 'wrong answer'
if transforms take place but the assertion test fails (so the
transformation result is not as expected), and 'failure' if
the transformation fails at some point.

A selected subset of these result files can then be collated
using the "report.xsl" XSLT stylesheet. Using the results
XML files as input, this stylesheet produces HTML
documents (including SVG graphics) to view the results.
The results tables give times relative to a selected baseline
driver (chosen in the drivers catalog). The main overview
page contains, for each driver, a measure of the overall
performance relative to the baseline for each of our three
processes: file to file transform, tree to tree transform,
and stylesheet compile. The formatted report for each
driver contains tables with rows for each test case, giving
the relative times, and actual times, for the three
processes.

As our "bottom-line" metric we use the sum of the
process times (over all tests) for the driver, relative to the
sum for the baseline driver. This of course gives greater
weighting to tests which take longer; a different choice of
computation could well give a different picture. We also
give the minimum and maximum values of the relative
times for the individual tests, to give an idea of the
spread. We fully recognize that this is highly arbitrary;
there are other ways of doing the aggregation that would
give different results. XSLTMark, for example, divides
execution time by source document size to give a
transformation speed measured in bytes per second, and
averages across these speeds. In some cases, as we will see,
relative performance of different processors varies
substantially from one test to another, and because our
test collection makes no serious attempt to be
representative of any real workload, an average across all
the tests can fairly be dismissed as meaningless. In
defence, users of the benchmark are free to substitute a
different set of tests that reflects their own choice of
workload more accurately.

Page 14 of 162

Benchmarking XSLT Performance

4. Test Data

The selection of data files and stylesheets used in the
benchmark should not be regarded as being fixed in
concrete. XT-Speedo is intended as a framework for
measuring XSLT performance, not primarily as a set of
test programs which claim any kind of canonical status.
The variability of results across the different test data sets
often provides more information than any aggregate
numbers. The data included in the benchmark is a
motley collection, including some things that just
happened to be available (for example, files from the
original Datapower XSLTMark benchmark), some that
we wrote specially because we wanted to investigate a
particular area of performance, some that we have used
in the past to study particular performance issues
reported by Saxonica customers, and also a translation of
the XMark XQuery benchmark, allowing us to see how
XSLT and XQuery performance compare. The XMark
data is particularly useful because it allows one to study
how performance varies as a function of the size of the
source data set.

Any attempts to aggregate results over all the tests are
inevitably flawed. While a figure that averages
performance across a range of different tasks is likely to
be more reliable than a figure for one task alone, it would
be quite wrong to assume that the tests in this
benchmark collection are representative of any real
production workload. Although they are nearly all real
programs designed to perform (or at least emulate) a
useful task rather than to stress obscure corners of the
processor, some of them perform rather untypical tasks,
such as parsing XPath expressions.

It is therefore quite legitimate, and positively
encouraged, to run the XT-Speedo benchmark with
different data files that better characterize the workload
for which performance data is required. Unlike some
classic industry benchmarks such as TPC, we have no
aspiration to define a performance metric that vendors
can publish on billboards to proclaim that their product
is 32.87% faster than the competition. Rather, the
benchmark is a resource that anyone can use to compare
different workloads in different environments in any way
that suits their purposes.

5. The Problem of Bias

We are acutely aware that our results are not impartial.
We know that our own motivations are divided between
wanting to know the truth about how our product rates
against the competition, and wanting our own product
to perform well.

The problem of bias arises from several sources:
requirements, expertise and motivation.
• Requirements: in designing the benchmark, we are

choosing what to measure, and the metrics we choose
reflect our assumptions about what we think is
important. For example, we consider compile-time
performance much less important than run-time
performance. But others might have different
priorities. Similarly, all our measurements focus on
latency rather than throughput (the time to execute
transformations in a single thread). We quickly found
that one particular processor, Altova RaptorXML,
fares very badly on this metric, because it is designed
to execute in an HTTP server environment and is
clearly optimized for throughput rather than latency.
The fact that it scores very badly on our
measurements does not mean it would score equally
badly if we chose different metrics.

• Expertise: we know how to get the best possible
performance out of our own processor, but we have
far less knowledge of the products of our competitors.
We've seen third-party benchmarks that ran Saxon in
hideously inefficient ways (for example, taking the
input from a DOM tree, which can increase
transformation time by a factor of ten), and we know
that we are at risk of making equally bad choices
when running other products that we are less familiar
with.

• Motivation: we naturally want to get the best possible
results for our own product, so if the results don't
look good, we will instinctively try again with
different settings. We don't have the same motivation
for other products, so we are less likely to make the
effort. To take an example of this effect, when we
compared Saxon/C against libxml our first attempts
showed Saxon/C in a very poor light. We naturally
investigated, and found a gross error in the way the
measurements were being computed. Can we honestly
say that we would have investigated as thoroughly if
the results had been the other way around?

The bias is there despite our best intentions. We want
good data on our competitors' products; we don't want
to deceive ourselves. Our best defence against bias is to
make the benchmark open source. Our hope is that we
will get contributions from others whose bias is different,
in particular, who will apply the same diligence to other
products as we apply to our own. Meanwhile, however,
the biased results are the only ones available.

Page 15 of 162

Benchmarking XSLT Performance

Because we know there is bias, we refrain from
publishing detailed data for our competitors' products in
this paper. The results are available on the web site, where
they can be corrected if they turn out to be wrong. They
will also be presented in the conference, but as a snapshot
of current results, not as part of the permanent record.

The problem of bias arises far less when we are
comparing our own product, Saxon, running in different
versions and configurations. As explained earlier, this is
in fact our primary motivation for producing the
benchmark. So in the next section these results can be
seen as more impartial than the competitive rankings.

6. Selected Results

In this section we will present some of the results we have
obtained by running the benchmark, and our analysis of
these results. We focus on five particular comparisons: an
overall comparison of all processors on the Java platform
(all of which, with the exception of Saxon, are XSLT 1.0
processors); a comparison of Saxon on the Java
and .NET platforms; a comparison of Saxon with
XMLPrime, this being the only other XSLT 2.0
processor we were able to study; a comparison of Saxon
9.5 with a current development snapshot of the
forthcoming Saxon 9.6 release.; and a comparison of the
new Saxon/C processor with libxslt.

6.1. Ranking of Java Processors

A number of XSLT processors have been developed for
the Java platform: as well as Saxon, there are several
versions of Xalan, including the XSLTC processor which
was developed separately but is now bundled with the
Xalan distribution; there is James Clark's original XT
processor; there is the no-longer-available jd.xslt, and
there is IBM's commercial Websphere processor. Of
these, Saxon and Websphere are the only two processors
that support XSLT 2.0, and the only two that are still
actively developed. For commercial reasons we have not
been able to include Websphere in our study. A
comparative study of Java processors is therefore confined
to XSLT 1.0, and the interesting question for us is how
Saxon stacks up against products that have been around
and stable for many years.

Here are the XT-Speedo results we are currently
getting, using Saxon EE 9.5 as the baseline (recall that we
do not get tree to tree transform times for XT).

Table 1. Results overview table for Java drivers

 Times relative to SaxonEE-9.5-J driver (smaller values represent faster times)

Driver File to file transform Tree to tree transform Stylesheet compile

Saxon-6 1.108
min = 0.271, max = 4.33

3.915
min = 0.178, max = 429.71

0.204
min = 0.081, max = 0.779

SaxonHE-9.5-J 1.076
min = 0.512, max = 3.329

1.279
min = 0.325, max = 98.844

0.212
min = 0.083, max = 1.802

Xalan 2.452
min = 0.467, max = 13.379

8.911
min = 0.37, max = 568.723

0.283
min = 0.1, max = 1.284

XSLTC 0.989
min = 0.273, max = 3.407

3.142
min = 0.182, max = 257.989

0.544
min = 0.203, max = 3.195

XT 1.398
min = 0.336, max = 7.717

NaN
min = NaN, max = NaN

0.23
min = 0.088, max = 0.886

Page 16 of 162

Benchmarking XSLT Performance

The tree-to-tree transformation times shown here
illustrate the difficulty of getting good measurements on
the Java platform. For all processors, the "max" figure
indicates the presence of outliers in the results that create
a completely distorted bottom line. If these rogue results
are excluded, the figures end up being much closer to the
file-to-file timings. So we'll concentrate on the file-to-file
numbers as they appear to show a more regular picture.

These figures show Saxon-EE performing 7% faster
than Saxon-HE on average, which is not as large a
margin as we would like given the investment we have
made in features such as optimization and byte-code
generation, but perhaps reflects that these advanced
techniques make little impression on straightforward
transformations which dominate the test suite. The 10%
edge over the old Saxon 6 processor (which implemented
XSLT 1.0 only) is also a satisfactory outcome. In fact
these figures mask the fact that there are a few transform
times where Saxon-EE dramatically outperforms the
other processors because of the way in which it optimizes
joins: for the test xmark-q8-4 Saxon-EE is almost 100
times faster than Saxon-HE (most processors have
quadratic performance on this test, which Saxon-EE
optimization reduces to near-linear).

James Clark's original XT processor is now of largely
historic interest, but in the early years it was noted for its
lightning-fast speed, so it is good to note that we are now
40% faster.

Saxon's very significant advantage over the
interpretive version of Xalan should not surprise anyone
who has compared the two. The fact that Xalan, being
the default XSLT processor in Java, is both the most
widely-used and the slowest of these products by a
significant margin, tends to reinforce the message at the
beginning of this paper that coming first in the
performance race brings no guarantee of market
leadership.

The only product ahead of Saxon-EE is the XSLTC
processor (which is bundled with Xalan). This processor
makes heavy use of bytecode generation and the results
appear to demonstrate that there are still advances to be
made in this area. (Saxon-EE also uses bytecode
generation, but primarily for the XPath part of the
processing. Most of our measurements of the effect of
bytecode generation have been with XQuery, where we
generally record a boost of around 25%, but with wide
variations. It is not surprising that the speed-up we get
for XSLT should be lower.)

Let's take a closer look at the comparison of Saxon-
EE with XSLTC results (see charts below). Here we see in
more detail that for file to file transform, in the majority
of tests XSLTC is just a few percentage points better than
Saxon-EE, with XSLTC generally slightly faster (with
just a few exceptions). For many of these tests, especially
the XMark queries which dominate the right-hand half
of the chart, the actual performance for file-to-file
transformation is dominated by parsing and serialization
costs, and it appears to be in these areas that XSLTC has
the edge.

Tests whose results are outside the 95th percentile range
are shown with an arrow to indicate they are off the scale.
The actual numbers are available in the detailed results
listings. In this particular example, the outliers are not
extreme; for all tests the ratio between XSLTC speed and
Saxon-EE speed is somewhere between 0.25 and 4.

Figure 2. XSLTC file to file transform speeds relative to SaxonEE-9.5-J

1

1/2

Faster

Baseline speed

For tree-to-tree transformation we see a very different
picture (below). For these transformations the times for
XSLTC are generally close to Saxon or a little slower on
the left-hand part of the chart where source documents
are mainly rather small, but on the right-hand side,
where most of the source documents are 1-4Mb in size,

XSLTC is significantly slower than Saxon-EE. What isn't
immediately obvious from these charts is that for Saxon,
the tree-to-tree time for the larger source documents is a
tiny fraction of the file-to-file time (in one typical
example, 0.24ms rather than 20.4ms), but in the XSLTC
case the timings for the two scenarios are much closer

Page 17 of 162

Benchmarking XSLT Performance

(10.1ms compared with 16.2ms). We suspect that we are
running XSLTC sub-optimally here by providing a
DOM as input. Perhaps it is not using the source tree

that we supply directly, but rebuilding it internally into
its own format.

Figure 3. XSLTC tree to tree transform speeds relative to SaxonEE-9.5-J

1

24

47

70

Slower

Baseline speed

Our final metric is for stylesheet compile time. Here the
figures are fairly uniform across all tests, with XSLTC

compiling in around half the time of Saxon-EE on
average:

Figure 4. XSLTC stylesheet compile speeds relative to SaxonEE-9.5-J

1

1/2

1/3

1/4

Faster

Baseline speed

Both Saxon-EE and XSLTC compile to bytecode, so it is
not surprising that both are significantly slower at
compile time than the products that are pure
interpreters. It is noteworthy that Saxon-EE takes
significantly longer to compile the stylesheet than all the
other processors. We could argue that this is by design;
we deliberately do as much work as possible at compile
time in order to improve run-time execution speed. On
the other hand, there are workloads (the DocBook
rendering of this conference paper is an example) where
compiling the stylesheet takes longer than the actual
transformation, and there is definitely an opportunity
here for Saxon to do better.

The conclusion we can draw from these results is that
while Saxon is not always the fastest, it performs well
overall. In particular, for anyone wanting to move
forward to XSLT 2.0 for the functionality and
productivity benefits it offers, or who is attracted to
Saxon because the product is actively developed and
supported, performance is not an obstacle. For some
workloads, users have seen significant performance
benefits by moving to Saxon, but as the numbers show,
this cannot be expected to apply in every case.

The other apparent result, subject to confirmation, is
that the area where Saxon-EE has most improvement
potential is in parsing and serialization, not in
transformation proper. There are a great many workloads
where XML parsing (of the input) and serialization (of
the output) dominate the actual transformation time.

6.2. Comparing Saxon on Java with Saxon
on .NET

Saxon on .NET starts with a disadvantage: the product is
written in Java, and then cross-compiled using the
IKVMC compiler to the IL code supported on the .NET
platform. This inevitably introduces a performance
penalty.

The question for some time has been how large this
penalty is, and we have had conflicting reports on this
over the years. Sometimes we see an overhead of around
25%, but sometimes the .NET performance is reported
to be five times slower.

Here are the XT-Speedo results we are currently
getting: File to file transform relative time average 3.829
(min 1.136, max 8.716), tree to tree transform relative
time average 3.598 (min 0.239, max 8.938), stylesheet
compile relative time average 2.386 (min 0.168, max
3.454).

Page 18 of 162

Benchmarking XSLT Performance

Figure 5. SaxonHE-9.5-.NET file to file transform speeds relative to SaxonHE-9.5-J

1

3

5

7

Slower

Baseline speed

Figure 6. SaxonHE-9.5-.NET tree to tree transform speeds relative to SaxonHE-9.5-J

1

3

5

Slower

Baseline speed

Figure 7. SaxonHE-9.5-.NET stylesheet compile speeds relative to SaxonHE-9.5-J

1

1/2
Faster

Baseline speed

It is clear that generally Saxon on .NET is indeed
running transforms 3 to 4 times slower than on Java,
with some variation for different tests. Perhaps
surprisingly, Saxon on .NET sometimes performs tree to
tree transforms faster than on Java. By looking at the
table of results (not shown here) we see that .NET speeds
for tree to tree transform are only ever faster for
transforms which are very quick - those which take less
than 2ms (but .NET is not uniformly faster for these).
Generally performance worsens for longer transforms,
but we may note that in general the scaled pairs of xmark
tests have similar relative times.

The chart for compile times is particularly
remarkable, because most of the compilations are actually
faster on .NET, but the average is still slower: the
explanation for this paradox is that most of the
stylesheets are very small, but one test (on the far left of
the chart) compiles the DocBook stylesheets, which are
much larger than all the others combined. Again the
performance ratio seems worse for longer runs. One
possibility we need to explore is that we are measuring
different things on the two platforms (what are the
precise semantics of the instrumentation APIs we are
using?), or that the measurements are somehow suffering
from rounding errors.

We do not yet fully understand the reasons for the
discrepancies in these results. We have established that
there are no significant differences in the code path with
Saxon, and we know that the overhead imposed by
IKVMC is not more than 25% or so. So far, our
investigations suggest that the problem lies somewhere in
the OpenJDK library. Saxon on .NET uses the
OpenJDK java library, cross-compiled to .NET using
IKVMC, and the data makes us suspect that there are
parts of this library that perform significantly worse than
the equivalent library delivered with the Oracle/Sun
JDK. We have confirmed this by building Saxon on the
Java platform to run with OpenJDK rather than with the
Oracle/Sun libraries. Hopefully, armed with these
measurements, we can identify a specific cause within the
OpenJDK and eliminate it. As always, good
measurement data is the prerequisite to solving
performance problems, and we now for the first time
have that data.

Page 19 of 162

Benchmarking XSLT Performance

6.3. Comparing Saxon with XMLPrime

For various reasons (which would make an interesting
subject for another talk), none of the XSLT 2.0
processors currently on the market are pure open source
products. Products from IBM, Intel, and MarkLogic are
purely commercial, while those from Saxonica, Altova,
and XMLPrime provide limited free versions in one form
or another, but offer only commercial licenses for the full
product capability. This of course makes product
comparisons much more difficult and expensive.

The other XSLT 2.0 processors we have included in
our study are Altova's RaptorXML and XMLPrime. In
the case of Altova RaptorXML, the product architecture
is so different that the figures we obtained were not
meaningful to compare; each transformation requires an
HTTP request, and our performance data was
dominated by the costs of these requests. No doubt
much better figures could be obtained for Altova if we
did the measurements a different way, but for the present
we have discarded the numbers as not useful.

XMLPrime, on the other hand, has a very similar
architecture to Saxon; indeed, a cursory glance at its
structure shows that it was strongly influenced by Saxon's
design. So measurements here should be useful.

The most interesting result here is to show relative
speeds for each test case. We see that the pictures for file
to file and tree to tree are closely related. In general,
XmlPrime is running just a little slower than Saxon EE,
but it is sometimes faster. There are just a few cases where
XmlPrime is much (more than 5 times) slower than
Saxon, and here we see the difference for both file to file
and tree to tree transform times. These cases are all
among the tests which take longest, and so are
meaningful. In contrast, the cases for which XmlPrime is
much faster than Saxon are all very quick tests, so we
may consider these numbers to be less reliable and
meaningful - the fact that these cases are different for file
to file and tree to tree transforms, where we have already
said that the results correlate strongly, backs this up.

Because Saxon is faster on some tests, while XMLPrime
is faster on others, any "bottom line" comparison of the
two products is highly sensitive to the choice of test
material, and to the way in which the results for different
tests are aggregated. The formula we use for aggregation
shows file to file transform relative time average 4.581
(min 0.266, max 189.62), tree to tree transform relative
time average 9.753 (min 0.29, max 469.095), stylesheet
compile relative time average 1.18 (min 0.218, max
21.681). But from the charts, we see that these figures
would change greatly if a few anomalous cases were
removed. If outliers are discarded, XmlPrime is on
average perhaps about 2 times slower that Saxon on
transformation time.

We see more variation in the stylesheet compile
times, and here more generally XmlPrime performs a
little faster. There are two anomalous cases, for which
XmlPrime is more than 20 times slower - these are cases
that also showed far worse transform times.

Page 20 of 162

Benchmarking XSLT Performance

Figure 8. XmlPrime file to file transform speeds relative to SaxonEE-9.5-J

1

5

9

13

Slower

Baseline speed

Figure 9. XmlPrime tree to tree transform speeds relative to SaxonEE-9.5-J

1

11

21

31

Slower

Baseline speed

Figure 10. XmlPrime stylesheet compile speeds relative to SaxonEE-9.5-J

1

2

1/2

1/3

1/4

Faster

Baseline speed

The most appropriate way of using these results is not to
compute a crude ranking, but to try to understand where
each product is stronger and where it is weaker. However,
isolating the features of the individual tests to achieve
such an understanding is not an easy task.

6.4. Comparing Saxon 9.5 with Saxon 9.6

As already stated, a key aim in writing this benchmark
was to enable us to avoid regression when shipping new
Saxon releases. Measuring Saxon 9.6 (currently under
development) with the current 9.5 release is therefore
particularly relevant.

Looking across all tests, this is the data we are
currently seeing:

Figure 11. SaxonEE-9.6 file to file transform speeds relative to SaxonEE-9.5

1

1/3

1/5

1/7

Faster

Baseline speed

Figure 12. SaxonEE-9.6 tree to tree transform speeds relative to SaxonEE-9.5

1

1/3

1/5

1/7

Faster

Baseline speed

Page 21 of 162

Benchmarking XSLT Performance

Figure 13. SaxonEE-9.6 stylesheet compile speeds relative to SaxonEE-9.5

1

1.25

Faster

Slower

Baseline speed

What we would expect to find here is that for the
majority of tests, the performance is much the same
between the two releases, but for a minority of tests, the
performance may benefit from deliberate enhancements
in particular areas, or it may reveal performance bugs
that we need to address before shipping the final
product.

There is a lot of noise in the results. There's no reason
at all why the performance ratio between the two releases
should be different for tree-to-tree transforms than for
file-to-file transforms. The fact that some of the ratios are
significantly different can be taken as a measure of the
inaccuracies that arise during measurement of Java
performance, caused (we believe) by the failure to
suppress unrelated activity on the system under test, for
example Java garbage collection, network traffic or virus
checking.

Nevertheless, the overall picture is good. Most tests
are showing a performance ratio close to one, and a
cluster of tests are showing a substantial improvement.

This cluster of tests was specifically designed to assess
the effectivness of a redesign in 9.6 in the
implementation of maps. Maps are a new feature in
XSLT 3.0, providing a data structure akin to what some
languages call "dictionaries" or "associative arrays": a set
of key-value pairs providing efficient access to the value
associated with any key. As befits a functional language,
the maps in XSLT 3.0 are immutable, and herein lies the
performance challenge. In Saxon 9.5, the
implementation uses a layering of hash maps and deltas,
with deltas being absorbed and consolidated when they
reach a certain size. In Saxon 9.6, this has been replaced
with a hash trie, similar to the structure used to
implement immutable maps in Scala.

To ensure that the new implementation performs
better than the old, we wrote a number of tests
specifically focused on creating, using, and modifying
maps. (We can note in passing that the existence of these
tests immediately means that our aggregate performance
results attach disproportionate importance to this area.)

Our first results from these tests were very
discouraging: they showed the new code running five
times slower than the old, and we were almost ready to

discard it. However, closer study revealed the reason for
the discrepancy: the implementation was caching data
relating to the types of the keys and values held in the
map, and this cache was not being maintained correctly.
Fixing this problem gave us new data which showed map
construction and retrieval taking a very similar amount
of time to the old release, addition of new entries being
slightly faster, and removal of existing entries
dramatically faster. Sufficient evidence to justify
accepting the new code into the release.
Drilling down even further, we can see variation between
the different map tests. For example, test wordmap8 is
about 12 times faster on Saxon 9.6, whereas wordmap8a
is 1.5 times slower. The two tests are very similar: both
construct an index containing all the words in a source
document. The difference between the two tests is that
wordmap8a, after adding a new entry to the map, counts
how many entries are now present in the map using the
expression count(map:keys($map)). The implication is
that in the new data structure, the one thing that runs
slower is enumerating the keys present in the map. We
can live with this.
The results also show that compile-time performance has
got a little worse across all tests in 9.6. This is something
we may address before a final release.

6.5. Comparing Saxon/C with libxslt

The newest addition to the Saxonica product stable is
Saxon/C: a version of the product issued as a native DLL
(or .so) library, suitable for calling from C or C++
applications, together with an interface offering a PHP
extension API. This area has for many years been the
preserve of the open source libxslt product, which has an
excellent reputation, but which (like most of the open
source XSLT 1.0 processors) has not been upgraded to
XSLT 2.0. Saxonica is aiming to fulfil the demand for an
XSLT 2.0 processor in this important space with a
version of Saxon that is cross-compiled to native code
using the Excelsior JET Java cross-compiler. Clearly the
main attraction of Saxon/C to libxslt users will be the
ability to take advantage of XSLT 2.0 features, but they
will want assurance that performance is adequate.

Page 22 of 162

Benchmarking XSLT Performance

Figure 14. Saxon/C tree to tree transform speeds relative to libxslt

1

4

1/4

1/7

Faster

Baseline speed

Our first results comparing Saxon/C with libxslt are
shown below. The XT-Speedo driver for libxslt is
currently failing many tests when run in file-to-file
transform mode, so we present only the tree-to-tree
comparison. These show Saxon/C consistently
performing better for the tests with larger source
documents, and a wide range of results for tests with
smaller documents. In the vast majority of cases,
however, the speed ratio between the products is between
0.5 and 2.0, so most users are likely to be content.
Producing a single metric for the speed ratio is not
something we can sensibly do, since it will depend
entirely on the selection of tests to run; the only thing we
can say with certainty is that Saxon/C consistently
performs better for larger source documents.

7. Conclusions

XT-Speedo was written primarily as a resource for use
within Saxonica, to enable us to test and compare the
performance of our various products. We developed it
because the existing performance tests we had been using
were woefully inadequate, and because there were too
many cases slipping through where, for some particular
workload, new Saxon releases showed regression over
previous releases despite the release as a whole passing all
performance tests.

We have published XT-Speedo as an open source project
for a variety of reasons. We want others to be able to
reproduce our results and perhaps show us where we have
got things wrong or made invalid assumptions. We want
others to be able to contribute test data and drivers
which we can then benefit from. We also hope that
others might be able to take it into areas that we haven't
yet tackled, like measuring throughput in a server
environment with a concurrent workload.

In this paper we have shown results for a number of
performance investigations where we have already found
that XT-Speedo gives us new insights into the behaviour
of our own products. In some cases the data confirms
what we knew and gives us confidence that all is well; in
other cases it suggests directions for more detailed
investigation, or for remedial action.

We stress again that performance is just one aspect of
product quality, one facet that can be used to compare
competitive products. It is not the only metric to be
used, and is not even our top objective. But we don't
want poor performance ever to be a reason for anyone
not to use our software. From that perspective, it's not a
major concern if Saxon doesn't come at the top of every
league table, but the measurements we have taken so far
give us confidence that we are in every case within a few
percentage points of the leader. More importantly, they
tell us where it is possible to do even better.

Page 23 of 162

Benchmarking XSLT Performance

1 To prevent over-self-citing and cross-referencing, I have summarized relevant sections of my previous paper, so that this paper can be read on its
own, without the requirement to read the previous paper. However, I do recommend reading it, as it serves as a good introduction to streaming in
XSLT.

2 When a W3C Working Draft reaches Last Call it means that it is the last call for people in and outside of the working group to comment
on the draft, before it will reach Proposed Recommendation status.

3 The term "bug" is not entirely fair. Both improvement request and bug reports end up in the same BugZilla repository at W3C.

Streaming Design Patterns or: How I Learned
to Stop Worrying and Love the Stream

Abel Braaksma

Abrasoft

Exselt XSLT 3.0 streaming processor
<abel@exselt.net>

Abstract

XML and streaming, and more specifically, XSLT and
streaming, is often avoided by programmers because they
think that streaming is hard. They worry that when they
have to rewrite their stylesheets to allow streamed processing,
that the stylesheets become less maintainable, (much) harder
to develop and that following the Rules on Streamability, in
the absence of a good tutorial or book on the subject, is
excruciatingly hard and arduous when the only reference
they can refer to is the Latest Working Draft on XSLT,
section 19.

This paper goes further where a previous paper by me
[BRA14]1 left off. This previous paper explains ten rules of
thumb for streaming, which will be briefly iterated over in
this paper, see Section 4, “Brief overview of the Ten Rules of
Thumb of streaming”. This paper expands on that by
showing streaming refactoring design patterns that turn
typical non-streaming XSLT programming scenarios into
streaming ones. They can be found in Section 5, “Streaming
Design Patterns”, the text being specifically geared towards
programmers new to streaming.

Keywords: XML, XSLT, XPath, streaming, XSLT-30,
Exselt

1. Disclaimer

This paper discusses the new rules as they are defined in
the most recent public Working Draft, which is, as of
this writing, currently in Last Call. In some scenarios, it
will apply fixes to this working draft that have been
publicly reported on the BugZilla system of the W3C
and that have (publicly) received a resolution by the
Working Group. The latest version of XSLT 3.0 can be
found at [XSLT3] and the current version used for this
paper is [XSLWD], which is currently in Last Call WD
state2. When this paper refers to XPath, it uses the most
recent version of XPath 3.0, which is currently in
Proposed Recommendation state [XPPR]. The latest
version of XPath 3.0 can be found at [XP3]. The related
XPath Functions and Operators specifications used is the
Proposed Recommendation [FOPR], for which [FO3]
holds the latest version.

Since none of these specifications is currently a W3C
Recommendation, it is possible that details mentioned in
this paper change in the future, or get removed
altogether.

Since the XSLT 3.0 specification reached Last Call
status, several issues with it have been reported in
[BUGZ] that relate to streaming. Since some resolutions
in these public bug reports3 have a big influence on
streamability on situations discussed in this paper, I often
refer to these bug reports in the footnotes, so that readers
can check the latest status on their resolution. Where
possible, I only use bug reports that are closed, which
generally means that the resolution mentioned in the bug
report is final.

doi:10.14337/XMLLondon14.Braaksma01Page 24 of 162

mailto:abel@exselt.net

1 The specification does, however, require that a processor, when operating in a streaming mode, must process the input data in constant
memory, which implicitly requires the output stream to be flushed in time to meet that requirement.

2 See section 14.8.6 of XPath Functions and Operators.

2. To stream or not to stream?

Not all data manipulation scenarios require streaming.
Where and when you should switch to a streaming
scenario may depend on many factors. This section
briefly describes what factors may come into play.

2.1. Size of the input data tree

The most obvious use-case for using a streaming aproach
is the size of data. As a rule of thumb, if the data that
needs to be read and written does not fit in memory, you
would choose a streaming approach. If your input is an
XML file, and you can estimate the size of the output
XML file or files, you should add all these estimates
together and multiply them by three or four (depending
on your processor and the chosen XDM), and add about
200MB to the total (again, depending on the processor).
If this total fits into computer memory, you do not need
to use streaming. If it does not fit, you should seriously
consider using streaming XSLT.

2.2. Intrinsically streamed input data tree

Sometimes, input is streamed by default, that is, it is not
all available at once. In such cases, you must use
streaming, because only with streamed processing does
the processor not require to read the complete input tree
at once.

2.3. Streaming output

It is important to distinguish between input streaming
and output streaming. The XSLT specification is very
thorough when it comes to input streaming and all rules
that allow streamability are written in such a way that
they also allow output streaming, but whether or not a
processor actually does output streaming is not directly
required by the specification1. Similarly to input
streaming, if the output data is too large to fit into
memory, you should use a streaming approach.

While processors are required to flush the output
buffer in time, you should test the abilities of your
processor in this respect, because there is no standardized
way of testing this requirement with processors, and
streaming is relatively new. If you run into issues with
running out of memory and you suspect that the cause is
that output flushing is not done in time, you should
contact your vendor and ask for a fix.

2.4. Streaming unparsed text

This paper discusses streaming of XML, but XPath 3.0
introduces a new function, fn:unparsed-text-lines2,
which takes an external resource as input and parses it
line by line. The original intend of that function was to
allow unparsed data to be streamed, however the
Working Group at some point decided to not formalize
this requirement, however, the specification leaves
enough room for implementors to allow streamed
processing of data read through this function. When
your intend is to do streaming of unparsed input, you
should check the capabilities of your processor to find
out whether it can do streaming using this function.

The analysis of streaming when using unparsed text
through this function, is not required, because the result
of the function is a sequence of strings, which in
streaming terms, is a grounded and motionless result,
because it does not change the read pointer on an input
XML tree. This may seem strange, but XPath nor XSLT
have expressions that allow you to go from one string to
another the same way you would go from one node to
another (like accessing the parent node, the preceding
sibling node, attribute nodes etc). Strings are not nodes,
hence once you have a string you can do pretty much
everything with it without having to worry about
whether you stylesheet is guaranteed streamable or not.

3. XSLT 3.0 streaming terminology

The following paragraphs explain a few essential terms in
relation to streaming. For a more thorough coverage of
streaming terminology, and the next section, initiating
streaming, please refer to my previous paper [BRA14],
where these subjects are explained in more detail and
with more examples.

Page 25 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://www.w3.org/TR/xpath-functions-30/#func-unparsed-text-lines

1 See section 19.10 in XSL Transformations 3.0.
2 Technically, it is not a stylesheet that is guaranteed streamable or not, it is a construct that is. It depends whether that construct needs to

be applied to a streaming node, which is dependent on whether the construct is used inside a template that is in a streaming mode,
whether it is used in streamed merging, or whether it is used within, or called by the instruction xsl:stream.

3 See section 20.3.4 in XSL Transformations 3.0.
4 See section 6.6.1 in XSL Transformations 3.0, and section 6.6.3 on Streamable Templates.
5 See section 18.1 in XSL Transformations 3.0.
6 At the time of this writing, there was no consensus yet on the chosen name. Follow the linked bugreport or review the next public

working draft to find out what the definitive name of this function will be.
7 This is only partially true. At user option, a processor may offer a non-stable version of fn:doc, which allows the processor to optimize

memory usage by not having to keep the full XDM tree of the XML document in memory. As a byproduct, in such scenarios it it not
guaranteed that the same document node is returned upon a subsequent invocation of that function with the same argument.

3.1. Guaranteed streamability

Streaming is all about guaranteed streamability1. Knowing
that your stylesheet rules, when they apply to streaming,
are guaranteed streamable is important, because it means
it will be processed in a streaming way on every
streaming processor, that is, on any processor that
supports the streaming feature. It is possible that
individual vendors have created ways to allow a broader
group of constructs or expressions to be streamable, but
that is out of the scope of this paper. Guaranteed
streamability is well defined in the XSLT 3.0
specification, but the rules are complex.

This paper shows the application of a simplified set of
rules to existing scenarios and how to turn stylesheets
that are not guaranteed streamable2 into stylesheets that
are.

3.2. How to find out whether your processor
supports streamability

If you are uncertain whether your processor supports
streaming, or whether the license for your processor
entitles you to using it, you can use the new streaming
system property xsl:supports-streaming3, which returns
the value yes or no depending on whether the processor
supports it.

You can use this property with xsl:use-when or with
XSLT branch instructions like xsl:choose to force
streamed processing of your input. A processor that does
not support streaming is still required to process your
input the traditional way, but if you explicitly want your
stylesheet to fail when it is used with a non-streaming
processor, you can use for instance the instruction
xsl:message with terminate="yes" to break processing in
such cases.

3.3. How to initiate streaming

There are essentially three ways to initiate streaming, or
five, if you count using fn:unparsed-text-lines and
vendor-specific methods as well, but these are outside the

scope of this paper. A brief overview of the three ways to
initiate streaming:
1. Using xsl:mode: with xsl:mode4, the attribute

streamable="yes" means that the mode, and all
templates within that mode, will operate in a
streaming way. That means that all templates in that
mode must be guaranteed streamable. When you set
streamable="yes" on the default unnamed mode, all
templates in the default mode must be guaranteed
streamable. To initiate streamed processing with a
streamable mode, instruct your processor, i.e. by using
command line parameters, to use that mode as an
initial mode, in which case the processor must process
the initial input document by using streaming.

2. Using xsl:stream: the most obvious way to initiate
streaming is perhaps the new XSLT 3.0 instruction
xsl:stream5. This instructions takes a href attribute
value template and processes the document it finds
using streamed processing. While using the initial
mode option allows a creative developer to use
something else then a document node as initial
streamable item, the xsl:stream instruction can only
return the document node in a streaming way, similar
to the functions fn:doc and fn:document.

Recently, as a resolution to public XSLT 3.0 Bug
25173, the working group has decided to add a
function, fn:streaming-document-available, or
fn:streaming-available6. This function will take an
href and try to resolve it by trying to read the Prolog
section of the XML document. How the precise
semantics will work out is yet unclear, but it is
important to realize that a streaming document is not
stable, because it is not kept in memory as a whole. As
a result, this function will, at the very most, give a
hint as to whether a document is available or not. On
a subsequent read, it may not be there any longer.
This in contrast to fn:doc-available, which is
guaranteed to return true if it can read the whole
document7.

Page 26 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://www.w3.org/TR/xslt-30/#dt-guaranteed-streamable
http://www.w3.org/TR/xslt-30/#function-system-property
http://www.w3.org/TR/xslt-30/#declaring-modes
http://www.w3.org/TR/xslt-30/#streamable-templates
http://www.w3.org/TR/xslt-30/#stream-instruction
https://www.w3.org/Bugs/Public/show_bug.cgi?id=25173
https://www.w3.org/Bugs/Public/show_bug.cgi?id=25173

1 See section 15.2 in XSL Transformations 3.0.
2 The current Public Working Draft [XSLT3] has some issues in regards to streamability of xsl:merge, making it impossible to do

streaming, as I reported in [BRA14]. The most relevant bugs are XSLT 3.0 Bug 24343 and 25335. Both are meanwhile resolved.
3 The specification talks about at most one consuming expression. In the body of the text of this paper, I typically prefer the term downward

expression, though sometimes it seems more applicable to use consuming. Either term covers the same base.
4 When I use the term reading head, it refers to a fictitious current position of the read-pointer of the processor in the opened streamed

document. Whether or not a processor actually has such a read pointer, is an implementation detail. An optimizing processor might, for
instance, do some look-ahead and caching, to improve up processing speed. Moving the reading head forward is literally the same as
reading the next bytes, and thus nodes, from the input stream.

3. Using xsl:merge: a less common way to initiate
streaming is by using the xsl:merge1 instruction. This
instruction can process multiple sorted documents in
order and merge them into a single output. For
instance, if you have a document with current users
and one with new users, and you want to merge them
together, assuming they are sorted, you can use this
instruction to do so. The merge instruction takes its
sources through xsl:merge-source children, each of
which can take a streamable document if the attribute
streamable is set to yes. In-depth discussion of this
instruction is out of scope for this paper2, but see
Section 5.10, “Sorting” for an example and its
applicability with sorting.

4. Brief overview of the Ten Rules of
Thumb of streaming

The following ten sections serve as a quick refreshment
on the basics of streaming. As with the previous section,
these Ten Rules of Thumb have been more thoroughly
discussed, and with ample examples, in my previous
paper [BRA14]. If you do not have prior experience with
streaming in XSLT, I recommend you read the
corresponding sections in that previous paper.

4.1. Rule 1: each template rule can have a
maximum of one downward expression

Each template rule that is in a streamable mode can
contain a maximum of one downward expression3 in all
of its immediate children. This is the most important
rule to remember, but do see Section 4.2, “Rule 2: each
individual construct can have a maximum of one
downward expression”, where we are widening the
concept a little.

Example:

<!-- the whole template has
 one downward expression -->
<xsl:template match="amount">
 <xsl:copy>
 <!-- the next line has
 one downward expression -->
 <xsl:apply-templates select="price"/>
 </xsl:copy>
<xsl:template>

4.1.1. What are downward expressions?

A downward expression is an expression for which the
processor is required to read further into the currently
open stream. This is in contrast to a motionless
expression, which does not require the processor to move
its reading head4. Such downward expressions are, for
instance, a child-select expression, such as child:section,
or a descendant-or-self expression, such as
head//section. Not all downward selections are also
guaranteed streamable. For instance, the expression
following-sibling::customer is not guaranteed
streamable when it operates on a streaming node, but is a
downward expression. The term used for such
expressions is: free-ranging expressions, which is a group
of expressions that also includes non-downward
expressions, such as ancestor::head/section, which is an
expression that first moves up, and then down again.

More on how to determine what expressions are
allowed in what constructs, is explained in the following
sections.

Page 27 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://www.w3.org/TR/xslt-30/#element-merge
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24343
https://www.w3.org/Bugs/Public/show_bug.cgi?id=25335

1 The specification differentiates between constructs and operands. In fact, both the xsl:for-each and the path expression has several
operands, each of which follows certain rules. The instruction and path expression as a whole are considered a construct in the
specification. This paper does not make that distinction, which in many cases makes analysis easier. In those cases where it is not
applicable, I will explicitly mention it.

2 Intuïtively, the function fn:has-children requires look-ahead. But since it only requires a very small look-ahead, it is considered
streamable. Implementations just need to make sure they don't actually move the reading head.

3 The term AVT means attribute value template, a way of writing an expression as a value of an attribute using {expr} syntax.
4 A TVT, or text value template, is a new feature of XSLT 3.0 which allows you to intermix expressions with text nodes, see also section

5.7.2 in XSL Transformations 3.0.
5 It is not allowed in streaming to bind a variable to a streaming node.
6 This is a notable difference between my previous paper [BRA14] and this one. It is not possible anymore to bind grouping or merging

variable using bind-group, instead, using fn:current-group and friends is legal, with certain restrictions, in streaming, see XSLT 3.0
Bug 24510. Conversely, it is now possible to write stylesheet functions that take at most one streaming argument (and argument that can
be a reference to a node), see XSLT 3.0 Bug 25679.

4.2. Rule 2: each individual construct can
have a maximum of one downward expression

Let us extend the previous rule a little bit by saying that
each construct has a maximum of one downward
expression. In streaming, a construct is an instruction, an
expression, a sub-expression (in a | b there are two
subexpressions a and b) and declarations, if they are of
influence to streamability. Typically, many constructs
have a sequence constructor (such as xsl:for-each,
xsl:sequence, xsl:with-param). This sequence
constructor is at the heart of XSLT which allows us to
nest instructions inside other instructions. A sequence
constructor is itself a construct as seen in streaming
analysis.

It is important to distinguish between focus-changing
constructs, such as xsl:for-each and non-focus-
changing constructs. When a construct changes focus,
the expression changing the focus (usually the select
attribute) can be a downward expression and the
sequence constructor inside the container can have a
downward expression.

Another focus-changing construct is the path
operator. In an expression such as a/b/c, each of a, b and
c is considered a construct1, because each /-operator
changes the focus. That is why it is allowed to write
essentially three downward expressions in a/b/c/.

Conversely, the container of xsl:if does not change
focus. As a result, the whole xsl:if-instruction is
considered on construct, and either the test-attribute or
the sequence constructor can contain a downward
expression, but not both.

Filter expressions, as in head/section[para] do not
change focus either, and since you already have a
downward select in the other part of the expression, the
para child-select expression is considered the second
downward expression. The whole expression head/

section[para] is therefor not streamable. See Section
4.9, “Rule 9: Use motionless filters” for more on filters.

4.3. Rule 3: Use motionless expressions where
possible

A motionless expression, or construct, is one that doesn't
require the processor to move from the current point in
the input XML stream at all. Such expressions are
expressions that do not operate on nodes, or expressions
that request information from a node, such as its name,
and can give that information without moving the
reading head. Some examples of motionless expressions
are:
• fn:name(), fn:local-name and self::foo. Also

functions such as fn:has-children2, fn:exists and
fn:in-scope-prefixes.

• Climbing the parent, ancestor or ancestor-or-self axes
(but not downward again after you climb). The reason
this is allowed is that during streaming, the processor
keeps a cache of all the ancestors of the current node.

• The attribute axis. Similar to the previous rule,
attributes are considered part of the information of
the current node. Combining the previous rule and
this rule is possible, for instance,
author/ancestor::*/@company-name is a guaranteed
streamable expression.

• Atomic functions or functions that operate on
atomics, as long as the current node is not an
argument. The expression fn:string(math:pow(3.14))
is motionless, but the expression
fn:string(math:pow(input)) is not, the second has a
child expression as argument and is, on itself, a
downward expression and not motionless.

• Literal result elements or node creation instructions
(unless of course, they contain an AVT3 a TVT4 or a
sequence constructor that has a downward
expression).

• Variable references are motionless5 unless they occur
inside xsl:function and are bound to a streaming
argument6. Note that it is possible to create copies of
nodes and bind those to variables, see Section 4.6,
“Rule 6: Break out of streaming abundantly”.

Page 28 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://www.w3.org/TR/xslt-30/#dt-text-value-template
http://www.w3.org/TR/xslt-30/#dt-text-value-template
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24510
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24510
https://www.w3.org/Bugs/Public/show_bug.cgi?id=25679

1 This is called free ranging in the specification.
2 A processors is allowed to extend the streamability rules. However, the term guaranteed streamability, which this paper discusses, is

guaranteed across different streaming processors. Vendor extensions are out of scope for this paper.
3 Since the resolution of XSLT 3.0 Bug 25679 on Streamable stylesheet functions, it is now possible for a stylesheet function parameter to

be bound to a node. As a consequence, it is possible for a variable reference, if bound to such a parameter, to be bound to a node. The
resolution of this bug is not public, but the essence is important for writing library packages catered for streaming, which would
otherwise not be possible.

4 The example here uses the fact that the sequence constructor, by default, creates a new document node. In addition, the xsl:copy-of
instruction creates a copy of the node too, disconnecting it from the streaming node and consuming the whole node at once.

5 For an example of how complex this is to do by hand, see the 75 lines long formal function that defines fn:snapshot in section 18.4 of
XSL Transformation 3.0

6 A processor is not required to dismiss memory after one of these functions are used, but it is likely that implementations will dismiss off
memory of copies that go out of scope, otherwise, these functions would have little merit in long-running streaming scenarios.

4.4. Rule 4: You can move up the tree, but
never down again

The ancestor axis, together with the attributes and
properties of the nodes, is the only axis that is kept in
memory while performing streaming. As a result, you can
consider the ancestor axis as a stack that is always
available. However, while you can create a motionless
expression like parent::x/@name, you are not allowed to
move away again, because moving down would mean
that you move the input read pointer in an arbitrary
direction1. An example of such a free-ranging expression
is parent::x/address, because that expression moves up,
and then selects the child (moving down).

4.5. Rule 5: You cannot store a reference to a
node

This rule was already touched upon in Section 4.3, “Rule
3: Use motionless expressions where possible”. It is very
easy to master: you cannot store a reference to a
streaming node, ever2 . A reference to a node can be
created within a let expression, an xsl:variable or an
xsl:param instruction, or implicitly, as an argument to a
stylesheet function3 .

Example that is not guaranteed streamable:

<xsl:template match="log" mode="streaming">
 <!-- not allowed:
 binding a node to a variable -->
 <xsl:variable select="detail" name="dtl"/>
 <xsl:value-of select="$dtl"/>
</xsl:template>

Example that is guaranteed streamable4:

<xsl:template match="log" mode="streaming">
 <!-- allowed: creating a document
 node with a copy of a node -->
 <xsl:variable name="dtl">
 <xsl:copy-of select="detail"/>
 </xsl:variable>
 <xsl:value-of select="$dtl"/>
</xsl:template>

4.6. Rule 6: Break out of streaming
abundantly

In Section 4.5, “Rule 5: You cannot store a reference to a
node” you have seen an example that created a copy of a
node and stored that inside a variable. This comes in
handy, but such a copy does no maintain information
from its ancestors, and creating a copy that does
maintain that information is not obvious5. For cases
where an inline expression should break out of streaming
and create a copy of a node, maintaining all the
information from its ancestors, XSLT 3.0 introduced the
new function fn:snapshot. If the ancestors are not a
requirement, you can use the lighter-weight funtion
fn:copy-of.
Use these functions abundantly, possibly in conjunction
with xsl:copy-of. They create an in-memory copy of
whatever node you feed them, and on that copy, you can
use any free-ranging expression that you like.
One caveat: usually, you will choose a streaming scenario
for a reason, for instance because the input is too large to
fit in memory. Do not use these functions on nodes that
are potentially too large to fit in memory. Use them on
nodes that you know are small enough to be processed
one at a time in memory6.

4.7. Rule 7: Understand streamable patterns

In essence: patterns must be motionless. Imagine any
current node and its available information, like its
ancestors, its attributes and its properties. If you consider
a pattern as a function that returns true or false, and if
that function can be applied without moving away from
that current node, then it is a motionless pattern.

Page 29 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

https://www.w3.org/Bugs/Public/show_bug.cgi?id=25679
http://www.w3.org/TR/xslt-30/#func-snapshot
http://www.w3.org/TR/xslt-30/#func-snapshot

1 See section on Classifying Constructs in XSL Transformation 3.0.
2 Recall that a pattern is not the same as an expression. For instance, you cannot write path expression using the following-sibling or

parent axis. This was true in XSLT 1.0 and 2.0 and remains true in XSLT 3.0.
3 Grounded means that it cannot return streaming nodes.
4 An atomizing type is any type that is not a node type, or cannot be a node type. Examples are xs:string, xs:integer, xs:double*, but

not element(), attribute() or item().

A pattern behaves different from expressions. Take an
select expression such as book/chapter. As an expression,
this is considered a downward expression, because it
selects the nodes below the current node, so it must move
the reading head. However, patterns are evaluated on
every node when they are encountered. When the
processor encounters a node with the name section, it
knows instantly, without looking ahead or backwards
that the pattern does not match the right-hand part
chapter of the expression: the name does not match. If it
finds a node with the name chapter, it can check the
parent without moving the reading head whether it
matches book. Conclusion: book/chapter is a motionless
pattern1 and therefore streamable.

All patterns that do not start with a variable reference
or a function call, and that do not have a predicate, are
streamable. Examples are html//div, a//b//c//d,
child:num, author/@name and author/@name2.

If your pattern has a predicate, that predicate must be
motionless, similar to Section 4.9, “Rule 9: Use
motionless filters”, but must not be a numeric predicate.
In nested predicates, however, you can use a numeric
value or fn:position, but they still must be motionless.
Valid examples are
author[@name], author[ancestor::guild] and
author[ancestor::*[3][self::publisher]], the latter
having a numeric predicate, which is allowed because the
predicate is nested.

4.8. Rule 8: Use atomic types to ground the
result of templates

Any template rule or named template must be grounded3,
which means, it is not allowed to return streaming nodes.
This rule is very similar Section 4.5, “Rule 5: You cannot
store a reference to a node”. Since using xsl:sequence
inside bodies of xsl:template is very common, and since
xsl:sequence return a reference of a node, you should be
careful about using them.

But there is an easier way out. Instead of trying to keep
track on whether or not your template returns nodes, it is
much simpler to correctly set an atomizing type4 for your
template. When a type is set for your template, the
processor must atomize the result anyway, so it knows
statically that the template will never return any nodes.
This prevents you from worrying about whether or not
you are returning nodes or not. The principle of taking
the result type into account also applies to other constructs,
such as the parameter and return types of stylesheet
functions and templates, or the declarations of variables.

If you want to return more complex content than an
atomic type, use xsl:copy and similar constructs that
create copies of nodes, as opposed to xsl:sequence,
which returns references to nodes.

4.9. Rule 9: Use motionless filters

In earlier chapters we have already seen what a
motionless expression is. In filter expressions, that is, in a
predicate, you should always only use motionless
expressions, or the result will not be streamable. Some
examples:

price/text()[contains(., 'father')]
child::node()/copy-of(.)[contains(., 'father')]
helptext[@version = '3.14']
.//comment()[contains(., 'father')]
p[parent::div][ancestor::p][@xml:lang]

All the above expressions use motionless filters, but they
are motionless for different reasons.

The first is motionless because text()-nodes
considered leave-nodes (they cannot possibly have
children). A filter expression on a guaranteed childless
node may consume that whole node, here done by the
context-item expression ..

The second is motionless because we first created a
copy of the whole node using copy-of, after that,
anything we do on that node, can be any regular XPath
expression, see also Section 4.6, “Rule 6: Break out of
streaming abundantly”.

The third tests the value of an attribute, attributes are
always available as part of the stack the processor keeps of
each node: an attribute is a property of a node and
henceforth it is motionless.

Page 30 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://www.w3.org/TR/xslt-30/#classifying-patterns

1 In fact, this is precisely how the specification defines it: consuming a childless node is considered a motionless operation. This may seem
like a constradiction in terms, but helps a lot with keeping the analyzing terms to a minimum. The official rule is, however, not very easy
to read and understand: If U is absorption and T is a childless node kind (text(), attribute(), comment(), processing-instruction, or namespace-
node()), then U' is inspection, see Section 19.8, General Streamability Rules in XSL Transformation 3.0.

2 See also section 16.1 in XSL Transformations 3.0
3 In practice this means that you must wrap the sequence constructor of each xsl:sequence in xsl:copy of xsl:value-ofor likewise

constructs that return copies, not references to nodes.
4 Example was directly taken from [BRA14], page 21, where you can find more information on using xsl:fork.
5 The level indicated is solely based on my experience within the XSLT 3.0 Working Group, where certain subjects appeared to be much

harder to be understood by the group members, while others were relatively easy to grasp.

The fourth is a filter on a comment. Similarly to text-
nodes, comments can never have children, so the
expression is allowed to consume the whole node and
still be considered motionless1.

The last example combines three motionless filters
and searches for illegally nested p elements in an HTML
document, that also have the xml:lang-attribute set. The
parent axis, the ancestor axis and the attribute axis are all
part of the available properties that are maintained by the
processor as a stack during processing, therefore this
expression is motionless too.

4.10. Rule 10: Master xsl:fork

There is an alternative for scenarios where you would
otherwise require multiple downward selects in one
construct. Use xsl:fork2, which explicitly tells the
processor that from this point on, it should start multiple
threads for processing the input stream in parallel. In
other words, the stream reader will get multiple read
pointers that all have their own starting point, the
current node. This process, called forking allows multiple
downward selections in a single instruction, but is very
strictly defined.
The rules for using xsl:fork are briefly as follows:
• It can only contain xsl:sequence children
• Each xsl:sequence can have at most one downward

select expression, as explained in Section 4.2, “Rule 2:
each individual construct can have a maximum of one
downward expression”.

• Each xsl:sequence must be grounded, as in Section
4.8, “Rule 8: Use atomic types to ground the result of
templates”, it cannot return nodes, but this time you
cannot use the as-attribute to the rescue, so type-
determined usage, as also discussed in the same Rule
Eight, cannot be applied3.

Once you have these rules in place, you are allowed
multiple selections in a single construct, you can fork the
processing. In fact, that is exactly what you tell the
processor: from hear on in, I want multiple reading heads
on the same stream.

Example of splitting logfile entries between warnings
and errors4:

<xsl:fork>
 <xsl:sequence>
 <errors>
 <!-- one downward select -->
 <xsl:copy-of select="entry[@type eq 'err']"/>
 </errors>
 </xsl:sequence>
 <xsl:sequence>
 <warnings>
 <!-- and another one, but still legal! -->
 <xsl:copy-of select="entry[@type eq 'warn']"/>
 </warnings>
 </xsl:sequence>
</xsl:fork>

5. Streaming Design Patterns

In the following sections, I will show programming
design patterns that are common in traditional, non-
streaming scenarios, but that are themselves roaming and
free-ranging expressions or constructs. As a result, they
cannot be used in a streaming scenario by copying them
one-on-one.

The streaming design patterns apply both to
converting existing stylesheets, and making them
streamable, as to new stylesheets that have to be
streamable from the beginning.

Each pattern follows the same format:
• Intent: a brief summary of the patterns intent.
• Level: an indication for the level of experience

required to understand an implement the pattern5.
Under the Level section, I will also mention the level
of streamability the solution has after applying the
streaming pattern, in order, from full to none:

Page 31 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://www.w3.org/TR/xslt-30/#dt-general-streamability-rules
http://www.w3.org/TR/xslt-30/#fork-instruction

1 The instruction xsl:try deserves special attention. It does not create copies of streamed input, but it buffers (creates a copy) of streamed
output, because in the event of a failure, the processor is required to rollback to the point before the xsl:try instruction.

2 I would like to liberally quote Michael Kay here as I heard him explaining this concept: “in the vast majority of cases, the implicit copy
will be small, only a few pathological cases may require a large copy, in which case it is up to the stylesheet author to come up with a
better solution”. This change is not currently in the public spec, however see XSLT 3.0 Bug 25335.

• Full: means the streaming pattern is fully
streamable, without buffering or copying nodes.

• Implicitly windowed: technically the same a full,
but applies to constructs such as xsl:try1 and
xsl:merge where the current merge group is
implicitly copied, and thus grounded2.

• Modified windowed: same as windowed below, but
first a limited, modified copy of the nodes is
created to prevent taking up too much memory.

• Windowed: the streaming pattern uses windowed
streaming, meaning that a copy of a node or nodes
is created in memory to do further processing on
without the restrictions of streaming.

• Multiple pass: the streaming pattern uses multiple
passes on the input document; this ensures limited
use of memory, but may (dramatically) increase
processing time.

• None: no streaming solution exists.
• Motivation: explains why this pattern does not work

using the traditional, non-streamable approach.
• Applicabilty: a summary of typical scenarios this

pattern applies to.
• Consequences: an enumeration of possible drawbacks

of the pattern.
• Implementation: step-by-step guide to implement this

pattern on existing code.
• Example: applies the design pattern and applies it to

the example from the Motivation section.

5.1. Filter expression depends on children

5.1.1. Intent

You have a select expression with a predicate that
depends on data in the children and want to make it
streamable.

5.1.2. Level

Intermediate: uses techniques available in XSLT 2.0.
Streamability level: modified windowed.

5.1.3. Motivation

Suppose your data structure looks something like the
following, where the elements largedata contain
potentially large sections of data that you do not want

copied, for instance base64 formatted images or other
data related to the person:

<people>
 <person>
 <largedata>
 <name>...
 <largedata>
 <address>
 <largedata>
 <street> ...
 <number> ...
 <city> ...
 <state>MA</state>
 <largedata>
 </address>
 <largedata>
 </person>
 <person>

</people>

If your requirement is to copy certain fields from person,
based on whether they live in a certain state, you may
have originally used a coding pattern like the following:

<xsl:template match="people">
 <xsl:apply-templates
 select="person[address[state = 'MA']]"/>
</xsl:template>

In a streaming scenario, this will not be guaranteed
streamable, because inside the select attribute, the
expression uses two downward selects in two filter
expressions, and we know from Section 4.9, “Rule 9: Use
motionless filters” that that is not allowed. The select
expression would not even have worked if you had only
one downward expression inside the predicate.

A quick and easy way to fix this example is the
following, applying Section 4.6, “Rule 6: Break out of
streaming abundantly”:

<xsl:template match="people" mode="streaming">
 <xsl:apply-templates
 select="copy-of(person)[
 address[state = 'MA']]"/>
</xsl:template>

This works, but what if the data of one person is too
large (for instance, the record contains binhex image or
video data that you would like to strip), or the memory
constraints too streneous (as on mobile or embedded
devices), such that in your case fn:copy-of selects too
much data and blows up the processing?

Page 32 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

https://www.w3.org/Bugs/Public/show_bug.cgi?id=25335

1 Since XSLT 3.0, it is possible to have a select attribute on xsl:copy, see section 11.9.1 on shallow copying in XSL Transformation 3.0.
2 The on-no-match mode shallow-copy will copy any non-matching nodes, which allows us to remove only the nodes we are not

interested in, without changing the whole stylesheet, this attribute, as well as the xsl:mode declaration, are new features of XSLT 3.0.
3 Swtiching modes from a streaming mode to a non-streaming mode is allowed, as long as the select-expression does not return nodes from

the streamed document, which is why this pattern creates a copy of a subset of the nodes. Alternatively, you can stay inside the new
streaming mode, but this restricts the bodies of the templates.

In such cases, use this pattern to use a guaranteed
streamable approach to create a partial copy of the
offending element instead.

5.1.4. Applicability

Applies to

This pattern applies to almost any place where you can
use an expression:
1. Select expressions as used in the likes of xsl:copy-of,

xsl:copy1, xsl:apply-templates, xsl:for-each,
xsl:for-each-group and xsl:message;

2. Select expressions in xsl:with-param and
xsl:variable, which works, because the result of the
pattern below is guaranteed grounded.;

3. Select expressions that are atomized or require a
boolean, like in xsl:analyze-string, xsl:if,
xsl:when, xsl:comment and xsl:processing-

instruction;
4. Expressions used with atomizing arguments of any

internal or user function, such as where the argument
is xs:string or xs:integer*.

Does not apply to

This pattern does not apply to:
1. Matching patterns, see Section 5.2, “Patterns with

non-motionless predicates”.

5.1.5. Consequences

Applying this pattern has the following consequences:
1. Extra code for creating a partial copy of the node may

impede maintainability.
2. With more complex expressions, it can get

cumbersome to split it up, in which case you should
look whether you can use windowed streaming, using
fn:copy-of or fn:snapshot. But that may not be
possible if the selected nodes are too large to begin
with.

5.1.6. Implementation

The essence of this pattern is to create a limited copy of
the node before you apply the predicate, and then apply
the predicate on this copy, which is allowed in streaming.

The copy will only contain the leaf elements we are
interested in, not the large data sections such as
largedata from our example.
Refactor your original code by applying the following
steps in order:
1. Introduce a streamable mode and set the attribute on-

no-match="shallow-copy2.
2. Remove the offending filter expression.
3. Create a new matching delete-template that matches

the large nodes we want to skip.
4. Add a template that matches the offending element.
5. In it, add a variable to create a partial copy of the

offending element.
6. Process this variable with your original predicate and

templates. This works, because variable references are
grounded by default and you can use free-ranging
expressions on them3.

Page 33 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://www.w3.org/TR/xslt-30/#shallow-copy

1 There are many ways of writing an appropriate delete-template. I chose for ancestor-or-self, but you may require a more fine-grained
approach in your situation. Remember that any nodes not specifically speficied in a matching pattern are copied as a result of on-no-
match="shallow-copy.

2 A climbing expression is an expression that climbs up the tree, as we have seen in Section 4.4, “Rule 4: You can move up the tree, but
never down again”. Attributes are considered climbing.

3 A striding expression is an expression on the child axis or a combination of child axes, where overlapping nodes will not occur.
4 As seen before, a leaf node is a node without children. Attributes and text-nodes are leaf nodes, but a climbing expression like
ancestor::title is not, because title can have children.

Example

If we apply these six steps to our original example, we
end up with the following code:

<!-- (1) add a streamable mode -->
<xsl:mode name="streaming" streamable="yes"
 on-no-match="shallow-copy"/>

<!-- (1) use the streamable mode -->
<xsl:template match="people" mode="streaming">
 <!-- (2) remove the filter-expression -->
 <xsl:apply-templates select="person"
 mode="#current"/>
</xsl:template>

<!-- (4) add a template matching "person" -->
<xsl:template match="person" mode="streaming">

 <!-- (5) introduce a variable
 to copy partially -->
 <xsl:variable name="person-partial">
 <xsl:copy>
 <xsl:apply-templates select="@*"
 mode="#current"/>
 <xsl:apply-templates select="node()"
 mode="#current"/>
 <xsl:copy>
 </xsl:variable>
 <!-- (6) continue in the non-streaming
 mode on the elementcopy -->

 <xsl:apply-templates select="$person-partial/
 person[address[state = 'MA']]"/>
</xsl:template>

<!-- (3) create a delete-template
 for the large nodes -->
<xsl:template
 match="node()[ancestor-or-self::largedata]"
 mode="streaming">
 <xsl:apply-templates mode="#current"/>
</xsl:template>

<!-- (3) create a matching pattern
 for the inclusive elements -->
<xsl:template
 match="address/*[not(self::largedata)]"
 mode="streaming">
 <xsl:copy-of select="."/>
</xsl:template>

In the above code, you can see that we specify what parts
of the streaming input data we want to delete1, so that
the copy of the nodes is as small as possible, i.e. without
any of the large nodes. The result, a handful of nodes
with string data as content, is copied into a variable. In
turn, the contents of this variable, which is now
grounded, is copied to the final result tree, using the same
predicate we used previously.

Note the special variant of the identity template.
Instead of placing node | @* in one select-statement, it is
split into two. The reason behind this is that a climbing2

expression and a striding3 expression cannot be combined
in a single union expression. However, a climbing
expression that only selects leaf nodes4 is allowed on its
own in a select-satement, as is a striding expression.

The benefits of using this pattern is that you can leave
much of your original code intact. We merely removed
the nodes that made streaming impossible, and then
continued processing on a small copy of the nodes.
After we have applied our changes, the total amount of
memory required for this whole operation is much less
than in the first solution, where we copied the entire
<person> element as a convenient quick solution. While
there are methods you can use that may use even less
memory, for instance with accumulators and maps, but
these approaches are far harder to implement and in this
particular scenario may only gain a couple of bytes for
you during processing.

5.2. Patterns with non-motionless predicates

5.2.1. Intent

You have a matching pattern that depends on its children
and want to make it streamable.

5.2.2. Level

Easy: uses common, well-known XSLT 2.0 techniques.
Streamability level: windowed.

Page 34 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 Windowed template matching does not exist (yet), but it borrows the term from windowed streaming, which creates a copy of a small
subset of nodes. Windowed template matching could look like para[copy-of(.)/descendant::emphasis], but this is not legal in
streaming, and outside of streaming the fn:copy-of has no effect.

2 If the copy will be too large, use the first pattern to preprocess it to do a modified windowed streaming approach.

5.2.3. Motivation

Suppose you want to select all para elements that contain
an emphasis element and you want to remove all other
para elements. In a non-streaming scenario, your
stylesheet could look something like this:

<xsl:template match="para[descendant::emphasis]">
 <xsl:copy-of select="."/>
</xsl:template>

<xsl:template match="para"/>

This pattern is not streamable, because it requires the
processor to look down inside all possible children of the
para element and after that, it should go back and copy
everything from beginning to end.
In fact, as explained in Section 4.7, “Rule 7: Understand
streamable patterns”, a predicate in a pattern must be
motionless. Because you are not allowed to use windowed
template matching using fn:snapshot or fn:copy1, this
pattern's solution takes an old-school imperative
approach to solve the non-motionless predicate issue.

5.2.4. Applicability

Applies to

This pattern applies, among others, to the following
scenarios:
1. Match patterns with predicates based on properties of

descendant nodes.

Does not apply to

This pattern does not apply to the following scenarios:
1. Match patterns with predicates based on the

following-sibling or preceding-sbiling axes;
2. Match patterns with predicates based on the following

or preceding axes.

5.2.5. Consequences

Applying this pattern has the following consequences:
1. The decision-tree must imperatively be written by

hand, instead of letting the processor define the logic
for you, which is the normal operation mode with
template based matching.

2. Tricky to get right when multiple template rules exist
that process the same element. In such cases, it is
better to use windowed streaming, or, if that is not an
option, forking.

5.2.6. Implementation

Refactor your original code by applying the following
steps in order:
1. Introduce a streamable mode.
2. Remove the delete-template and the predicate in the

match-pattern.
3. Create a copy of the node.
4. Rewrite the decision logic of the predicate inside the

template, or apply templates on the copy.

Example

If we apply these three refactoring rules to our original
example, we end up with the following code:

<!-- (1) change the mode to streamable -->
<xsl:mode streamable="yes"/>

<!-- (2) remove the predicate -->
<xsl:template match="para" mode="streaming">
 <!-- (3) create a copy of the node -->
 <xsl:variable name="copy"
 select="copy-of(.)"/>
 <!-- (4) rewrite the decision logic -->
 <xsl:copy-of
 select="$copy[descendant::emphasis]"/>
</xsl:template>

<!-- (2) remove the delete-template -->

After applying this pattern, we have inlined the decision-
logic, resulting in a template body with one downward
select to create a copy of the current node2, which is
streamable, because any subesequent processing on this
copy will be grounded, and therefor allowed during
streaming.

This streaming pattern applies to any non-motionless
predicate that, after rewriting it as (something similar as)
above, ends up with a maximum of one downward select
per template. If you end up with multiple downward
selects after rewriting, then also apply the following
pattern, Instructions with multiple downward selects.

Page 35 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 deep-skip skips non-matching nodes without processing their children.

5.3. Instructions with multiple downward
selects

5.3.1. Intent

You have an instruction with multiple downward selects
in document order and want to make it streamable.

5.3.2. Level

Easy: follows a commong refactoring pattern from the
XSLT 2.0 community. Streamability level: full.

5.3.3. Motivation

Consider the following example:

<xsl:template match="address">
 <xsl:value-of select="street"/>
 <xsl:value-of select="number"/>
 <xsl:apply-templates select="state | country"/>
</xsl:template>

This template is not streamable, because it violates
Section 4.1, “Rule 1: each template rule can have a
maximum of one downward expression”, it has multiple
downward selects, here with the select expressions
street, number and state | country.

5.3.4. Applicability

Applies to

This pattern applies to the following scenarios:
1. The body of any instruction that has multiple

downward selects in document order;
2. The body of a streamable stylesheet function having

multiple downward selects in document order;
3. The body of a template declaration having multiple

downward selects in document order.

Does not apply to

This pattern does not apply to:
1. Function-calls that contain multiple downward

selects;
2. Single expressions with multiple downward selects;
3. Instructions with multiple downward selects that are

not in document order, see Section 5.4, “Instructions
with multiple downward selects out of document
order”.

5.3.5. Consequences

Applying this pattern has the following consequences:
1. After rewriting the body, its coherency may be harder

to understand and thus harder to maintain.

5.3.6. Implementation

Refactor your original code by applying the following
steps in order:
1. Introduce a streamable mode with on-no-

match="deep-skip"1;
2. Replace the body of your instruction with a single

xsl:apply-templates;
3. Add matching templates for the individual elements.

Example

Applying these three refactoring rules to our original
example, we end up with the following code:

<!-- (1) change the mode to streamable -->
<xsl:mode streamable="yes"
 on-no-match="deep-skip"/>

<!-- (1) change the mode to streamable -->
<xsl:template match="address" mode="streaming">
 <!-- (2) replace the body with
 a single apply-templates -->
 <xsl:apply-templates select="*" mode="#current"/>
</xsl:template>

<!-- (3) add matching templates
 for each element -->
<xsl:template match="street | number"
 mode="streamable">
 <xsl:value-of select="."/>
</xsl:template>
<xsl:template match="state | country"
 mode="streamable">
 <!-- details left out -->
</xsl:template>

This pattern is perhaps the most common pattern with
streaming: take any given instruction with too many
downward selects and split it up in smaller pieces to
make it streamable. Most people will be familiar with
this pattern, because it does not introduce any new
concepts, in fact, it is a common refactoring method in
existing stylesheets.

Page 36 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

5.4. Instructions with multiple downward
selects out of document order

5.4.1. Intent

You have an instruction with multiple downward selects
that do not follow the input document order and want to
make it streamable.

5.4.2. Level

Advanced: introduces a new concept, forking.
Streamability level: full.

5.4.3. Motivation

Consider the following example:

<xsl:template match="address">
 <!-- number first -->
 <xsl:value-of select="number"/>
 <xsl:value-of select="street"/>
 <xsl:apply-templates select="state | country"/>
</xsl:template>

Similar to Section 5.3, “Instructions with multiple
downward selects”, this template is not streamable,
because it violates Section 4.1, “Rule 1: each template
rule can have a maximum of one downward expression”,
it has multiple downward selects, again with the select
expressions street, number and state | country. Note,
however, an important difference with the previous
design pattern: in this case, the order of the selected
elements does not match the document order of the
input document.

5.4.4. Applicability

Applies to

This pattern applies to the following scenarios:
1. The body of any instruction that has multiple

downward selects in any order;
2. The body of a streamable stylesheet function having

multiple downward selects in any order;
3. The body of a template declaration having multiple

downward selects in any order.

Does not apply to

This pattern does not apply to:
1. Function-calls that contain multiple downward

selects;
2. Single expressions with multiple downward selects;

5.4.5. Consequences

Applying this pattern has the following consequences:
1. The instruction xsl:fork has no effect on the result, it

can be hard for programmers to understand why it is
introduced and the temptation to remove it at a later
stage, because "it does nothing special" can be big.

2. Code quickly gets messy, because nesting gets two
levels deeper with each fork.

5.4.6. Implementation

Refactor your original code by applying the following
steps in order:
1. Introduce a streamable mode;
2. Wrap each downward select in an xsl:fork

instruction.

Example

Applying these two refactoring rules to our original
example, we end up with the following code:

<!-- (1) change the mode to streamable -->
<xsl:mode streamable="yes"/>

<!-- (1) change the mode to streamable -->
<xsl:template match="address" mode="streamable">
 <!-- (2) wrap in xsl:fork -->
 <xsl:fork>
 <xsl:sequence>
 <xsl:value-of select="number"/>
 </xsl:sequence>
 <xsl:sequence>
 <xsl:value-of select="street"/>
 </xsl:sequence>
 <xsl:sequence>
 <xsl:apply-templates
 select="state | country"/>
 </xsl:sequence>
 </xsl:fork>
</xsl:template>

As explained in Section 4.10, “Rule 10: Master xsl:fork”,
forking is a technique that has no semantic meaning, it
merely tells the processor to process the streaming input
from this moment on using multiple reading heads.
Introducing xsl:fork in code allows the programmer to
write a sequence of xsl:sequence elements, of which the
body, or select attribute, can each contain a single
downward select expression.

Page 37 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 Other ways of achieving the same result are not so trivial, unless you fallback to creating a copy of the node and process that copy using
non-streaming templates, as in the first pattern.

2 The axes following, preceding, following-sibling and preceding-sibling are part of the group of forbidden streaming paths, they cannot
operate on a streaming node, if they do, the streamability analysis will deem them free-ranging. They are allowed, however, on grounded
nodes, i.e., nodes that do not belong to a streamed document.

3 It has not entirely disappeared, a recent thread on StackOverflow discusses this coding pattern, see XPath to select contiguous elements.
4 In XSLT 1.0, if an axis selected multiple nodes, only the first one was actually selected. In XSLT 2.0, by default, all nodes on an axis are

selected in path expressions. As a result, sibling recursion in XSLT 1.0, which typically relied on this feature, was not compatible and had
to be rewritten for XSLT 2.0.

This pattern opens up a lot of possibilities. It is a
common scenario to change the order in which elements
are output. Using xsl:fork makes this easier to achieve
using streaming1.

5.5. Expressions with the preceding- or
following-sibling axes

5.5.1. Intent

You have an expression that involves iterating over the
preceding-sibling or following-sibling nodes2.

5.5.2. Level

Advanced, involves streamed grouping. Streamability
level: full.

5.5.3. Motivation

In flat-to-hieararchical scenarios it is still quite common
to use the following-sibling axis. Consider the following
input document:

<books>
 <book type="classic"/>
 <title>Don Quixote</title>
 <author>Micuel De Cervantes</author>
 <book type="classic"/>
 <title>Pilgrim's Progress</title>
 <author>John Bunyan</author>
 <book type="classic"/>
 <title>Robinson Crusoe</title>
 <author>Daniel Defoe</author>
</books>

and we would like to turn this into a nested structure,
where title and author are part of the book element.
One way of doing that is:

<xsl:template match="/books">
 <xsl:copy>
 <xsl:apply-templates select="book"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="book">
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates
 select="following-sibling::title[1]"/>
 <xsl:apply-templates
 select="following-sibling::author[1]"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="title | author">
 <xsl:copy-of select="."/>
</xsl:template>

In practice, usage of the following sibling and preceding
sibling axis has been getting less and less attention since
the dawn of XSLT 2.0, which introduced grouping3. One
of the reasons we don't see much of the sibling axis is
that sibling recursion is quite hard to get right in XSLT
2.0 and up4 and because most coding patterns are just
easier to accomplish and understand with
xsl:for-each-group with group-adjacent or
group-starting-with, as is explained in [MKAY08], page
116.

The output of the above template would be the
following:

<books>
 <book type="classic">
 <title>Don Quixote</title>
 <author>Micuel De Cervantes</author>
 </book>
 <book type="classic">
 <title>Pilgrim's Progress</title>
 <author>John Bunyan</author>
 </book>
 <book type="classic">
 <title>Robinson Crusoe</title>
 <author>Daniel Defoe</author>
 </book>
</books>

Page 38 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://stackoverflow.com/questions/8961220

1 That is a first! Usually, refactoring code to fit a streaming scenario results in less readable code, but this pattern actually makes it more
readable and maintainable. Perhaps you should have applied this pattern already, even before you started streaming.

2 This is not always trivial to get right, but many sibling recursion patterns can be rewritten with group-starting-with or with group-
adjacent.

5.5.4. Applicability

Applies to

This pattern applies to the following scenarios:
1. Expressions that use the preceding-sibling or the

following-sibling axes.
2. Can sometimes also be applied to patterns that use

these axes.

Does not apply to

This pattern does not apply to:
1. Expressions with the following and preceding axes.

5.5.5. Consequences

Applying this pattern has the following consequences:
1. It makes your code more readable and easier to

maintain1.
2. Streamed grouping can be hard to grasp and to get

right, which in more complex scenario may require a
significant endeavor.

5.5.6. Implementation

Refactor your original code by applying the following
steps in order:
1. Introduce a streaming mode.
2. Replace the sibling recursion pattern with

xsl:for-each-group2.
3. If needed, adjust the resulting code using previous

patterns, to make it streamable.

Example

Applying these three refactoring rules to our original
example, we end up with the following code:

<!-- (1) introduce a streamable mode -->
<xsl:mode streamable="yes"/>

<xsl:template match="/books">
 <xsl:copy>
 <!-- (2) rewrite the sibling recursion -->
 <xsl:for-each-group select="*"
 group-starting-with="book">
 <xsl:copy>
 <!-- (3) streamable body -->
 <xsl:copy-of select="@*"/>
 <xsl:copy-of select="current-group()[
 position() > 1]"/>
 </xsl:copy>
 </xsl:for-each-group>
 </xsl:copy>
</xsl:template>

This streaming pattern follows a typical XSLT 3.0
scenario for grouping. By applying grouping we can get
rid of the following-sibling axis steps. In this case, it
sufficed to use group-starting-with, which takes a
motionless pattern as seen from Section 4.7, “Rule 7:
Understand streamable patterns”. The select-statement
is obvious and allowed in streaming (it selects children).

Let us have a look at the individual parts. The nesting
applied here follows Section 4.2, “Rule 2: each individual
construct can have a maximum of one downward
expression”, each construct in it has a maximum of one
downward expression:
• The xsl:copy instruction is motionless if it does not

have a select statement, however we still need to look
at its sequence constructor, as per Rule Two.

• The xsl:for-each-group instruction is consuming, it
contains one downward select. However, as we have
learned in Rule Two, it is also a focus-changing
construct. This means that the sequence constructor
inside it can have yet another downward select
expression. Because we already established that the
pattern in group-starting-with is motionless, this
does not count towards the limit of one, we can have
as many motionless expressions as we want.

Page 39 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 The public Last Call WD in Section 19.8.8.5 specifically disallowed fn:current-group in streaming. After several bug reports and
extensive research to assess whether allowing this function in streaming proved doable, a proposal by Michael Kay was accepted through
XSLT 3.0 Bug 24510. See also XSLT 3.0 Bug 23391, 24342, 24317 (talks about a limitaion in grouped streaming), 24509, 24556,
24455. The resolution is publicly available as an attachment to Bug 24510, comment 9, which is a good starting point.

2 Which is only partially true, you could do it by creating an inline copy of the attributes, such as <xsl:copy-of select="copy-of(@*) |
current-group()[position() > 2]" />.

3 If possible, it is much easier to solve this pattern using windowed streaming, by creating a copy of the parent node, which allows you to
use any expression. However, that only works if the distance between the preceding node and its possible usages is small and fits in a
windowed copy.

4 Sometimes it is possible to rewrite such axes in terms of child axes, tunneled parameters or other ways, that would be streamable. If such
a solution exists, it should take preference over using accumulators.

5 This coding problem can also be solved using tunneled parameters, and in fact, it is believed that most accumulator-scenario can be
expressed with tunneled parameters, however, it can get very unwieldy to keep track of tunneled parameters across all templates in a real-
world scenario. Accumulators are a cleaner way to do this.

6 It applies only to the following axis if the stylesheet can be rewritten using the reverse of that axis, because accumulator cannot look
forward, they can only remember "what has been processed so far".

7 Prefer the previous streaming pattern, where a sibling recursion is rewritten using streamed grouping.
8 For instance, multi-level section numbering is a typical scenario for accumulators. An example, including explanation on how it works

with accumulators, is in Section 18.2.8, Examples of Accumulators, in the XSL Transformations 3.0 Specification.

• The second xsl:copy instruction is again motionless
on itself, but we need to check its sequence
constructor.

• The first xsl:copy-of instruction is motionless,
remember that visiting the attribute axis is always
allowed, see Section 4.3, “Rule 3: Use motionless
expressions where possible”.

• The second xsl:copy-of instruction is consuming. It
consumes the fn:current-group and selects all
elements except the first. In most cases, using or
referencing the current group will count as a
downward expression, as such it is not legal to have
more than one usage of the expression, nor can you
use the expression in an inner loop or loop
expression1.

• Note that, similar to the explanation in the first
streaming pattern, it is not possible to combine these
two xsl:copy instructions into one with a union
expression2.

• Note that using the fn:position function is allowed
and motionless in any expression. It only has special
meaning in patterns, where it is not allowed in a top-
level predicate.

5.6. Expressions using the preceding axis

5.6.1. Intent

You have an expression that uses the preceding axis and
want to make it streamable.

5.6.2. Level

Advanced: uses accumulators34. Steamability level: full.

5.6.3. Motivation

Suppose you want to keep a tracking word count per
paragraph that shows all preceding words. You could
code that as follows (though on large documents this will
be highly inefficient):

<xsl:template match="text">
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="para" use-when="false()">
 <xsl:copy>
 <xsl:attribute
 name="words-sofar"
 select="count(
 preceding::text()/tokenize(., ' '))"/>
 <xsl:copy-of select="text()"/>
 </xsl:copy>
</xsl:template>

The code above is so trivial that I will leave out the flat
input XML and output XML. It simply counts all the
words up until the current paragraph and adds this count
to the para element as an attribute. To make this
streamable, we will have to use accumulators5.

5.6.4. Applicability

Applies to

This pattern applies to the following scenarios:
1. Path expressions using the following6 or preceding

axes.
2. Path expressions using the sibling axes7.
3. Any free-ranging expression that cannot be made

streamable using any of the other streaming patterns.
4. Any place where you need to keep (the equivalent of)

a running total8.

Page 40 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://www.w3.org/TR/xslt-30/#information-about-group
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24510
https://www.w3.org/Bugs/Public/show_bug.cgi?id=23391
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24342
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24317
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24509
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24556
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24455
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24510#c9
https://www.w3.org/XML/Group/qtspecs/specifications/xslt-30/html/Overview.html#accumulator-examples

1 Accumulators can only operate on nodes with a motionless expression.
2 Using maps makes this task a tad easier though, maps are a new type introduced in XSLT 3.0.
3 For more information on accumulators and examples, see Section 18.2 in XSL Transformations 3.0.
4 Provided its attribute streamable is set to yes, otherwise, it applies to any non-streaming document.
5 The XSLT 3.0 Working Group is considering a proposal to limit an accumulator to a source document to prevent accumulators taking

up too much processing time overhead. The status of this proposal can be tracked through XSLT 3.0 Bug 24547, read from comment#6.

Does not apply to

This pattern does not apply to:
1. Scenarios where information ahead is required.
2. Scenarios that can be rewritten without using

accumulators (this has preference).
3. Scenarios that cannot be expressed as a sequence of

motionless expressions upon processed nodes1.

5.6.5. Consequences

Applying this pattern has the following consequences:
1. May dramatically increase complexity by having to

use accumulators.
2. Need to keep track of visiting of passed nodes, which

can be hard to get right2.

5.6.6. Implementation

Refactor your original code by applying the following
steps in order:
1. Introduce a streamable mode;
2. Create a streamable accumulator.
3. Add the appropriate accumulator rules to add

properties to visited nodes.
4. Change the offending expression to use the

accumulator expression instead.

Example

Applying these four refactoring rules to our original
example, we end up with the following code:

<!-- (1) introduce a streamable mode -->
<xsl:mode streamable="yes"/>

<!-- (2) create a streamable accumulator -->
<xsl:accumulator name="count-words"
 as="xs:integer"
 initial-value="0"
 streamable="yes">

 <!-- (3) add appropriate
 rules to decorate nodes -->
 <xsl:accumulator-rule
 match="text()[parent::para]"
 phase="start"
 new-value="$value + count(./tokenize(.,' '))"/>

</xsl:accumulator>

<xsl:template match="text">
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="para">
 <xsl:copy>
 <!-- (4) adjust the expression
 to use the accumulator -->
 <xsl:attribute
 name="words-sofar"
 select="accumulator-before('count-words')"/>

 <xsl:copy-of select="text()"/>
 </xsl:copy>
</xsl:template>

Before we explain the code, let us first look at what
accumulators are and how they can be applied:

An accumulator is best seen as a calculated property,
or decoration, or function of a node: it can "attach" a
value to a node that is made available through the
fn:accumulator-before and fn:accumulator-after

functions3. Accumulators are processed for each node
that is processed in a streamable way4, regardless of their
source5. Streamable accumulators must be motionless
and they cannot return streamed nodes.

Page 41 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://www.w3.org/TR/xslt-30/#accumulators
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24547
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24547#c6

1 With two exceptions: you cannot match an attribute (you can reach out to attributes from an element with a motionless expression
anyway), and you cannot match a namespace node (functions such as in-scope-namespaces are motionless, use them instead).

2 This is correct: it is the only declaration that can depend on start- and end-tags, though these terms are not officially used in the
specification, because it applies more generally to any node.

3 Accumulators are global. They ignore the filter present in the on-no-match attribute, even if it is defined as deep-skip. If you want to
skip nodes, you need to create a motionless pattern in the accumulator rules that does so. The only declaration that can have effect on
accumulators is whitespace stripping, which happens prior to applying accumulators.

An accumulator consists of three parts:
1. The top-level accumulator declaration

xsl:accumulator, containing the name, the initial
value, and whether or not is applies to streaming
documents.

2. One or more accumulator rules, defined as children
xsl:accumulator-rule elements of the accumulator
declaration, which each defines a new value for the
accumulator, whose calculation can be based on the
previous value, obtainable through the reserved
variable $value. An accumulator rule applies to a
matching pattern, which follows rules equal to a
match-pattern of a template1. There are two types of
rules:
• phase="start", also called an accumulator-before

rule applies the accumulator rule when the
processor visits the opening tag2, or beginning of
the matching node. This means that, if you use the
function fn:accumulator-before upon processing
such node, it will return the new value just
calculated in that rule. This is called the pre-descent
value.

You can request a pre-descent value only before
a consuming instruction, or, if the body of a
construct does not contain a consuming
instruction, anywhere in that body.

• phase="end", also called an accumulator-after rule,
applies the accumulator rule when the processor
visits the closing tag, or end of the matching node.
This means that, if you use the function
fn:accumulator-after after you are done visiting
that node, it will contain the new value calculated
by the matching accumulator-after rule. This is
called the post-descent value.

You can request a post-descent value only after
a consuming instruction, or, if the body of a
construct does not contain a consuming
instruction, anywhere in that body.

3. Zero or more usages of the accumulator, by the
functions fn:accumulator-before and
fn:accumulator-after, which take one parameter of
type xs:string, whose value must match an existing
accumulator name. When you can use which is
described under the previous item.

Now that the essence of accumulators is clear, we can
take a fresh look at the code. The streamable accumulator
declared at the root and going by the name count-words
and an initial value of 0 has one accumulator rule:
• Accumulator-before rule: it defines the phase as start,

while this is the default, it is clearer to specify it
explicitly.

• The match pattern is text()[parent::para]. This
means that when this pattern matches any node,
regardless of existing xsl:apply-templates

instructions3 or xsl:for-each loops, it will update the
accumulator value attached to that node. Any
accumulator matches twice, once at the start and once
at the end of visiting a node (after processing its
children). Left out phases default to leaving the
current value unchanged.

This pattern makes sure that we only match text
nodes that are a child of para elements, which
matches the original program listing. We cannot
match para elements here, because then attempting to
count the text() children would be considered non-
motionless and is illegal in a streaming accumulator.

• The new-value attribute does what the
preceding::text() expression did for us in the
original code. At each visit of a text node, it adds the
total count of the words to the previous count of the
words.

Allowing an expression on a text node may seem
like a consuming expression and therefore not
streamable. However, as we have seen in the first
example in Section 4.9, “Rule 9: Use motionless
filters”, expressions that consume childless nodes are
considered motionless.

In the matching template for the para element, the code
was changed to use this accumulator instead of the
following:: expression. This works, because on each
time this template is processed, the current node will be a
para element, and its children are not yet processed,
which means that the running total on the first visit will
be 0 (zero). Then, upon the call to text() in the
xsl:copy-of instruction, the text node is processed and
the running total is updated, which is reflected upon the
next visit of the template. And so on, until the last para
is visited.

Page 42 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 Not all scenarios can be forked, it depends on whether it is possible to split processing where one part does not depend on intermittent
output of another part. In other words, the forking pattern only works if you can process each part individually.

You might wonder how we can change this behavior and
have the running total per paragraph include the count
of the current paragraph, in other words, the first count
should not be zero, but the total of that paragraph.

To achieve that, we need to make a few changes, but
it is not as hard as it might seem at first:
• You might be tempted to change the accumulator rule

phase to phase="end", but this is not required in this
scenario, because it operates on a childness node. That
means that when the text node is processed, both the
fn:accumulator-before and fn:accumulator-after

functions can used within the matching template.
• Change the matching template to match the text

node instead. Upon visiting the text node, the
calculated value is available. This is different from our
previous situation, where we requested the calculated
value before the text node was visited. There is no
before and after for a text node.

• Add the parent::para to text-matching template,
otherwise we also match unwanted text-nodes.

The result of these changes looks as follows (only the
changed parts are shown):

<xsl:template match="para">
 <xsl:copy>
 <xsl:apply-templates select="text()"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="text()[parent::para]">
 <xsl:attribute name="words-sofar"
 select="accumulator-before('count-words')"/>
 <xsl:copy-of select="."/>
</xsl:template>

5.7. Stylesheets requiring look-around

5.7.1. Intent

You have a stylesheet with expressions that rely on
preprocessing the input tree and you want to make it
streamable.

5.7.2. Level

Advanced, uses forking and multi-pass streaming.
Streamability level: multi-pass1.

5.7.3. Motivation

Consider you have been given the following input:

<expenses>
 <data date="2014-05-15">
 <amount article="pencils">28.97</amount>
 <amount article="paper">42.90</amount>
 <amount article="clips">18.41</amount>
 <amount article="ink">143.93</amount>
 <amount article="staples">6.23</amount>
 </data>
 <data date="2014-05-16">
 <amount article="pencils">44.62</amount>
 <amount article="paper">154.34</amount>
 <amount article="clips">6.19</amount>
 <amount article="ink">219.07</amount>
 <amount article="staples">0.00</amount>
 </data>
 <data date="2014-05-17">
 <amount article="clips">38.02</amount>
 <amount article="ink">108.71</amount>
 <amount article="staples">11.84</amount>
 </data>
</expenses>

and your requirement is to calculate daily totals and what
the daily percentage is from the grand total, like this:

<expenses>
 <data total="240.44" perc="29" date="2014-05-15">
 <amount article="pencils">28.97</amount>
 <amount article="paper">42.90</amount>
 <amount article="clips">18.41</amount>
 <amount article="ink">143.93</amount>
 <amount article="staples">6.23</amount>
 </data>
 <data total="424.22" perc="52" date="2014-05-16">
 <amount article="pencils">44.62</amount>
 <amount article="paper">154.34</amount>
 <amount article="clips">6.19</amount>
 <amount article="ink">219.07</amount>
 <amount article="staples">0.00</amount>
 </data>
 <data total="158.57" perc="19" date="2014-05-17">
 <amount article="clips">38.02</amount>
 <amount article="ink">108.71</amount>
 <amount article="staples">11.84</amount>
 </data>
</expenses>

Page 43 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 This is intentional in the design of xsl:fork, forking does not go over the input multiple times, instead, it visits each streamed input
node one time as with normal streaming, but processes it multiple times, for each fork instruction.

2 Sometimes an input document can only be processed on the fly, like a Twitter or news feed, a volatile memory stream or a listener to a
network socket stream. Such streams cannot be restarted.

With XSLT 2.0, one could achieve it using a stylesheet
like the following:

<xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="/expenses">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="data">
 <xsl:copy>
 <xsl:attribute name="total"
 select="sum(amount)"/>
 <xsl:attribute name="perc"
 select="round(sum(amount) div
 sum(//amount) * 100)"/>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
</xsl:template>

On each visit of the the data element, we calculate the
total of that day and the average in respect to the grand
total. The total of that day is dependent of the children
and the average is dependent on all amount elements, and
as such, at the moment of visiting the data element, it
requires (re)visiting all preceding and following amount
elements.

Since looking around is not allowed in streaming, it
is not immediately obvious how to make this example
streamable. The first thing that comes to mind is using
forking as in the out of document order pattern above. But
that does not help us much, because we cannot store the
result of one fork operation and use it in another for
operation1.

The streaming pattern discussed here will use an
approach called multi-pass streaming, where the input
stream is processed multiple times. It is not possible to
that on any input stream, but if you know the document
URI, you can open the streaming document multiple
times using the xsl:stream instruction.

5.7.4. Applicability

Applies to

This pattern applies to the following scenarios:
1. Any expression requiring precalculation or

preprocessing the input stream.
2. Expressions that cannot be split with forking.
3. Expressions that cannot use windowed streaming, for

instance, that rely on the whole document.

Does not apply to

This pattern does not apply to:
1. Streaming documents that are not restartable2.
2. Streaming documents that do not have an accessible

URI.

5.7.5. Consequences

Applying this pattern has the following consequences:
1. Going twice or more over a large input document

using streaming will increase the processing time by a
factor of two or more.

2. Reliance on the document URI may have security
implications.

5.7.6. Implementation

Refactor your original code by applying the following
steps in order:
1. Introduce a streaming mode.
2. Create a global variable to hold the initial input

document URI.
3. Create a global variable for preprocessing the stream.
4. Apply previous patterns to make the stylesheet

streamable.
5. Replace the free-ranging expressions with a variable

reference.

Page 44 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 The rules on accessing the global context node in a streaming context is still under debate in the working group. It is possible that
support for this will be dropped, in which case you should use a parameter instead and pass the document URI on through the
infrastructure of your processor.

Example

Applying these five refactoring rules to our original
example, we end up with the following code:

<!-- (1) introduce a streamable mode -->
<xsl:mode streamable="yes"/>

<!-- (2) capture the initial doc uri -->
<xsl:variable name="docuri"
 select="base-uri(.)"/>

<!-- (3) preprocess the total -->
<xsl:variable name="total">
 <xsl:stream href="{$docuri}">
 <xsl:value-of
 select="sum(//text()[parent::amount])"/>
 </xsl:stream>
</xsl:variable>

<xsl:template match="node() | @*">
 <xsl:copy>
 <!-- (4) apply streamability refactoring -->
 <xsl:apply-templates select="@*"/>
 <xsl:apply-templates select="node()"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="/expenses">
 <xsl:copy>
 <!-- (4) apply streamability refactoring -->
 <xsl:apply-templates select="@*"/>
 <xsl:apply-templates select="node()"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="data">
 <xsl:copy>
 <xsl:attribute name="total" select="$total"/>

 <!-- (4) apply streamability
 refactoring: forking -->
 <xsl:fork>
 <xsl:sequence>
 <!-- (5) use the precalculated $total -->
 <xsl:attribute name="perc"
 select="round(sum(amount) div
 $total * 100)"/>
 </xsl:sequence>
 <xsl:sequence>
 <!-- (4) apply streamability
 refactoring -->
 <xsl:apply-templates select="@*"/>
 <xsl:apply-templates select="node()"/>
 </xsl:sequence>
 </xsl:fork>
 </xsl:copy>
</xsl:template>

The example necessarily relies on previous streaming
patterns, namely forking and splitting the identity select
expression node() | @* into two; see previous sections
for how these refactorings work.
The new streaming pattern introduced here is
preprocessing the stream, or in other words, multi-pass
streaming. There are no constructs in XSLT 3.0 that
specifically facilitate multi-pass streaming, but using this
pattern, it is relatively straightforward to do.

The variable $docuri relies on the global dynamic
context. It is not allowed with streaming to consume a
streamed node in a global variable, but it is allowed to
use a motionless expression, in this case base-uri(.),
which stores the URI of the input document1.

The second variable, $total, uses the xsl:stream
instruction and the URI of the initial input document
from $docuri to process the whole stream. Depending on
the size of your stream, this can be a lengthy operation,
but because variables are stable and deterministic in
XSLT, this will be done only once.

The expression inside fn:sum may require a little
explanation. The easier thing to do would be to write
//amount as in the original non-streaming example.
However, because of the chance of overlapping nodes,
such an expression is not streamable within this function.
This limitation may be lifted in streamability analysis, in
fact there is a strong sentiment in the Working Group to
allow such constructs and to allow limited buffering by
processors, but at the time of this writing, there was no
decision yet. We have seen before that childless nodes do
not suffer the same problem (there is no chance for
overlap), hence we can rewrite the expression to focus on
the the text nodes as text()[parent::amount], which is
streamable.

After defining a global variable for preprocessing the
input stream, it becomes relatively trivial to rewrite the
rest of the stylesheet to use this variable and to introduce
forking for the part that still have multiple downward
selects.
Note: processing a streaming document is by definition
not stable, because the document will not be held in
memory. That means, if during streaming the
document's content changes, this will effect the outcome
of the transformation. Going over the document twice,
as in this streaming pattern, has the same potential side-
effect: the document may change between processing
through the xsl:stream instruction and the initial input
tree processing in the streaming mode. It is up to the
document provider to make sure that the document
remains stable for the duration of the processing.

Page 45 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 The instruction xsl:context-item is new in XSLT 3.0 and determines the type of the expected context item and whether or not there
should be a context item at all. Using use="prohibited" prohibits a context item, which, in the case of xsl:call-template means that
the context item will not be passed on to the template, it will be absent.

5.8. Dependencies on xsl:call-template

5.8.1. Intent

You have a stylesheet with dependencies on
xsl:call-template and want to make it streamable.

5.8.2. Level

Intermediate, sometimes requires forking. Streamability
level: full.

5.8.3. Motivation

Consider the following example:

<xsl:template match="person">
 <xsl:call-template name="address">
 <xsl:with-param name="street"
 select="address/street"/>
 <xsl:with-param name="number"
 select="address/number"/>
 </xsl:call-template>
</xsl:template>
<xsl:template name="address">
 <xsl:param name="street"/>
 <xsl:param name="number"/>
 <xsl:value-of select="$number, $street"/>
</xsl:template>

The instruction xsl:call-template is severely limited
when used with streaming. You cannot pass references to
nodes and you cannot use the context item. If there is an
implicit context item as in the example above,
streamability analysis will fail.

5.8.4. Applicability

Applies to

This pattern applies to the following scenarios:
1. Any use of xsl:call-template involving streamed

nodes.
2. Any other xsl:call-template, unless the context item

is explicitly prohibited.

Does not apply to

This pattern does not apply to:
1. Other instructions than xsl:call-template.

5.8.5. Consequences

Applying this pattern has the following consequences:
1. Your programmers will have to learn not to use

xsl:call-template in streaming scenarios.

5.8.6. Implementation

There are no existing situations that I know of that
actually require the use of xsl:call-template. The
streaming pattern proposed here is to get rid of it.
However, there is one scenario where this is not
necessary, which is when the called template is not
dependent on the context item and the parameters are
motionless expressions. In such cases, simply add a
<xsl:context-item use="prohibited"/>1 to the called
template.

If there is dependency on streaming nodes, refactor
your original code by applying the following steps in
order:
1. Introduce a streaming mode.
2. Replace the xsl:call-template instructions with

either an apply-templates (possibly in another
named, but streamable, mode) or a stylesheet function
call.

3. Remove dependencies on streaming nodes in
parameters.

4. Apply other patterns where necessary to make the
result streamable.

Page 46 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 The brand new feature that allows functions to take streamable nodes allows them to have at most one parameter that is a streamable
node. This is defined in the signature of the function.

2 It is possible to write functions that are recursive and guaranteed streamable, but it is a very advanced concept, very new and likely to
change, and out of the scope of this paper.

3 In XSLT 3.0 it is possible to use packages (declared with xsl:package) and to override modes, named templates and functions, as long as
they are marked overridable. It is currently not allowed to use streamable functions that are not final, you must either override a non-
final function and make it final, or you must change the function signature to be final.

Example

Applying these four refactoring rules to our original
example, we end up with the following code:

<!-- (1) change the mode to streamable -->
<xsl:mode streamable="yes"/>

<xsl:template match="person">
 <!-- (2) replace call-template
 with apply-template -->
 <xsl:apply-templates name="address"/>
</xsl:template>

<!-- (2) replace named template -->
<!-- (3) remove parameters -->
<xsl:template match="address">
 <xsl:fork>
 <!-- (4) apply other
 patterns, here: forking -->
 <xsl:sequence select="string(number) || ' '"/>
 <xsl:sequence select="string(street)"/>
 </xsl:fork>
</xsl:template>

In most cases, removing dependencies on
xsl:call-template will be rather trivial and only requires
using known XSLT 2.0 constructs. In this example, we
had two downward expressions (potentially) not in
document order, which forced us to use forking as
explained in an earlier streaming pattern. Other than
basic refactoring to get rid of the named template, there
are no new concepts revealed here.

5.9. Using streamable stylesheet functions

5.9.1. Intent

You have a stylesheet function with arguments taking
nodes and you want to make it streamable.

5.9.2. Level

Advanced, requires understanding writing streamable
functions. Streamability level: full.

5.9.3. Motivation

Consider the following example:

<xsl:template match="price">
 <xsl:value-of select="f:vat(.)"/>
</xsl:template>

<xsl:function name="f:vat">
 <xsl:param name="price"/>
 <xsl:value-of select="($price div 121) * 21)"/>
</xsl:function>

It shows a simple function that takes a price element and
calculates the VAT from a VAT-inclusive price, here
21%.

5.9.4. Applicability

Applies to

This pattern applies to the following scenarios:
1. Stylesheet functions that have at most one parameter

that can be a node.
2. Stylesheet functions returning streamed nodes.

Does not apply to

This pattern does not apply to:
1. Stylesheet functions that take more than one

parameter that can be node1.
2. Recursive stylesheet functions2.
3. Non-final stylesheet functions3.

5.9.5. Consequences

Applying this pattern has the following consequences:
1. All your stylesheet functions signatures will be typed.
2. Streamable stylesheet function bodies will need to be

and remain at most consuming (one downward select,
see Section 4.1, “Rule 1: each template rule can have a
maximum of one downward expression”), which has
consequences on maintainability.

Page 47 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

5.9.6. Implementation

Refactor your original code by applying the following
steps in order:
1. Mark the stylesheet function as streamable (if you

have not already done so, introduce a streamable
mode as well).

2. Type the return type and the function parameters.
3. Change the function body to be streamable using

other streamable patterns.

Example

Applying these three refactoring rules to our original
example, we end up with the following code:

<!-- (1) introduce a streamable mode -->
<xsl:mode streamable="yes"/>

<xsl:template match="price">
 <xsl:value-of select="f:vat(.)"/>
</xsl:template>

<!-- (2) type the function's return type -->
<xsl:function name="f:vat" as="xs:string">
 <!-- (2) type the function's parameters -->
 <xsl:param name="price" as="element()"/>

 <!-- (3) make body streamable,
 here: nothing to do -->
 <xsl:value-of select="($price div 121) * 21)"/>
</xsl:function>

An important step here is to type the parameters and the
return type. It is allowed and possible to create
streamable functions without it, but it is much harder to
write streamable functions that way. By telling the
processor that the return type is an atomic type, it can
analyse that the function will consume the input node
and it can mark calling the stylesheet function with usage
absorption.

Inside the function's body, we have an atomizing
construct: the variable reference $price, which is bound
to a potentially streaming node, will be atomized before
division takes place. Atomization always means that the
node is going to be consumed. Function declarations
follow the same rules as templates, Section 4.1, “Rule 1:
each template rule can have a maximum of one
downward expression”. However, within functions, the
bound parameter is the streaming node for the sake of
the analysis. In other words, the call on the $price
parameter is now the replacement for the downward
select (you could mentally replace it with a node
reference, such as the self::price select expression to see
how it works).

Streamable stylesheet functions are a very recent addition
to the machinery available to authors of streamable
stylesheets and packages. It is a very powerful one, but it
is also one of the most complex to write correctly. It is
the only user-defined way of writing a construct that
returns nodes which is allowed (recall that named
templates cannot operate on streaming nodes at all and
that templates are always grounded, meaning that they
can never return nodes).

For instance, it is possible to write a function that
returns the third child based on a certain pattern. The
returned node will still be a streaming node and not, as
with other constructs, a copy of a node:

<xsl:function name="f:child"
 streamable="yes"
 as="element()">

 <xsl:param name="node" as="element()"/>
 <xsl:sequence
 select="$node/person[@gender = 'M'][3]"/>
</xsl:function>

If you call that function with a streamable expression,
you can apply path expressions on the returned value and
you will operate on the original node, not a copy of the
node. Besides from not requiring the overhead of copied
nodes, it has the advantage that the identity of the nodes
is preserved. An example of a valid expression is:
member/f:child(.)/age.

Page 48 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 Sorting itself is not streamable at all. The solution provided for the streamable design pattern is to split the source document into
manageable chunks, sort those chunks and then process those again using streamed merging.

2 As with other streamable design patterns, there are no limitations on expressions applied to copies of nodes.

5.10. Sorting

5.10.1. Intent

You have a stylesheet construct that requires sorting and
you want to make it streamable.

5.10.2. Level

Advanced, requires two-phase streaming, streamable
grouping and streamable merging. Streamability level:
none1 and then: implicitly windowed.

5.10.3. Motivation

Consider the following example:

<xsl:template match="log-entry">
 <xsl:copy-of select="."/>
</xsl:template>

<xsl:template match="/log">
 <xsl:copy>
 <xsl:apply-templates select="log-entry">
 <xsl:sort select="@date"/>
 </xsl:apply-templates>
 </xsl:copy>
</xsl:template>

It takes an unsorted log document and sorts it by date.
The input could, for instance, look something like the
following:

<log>
 <log-entry
 date="2014-05-10">Some log text</log-entry>
 <log-entry
 date="2014-05-07">Some log text</log-entry>
 <log-entry
 date="2014-05-06">Some log text</log-entry>
 <log-entry
 date="2014-05-06">Some log text</log-entry>
 <log-entry
 date="2014-05-04">Some log text</log-entry>
 <log-entry
 date="2014-05-07">Some log text</log-entry>
 <log-entry
 date="2014-05-07">Some log text</log-entry>
 <log-entry
 date="2014-05-07">Some log text</log-entry>
 <log-entry
 date="2014-05-02">Some log text</log-entry>
 <log-entry
 date="2014-05-09">Some log text</log-entry>
</log>

5.10.4. Applicability

Applies to

This pattern applies to the following scenarios:
1. Any construct using sorting.

Does not apply to

This pattern does not apply to:
1. Sorting where the sortable items easily fit in memory,

in such scenarios, use a copy of the nodes and apply
the sorting to this copy.

5.10.5. Consequences

Applying this pattern has the following consequences:
1. Changes the infrastructure for multiple processing,

you should consider adding [XProc] to the toolchain.
2. The sorting itself will not be obvious in either of the

stylesheets.
3. Requires temporary disk space, equal to the size of the

input document, to store the intermediate results.

5.10.6. Implementation

Refactor your original code by applying the following
steps in order:
1. Introduce a streamable mode in the original

stylesheet.
2. Use streamable grouping to create chunks of the input

data, use group-adjacent.
3. Use xsl:result-document to write each groups to

disk.
4. Create a copy of each chunk and apply the sorting on

the copy, this part need not be streamable2.
5. Apply any necessary refactoring to make the rest of

the stylesheet streamable.
6. For phase two, create another streamable stylesheet
7. Get a collection of the URIs from the documents

created in step 3.
8. Add streamable xsl:merge instruction to process this

collection.

Page 49 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

1 Some versions of Saxon did not allow multiple nodes as argument to fn:copy-of, however, the specification does allow this.

Example

Applying these eight refactoring rules to our original
example, we end up with two stylesheets, the first, which
creates the smaller sorted chunks of the input document,
looks as follows:

<!-- (1) introduce a streamable mode -->
<xsl:mode streamable="yes"/>

<!-- (5) other refactoring, here: nothing to do -->
<xsl:template match="log-entry">
 <xsl:copy-of select="."/>
</xsl:template>

<xsl:template match="/log">
 <!-- (2) use streamable grouping -->
 <xsl:for-each-group
 select="log-entry"
 group-adjacent="position() idiv 3">

 <!-- (3) write chunks to disk -->
 <xsl:result-document
 href="sorted_{current-grouping-key()}.xml">
 <log>
 <!-- (4) create copy of each chunk -->
 <xsl:variable name="copy" as="element()*"
 select="copy-of(current-group())"/>

 <!-- (4) and apply sorting on the copy -->
 <xsl:apply-templates select="$copy">
 <xsl:sort select="@date"/>
 </xsl:apply-templates>
 </log>
 </xsl:result-document>
 </xsl:for-each-group>
</xsl:template>

Most of the rewriting here follows streaming design
patterns seen in previous sections. Some parts warrant
extra attention:

Using group-adjacent is allowed in streamable
scenarios as long as the expression is motionless. Using
fn:position is motionless, and so is any calculation on it.
With idiv we get nice round numbers for our splitting.
The size for our chunks here is 500, but any number can
be used as long as the chunks by themselves fit in
memory.

A copy of each group is created using fn:copy-of,
and stored in a variable. Instead of storing it in a variable,
you can inline this in the apply-templates instruction1.

Finally, applying templates on this copy and sorting
them using xsl:sort is allowed, because the nodes are
not streamed anymore, they are a copy. The streaming
design pattern so far, without the xsl:result-document
and the grouping, can serve as a solution if the nodes to
be sorted fit in memory.

The stylesheet for the second phase looks as follows:

<!-- (6) 2nd pass streamable stylesheet -->
<xsl:mode streamable="yes"/>

<xsl:template match="/log">
 <xsl:copy>
 <!-- (7) collection of uris,
 see your proc's documentation -->
 <xsl:variable name="uricoll"
 select="uri-collection('sorted-chunks')"/>

 <!-- (8) merge sorted output from 1st phase -->
 <xsl:merge>
 <xsl:merge-source
 for-each-stream="$uricoll"
 select="log/log-entry">
 <xsl:merge-key select="@date"/>
 </xsl:merge-source>
 <xsl:merge-action>
 <xsl:copy-of
 select="current-merge-group()"/>
 </xsl:merge-action>
 </xsl:merge>
 </xsl:copy>
</xsl:template>

An xsl:merge instruction takes one or more input
documents and merges them based on a merge-key,
similar to the way sorting works. It processes the input
documents one item at the time, based on the select-
statement in the xsl:merge-source instruction. In the
case of streaming, it does so in order, which is why the
input documents must be pre-sorted. It will output the
elements in the order defined by the merge-key, inserting
the elements from the other source documents where
necessary, to preserve order.

The input for xsl:merge-source is given by the for-
each-stream attribute, which takes a sequence of strings
that must be valid URI's. In the above example, I use
fn:uri-collection, which works like fn:collection, but
instead of returning a sequence of document nodes, it
will return a sequence of URI's. The way a collection
URI is interpreted is implementation dependent, which
is why in the above example I wrote "see the processor's
documentation". Most implementations will support a
kind of wildcard matching and the usage of some form of
XML catalogs.

Page 50 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

The xsl:merge-action defines the action to occur upon
each merge operation. There will be one action for each
unique merge-key. If multiple elements have the same
key, they are added to the current merge group, which
can be requested, similar as with grouping, using
fn:current-merge-group. The current merge group is
implicitly grounded and maintains access to its ancestors
similar to a call to fn:snapshot. This has the advantage
that you can use free-ranging expressions on the merge
group.
In our scenario, no additional processing has to take
place. We simply want all the log-entry elements merged
back into one big document. The result is a sorted
document.
This method of sorting, using splitting, sorting on small
chunks and then merging back is the simplest way to do
sorting in a streaming way. It is also the only way to do
streamable sorting that requires only two phases. A single
phase streaming sort is not possible.

6. Streamable packages

With XSLT 3.0 a new feature called packaging has been
introduced. Packaging allows authors to create libraries of
stylesheet functions, stylesheet templates and other
stylesheet declarations that can be precompiled,
distributed and used as a library of functions with other
stylesheets. It extends the ways xsl:import works, it
allows a certain level of overridability similar to object-
oriented languages and it supports information hiding
through private and public named declarations.

Package authors that wish to reach a largest as
possible audience for their library packages, would want
to prepare their packages to behave properly in streaming
scenarios. Since non-streaming scenarios can safely
ignore the streamability properties, it is suggested that
package authors strive to write their packages, the public
stylesheet functions and public modes with streamability
in mind.

It is not possible to create a public mode to be both
streamable and non-streamable. But it is possible to
create two modes, one streamable and one not, that is
processed by the same streamable templates that each
have their mode set to #all or at least to both modes.

For stylesheet functions, they can safely have the
streamable attribute set to yes if they take nodes as
parameters. A non-streamable usage of a streamable
function behaves without side effects exactly the same as
in a streamable context. If package authors choose to
write defensively and write each function according to
the guaranteed streamability rules, their packages can be
used cross-processor and with both streamable and non-
streamable input.

7. Conclusion

Many common classical XSLT programming scenarios
and patterns appear to be convertible into guaranteed
streamable code with relative ease. Following ten easy-to-
remember rules, with on top of the list the rule on
having a maximum of one downward expression per
context or template brings us closer to a fully streamable
stylesheet. Taking original programming patterns and
seeing how they change into streamable programming
patterns should give the intermediate to advanced XSLT
programmer, or the beginning Streaming XSLT
programmer a good starting point.

Some more complex scenarios including forking,
streamable grouping, merging and even sorting were
covered, showing that the current state of the
specification, including the fixes available through
BugZilla, work with a wide range of potential streaming
use-cases.

Streaming is not hard, you just need to set your mind
to it, and once set, adjusting your code to process large,
even huge documents, becomes almost a breeze.

Page 51 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

Bibliography

[BRA14] Streaming for the masses. Abel Braaksma. XML Prague 2014. ISBN 978-80-260-5712-3.
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf

[BUGZ] Bugzilla - Public W3C Bug / Issue tracking system. 2014. Miscelleneous authors.
https://www.w3.org/Bugs/Public/

[FO3] XPath and XQuery Functions and Operators 3.0, latest version. 2014. Michael Kay.
http://www.w3.org/TR/xpath-functions-30/

[FOPR] XPath and XQuery Functions and Operators 3.0, W3C Proposed Recommendation 22 October 2013. 2013.
Michael Kay. http://www.w3.org/TR/2013/PR-xpath-functions-30-20131022/

[MKAY08] XSLT 2.0 and XPath 2.0 Programmer's Reference. 4th edition. 2008. Michael Kay.
ISBN: 978-0-470-19274-0

[XDM] XQuery and XPath Data Model 3.0, latest version. 2014. Norman Walsh, Anders Berglund, and John
Snelson. http://www.w3.org/TR/xpath-datamodel-30/

[XP3] XML Path Language (XPath) 3.0, Latest Version. 2014. Jonathan Robie, Don Chamberlin, Michael
Dyck, and John Snelson. http://www.w3.org/TR/xpath-30/

[XPPR] XML Path Language (XPath) 3.0, W3C Proposed Recommendation 08 January 2013. 2013. Jonathan
Robie, Don Chamberlin, Michael Dyck, and John Snelson.
http://www.w3.org/TR/2013/PR-xpath-30-20131022/

[XProc] XProc: An XML Pipeline Language, W3C Recommendation 11 May 2010. 2010. Norman Walsh, Alex
Milowski, and Henry S. Thompson. http://www.w3.org/TR/xproc/

[XSLT3] XSL Transformations (XSLT) Version 3.0, Latest Version. 2013. Michael Kay.
http://www.w3.org/TR/xslt-30/

[XSLWD] XSL Transformations (XSLT) Version 3.0, W3C Last Call Working Draft 12 December 2013. 2013.
Michael Kay. http://www.w3.org/TR/2013/WD-xslt-30-20130201/

Page 52 of 162

Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream

http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
https://www.w3.org/Bugs/Public/
http://www.w3.org/TR/xpath-functions-30/
http://www.w3.org/TR/2013/PR-xpath-functions-30-20131022/
http://www.w3.org/TR/xpath-datamodel-30/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/2013/CR-xpath-30-20130108/
http://www.w3.org/TR/xproc/
http://www.w3.org/TR/xslt-30/
http://www.w3.org/TR/2013/WD-xslt-30-20130201/

From monolithic XML for print/web to lean
XML for data: realising linked data for

dictionaries
Matt Kohl

Oxford University Press
<matt.kohl@oup.com>

Sandro Cirulli

Oxford University Press
<sandro.cirulli@oup.com>

Phil Gooch

Oxford University Press
<phil.gooch@oup.com>

Abstract

In order to reconcile the need for legacy data compatibility
with changing business requirements, proprietary XML
schemas inevitably become larger and looser over time. We
discuss the transition at Oxford University Press from
monolithic XML models designed to capture monolingual
and bilingual print dictionaries derived from multiple
sources, towards a single, leaner, semantic model. This new
model reflects the lexical content units of a traditional
dictionary, while maximising human readability and
machine interpretability, thus facilitating transformation to
Resource Description Framework (RDF) triples as linked
data.

We describe a modular transformation process based on
XProc, XSLT, XSpec and Schematron that maps complex
structures and multilingual metadata in the legacy data to
the structures and harmonised taxonomy of the new model,
making explicit information that is often implicit in the
original data. Using the new model in its prototype RDF
form, we demonstrate how cross-lingual, cross-domain
searches can be performed, and custom data-sets can be
constructed, that would be impossible or very time-
consuming to achieve with the original XML content stored
at the individual dictionary level.

Keywords: XProc, RDF, dictionaries

1. Introduction

Oxford University Press (OUP) publishes a number of
academic dictionaries both in print and online, most
notably the Oxford English Dictionary [1], as well as
current dictionaries for English and bilingual dictionaries
for modern languages [2]. Recently, we have also
expanded our dictionaries offering by licensing in lexical
content from other publishers as part of the Oxford
Global Language Solutions (OGLS) [3] initiative,
enabling us to meet demands for lexical content in
languages outside OUP's catalogue.

As there is no standard for digital publication of
dictionaries, the OGLS data-sets come to us in a variety
of formats (XML, MySQL, InDesign, MS Word and
Excel, plain text, etc.) To offer this licensed-in content to
our customers, we draw on in-house and freelance
developers to convert to OxMonolingML and
OxBilingML, our dictionary XML Document Type
Definitions (DTDs). These DTDs evolved from SGML
and were originally designed to capture a dictionary as it
appears on a printed page. Recently, we have received
feedback from customers about excessive hierarchy and
complication in these models. This added to a growing
concern within our team that the DTDs have become
somewhat monolithic and permit too much variation, a
consequence of frequently needing to loosen the
structures to capture content from diverse print sources.
Despite our attempts to combat permissiveness with
best-practice advice and supplement with Schematron

doi:10.14337/XMLLondon14.Kohl01 Page 53 of 162

mailto:matt.kohl@oup.com
mailto:sandro.cirulli@oup.com
mailto:phil.gooch@oup.com

validation [4], the XML we receive from our developers
often departs from our standards.

Meanwhile, a pilot project to create linked data from
a sample of dictionary data-sets was approved. The
proposal involved designing a schema to model language
concepts, rather than print conventions, one which
results in intelligent, semantic, machine-interpretable
lexical content in XML.

2. Data Modelling

While the OxMonolingML & OxBilingML DTDs
capture the formatting intricacies of print dictionaries
and enable these to be reproduced online, they are not
ideal data models for machine processing. The rationale
for developing a new dictionaries data model was two-
fold. First, the need to future-proof, as far as possible,
our multilingual lexical content, so that it will be
reusable and interoperable with other tools and data-sets
in the growing fields of language technology and linked
data. Second, to address licensee feedback about the
difficulty of understanding and processing a deeply
hierarchical, and overly complicated content model that
tended to lack semantic consistency across data-sets. The
following requirements were prioritised:
• Self-documenting: Data structures, element names and

attribute values should be human understandable.
• Semantically rich: Data structures should be readily

machine-processable and machine-interpretable.
• Well structured: There should be only one, clear way to

model any given lexical item.
The third requirement was particularly important, as the
OxMonolingML and OxBilingML DTDs allow optional
and repeatable structures in many places while lacking
clear semantics, resulting in many ways of modelling the
same lexical structure. The DTDs also permit mixed
content (elements that may contain other elements, text,
or both) in many places. Without additional Schematron
validation, this caused numerous quality assurance
problems, as many elements could be validly empty
(according to the models), but invalid semantically. For
example, does the appearance of empty element content
in a mixed content model imply a data conversion error,
editorial omission, or genuine lack of data? The new
model needed be expressed in a more rigorous formalism
to reduce the need for numerous Schematron content
validation rules.

From these requirements, the following modelling
principles were determined:
• The model should be agnostic to source or language.
• The model should be able to handle both

monolingual and bilingual data.

• The model should be modular, to facilitate
maintainance and customisation.

• Attribute values, as far as possible, should come from
controlled vocabularies.

• Mixed content should be reduced to a minimum.
• The content should be readily transformed to other

structured data, such as RDF.
As a result of being strict on mixed content, we decided
that empty elements should have a specific semantic
purpose - empty element content in XML instances must
not be used to imply lack of content. For example,
initially we decided that a word sense in a monolingual
dictionary should always contain a definition. However,
cases later arose where this could not always be enforced.
Rather than make <definition> optional or allow it to be
empty, we introduced a <noDefinition> element to be
used as a placeholder. Any empty or missing
<definition> elements in an instance would therefore be
a data conversion error.

Additional modelling principles arose from the need
to simplify the complex sense hierarchy, (which was in
any case inconsistent across dictionaries) and our goal of
making the data more modular and less monolithic:
• Subsidiary relationships should be preserved via

attribute values pointing to the identifier of the parent
sense, rather than traditional nesting, effectively
flattening the sense XML without sacrificing an
entry’s complexity.

• The scope of an entry should always be a single
Lemma. Derivatives, phrases, and other items
traditionally nested in sub-entries are all upgraded to
entry level. Again, formerly hierarchical relationships
are retained through semantic linking.

DTDs remain popular at the Press as they are familiar
and understandable to both editors and content
developers. However, to facilitate enhanced content
validation and maximise interoperability and tool
support, we selected XML Schema as the primary
formalism for the new model. Because a dictionary entry
can also be represented as a collection of metadata about
a word or phrase, we undertook parallel modelling in
Resource Description Framework (RDF) [5], Web
Ontology Language (OWL) [6] and XML Schema.

Page 54 of 162

From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries

Both the document-centric and metadata models
consider the core concepts of Lemma (dictionary
headword), Etymology (origin), Sense (semantics),
Definition (meaning), Example (usage), and their
relationships. The XML model reflects the lexical content
units of a traditional dictionary entry, and so explicitly
models concepts of synonymy and meronymy (phrasal
constructions composed of one or more lemmas) as
specific element types that indicate their relationship to
the lemma. The RDF model goes further and considers
these as lemmas that happen to be in a synonym or
meronym relationship. For example, in the XML model
we have

<sense id="d5e644">
 <definitions>
 <definition id="d5e649" xml:lang="en">
 <text>
 An English definition of the term
 </text>
 </definition>
 </definitions>
 <synonyms>
 <synonym targetid="a5e644">
 another term
 </synonym>
 </synonyms>
</sense>

whereas in the RDF model the same relationships are
reified and would be represented as

<Sense rdf:about="sense:d5e644">
 <hasSynonym rdf:resource="lemma:a5e644"/>
 <hasDefinition rdf:resource="definition:d5e649"/>
</Sense>
<Definition rdf:about="definition:d5e649">
 <rdfs:label xml:lang="en">
 An English definition of the term
 </rdfs:label>
</Definition>
<Lemma rdf:about="lemma:a5e644">
 <rdfs:label xml:lang="en">
 another term
 </rdfs:label>
</Lemma>

The conceptual classes are shown in Figure 1, “Reified
conceptual classes”.

Figure 1. Reified conceptual classes

Instances of the Register, Domain, PartOfSpeech classes
were modelled as hierarchical, controlled vocabularies in
RDF, with translations in major languages. For example:

<Domain rdf:about="domain:physics">
 <rdfs:subClassOf
 rdf:resource="domain:physical-science"/>
 <rdfs:label xml:lang="en">Physics</rdfs:label>
 <rdfs:label xml:lang="de">Physik</rdfs:label>
 <rdfs:label xml:lang="es">Física</rdfs:label>
</Domain>

This provided a mechanism to map metadata values in
the legacy data to language-independent identifiers in the
new model (see Section 3, “Data Conversion”).

Page 55 of 162

From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries

Figure 2. XProc pipeline

OxMonolingML
+xml:lang = "es"
+licensee = "licensee1"
+xmlschema = "schema1"

map to English metadata

language specific step

restructure synonyms

QA

other steps
Schematron
validation
& report

XML Schema
validation
& report

QA QA

restructure subentries

Schematron
validation
& report

OxMonolingML++ generate IDs group definitions

Lexical Data

3. Data Conversion

Our dictionaries catalogue includes more than 40
monolingual and bilingual titles, and to move that much
data into the new model, we would need a scalable
transformation strategy. Furthermore, conversion would
require some standardisation steps that could be
leveraged to enhance the OxMonolingML &
OxBilingML data for our current customers, so building
something modular was also desirable.

Given these requirements, we decided to build a
modular XProc [7] pipeline comprising XSLT,
Schematron and XML Schema validation steps, with
specific modules for each language in order to hold
harmonised metadata across dictionaries and languages.
A simplified diagram of the XProc pipeline is shown in
Figure 2, “XProc pipeline”.
The input port of the XProc pipeline is a monolingual
dictionary in the OxMonolingML DTD format. Three
parameters may be passed to the pipeline in order to
apply language-specific or licensee-specific steps as
needed.

The input file goes through a sequence of XSL
transformations which yield an intermediate file that we
like to call OxMonolingML++. This is an enhanced
version of the source data, featuring harmonised
structural variations in sub-entries, synonyms, antonyms,
etc. as well as metadata mappings from the source
language to their English equivalent, e.g.:

<pos value="adjective">adjetivo</pos>

These steps are grouped inside a single sub-pipeline
ending with the Schematron validation. The sub-pipeline
has dedicated output ports for storing the
OxMonolingML++ file and the Schematron error report.

A similar process is applied in the second sub-
pipeline that generates the final output referred in the
diagram as Lexical Data. This sub-pipeline also allows for
licensee-specific steps triggered by the corresponding
licensee parameter.

Both Schematron and XML Schema validations are
performed on the final output with dedicated output
ports for storing error reports. When there are licensee-
specific steps, an XSL transformation generates a
corresponding version of the XML schema for validation
of the custom output.

Development of the pipeline components was carried
out by a team of four developers and a project manager
using Agile methodologies. Behaviour-driven
development was employed by writing XSpec unit tests
[8] for core transformation scenarios, as illustrated in
Example 1, “XSpec unit test”.

Example 1. XSpec unit test

<x:scenario label="When processing adj inv/adv">
 <x:context>
 <pos>adj inv/adv</pos>
 </x:context>
 <x:expect label="It should produce an
 adjective and an adverb">
 <pos value="adjective">adj inv</pos>
 <genpunc>/</genpunc>
 <pos value="adverb">adv</pos>
 </x:expect>
</x:scenario>

Page 56 of 162

From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries

Jenkins [9] was employed as a continuous integration
server for running automated XSpec unit tests and
building the final deliverables both for licensees and
internal use. The workflow is illustrated in Figure 3,
“Build workflow”.

Figure 3. Build workflow

XML source data in OxMonolingML, XSL and XSpec
code, Schematron and XML Schema are managed under
Subversion (SVN) [10]. The Jenkins build process checks
out the latest version of the code and data from the
repository, and then runs the main conversion pipeline
via Ant [11], which executes the XSpec unit tests,
generates and executes the XProc pipeline, and runs
additional tasks for packaging the deliverables. The
artefacts created by the build process are reviewed by a
linguist for quality assurance. If any critical errors arise
from unit tests or linguistic QA, the code is fixed
through another iteration. Otherwise, Jenkins commits
and tags the final deliverable in SVN with a release
number, and archives it on an external drive in order to
be shipped to the licensee.

The build process can also be run in 'test' mode,
triggered when any code or data changes are made to the
repository. Access to the latest unit test results are always
available from the Jenkins web interface.

For better scalability (and to avoid the need to
maintain a single, monolithic pipeline), the framework
relies on pipeline configuration files, which outline the
required steps and metadata mappings for specific data-
sets. Using these configurations and some boilerplate
pipeline XSL, the Ant script builds and executes a
custom XProc on the fly.

4. Results and Discussion

The following lists provide an overview of the data at
each stage of our transformation.

Example 2, “Spanish entry for abanicar in original
source data” shows a Spanish dictionary entry in the
format licensed from the original publisher, i.e. before it
has been converted to our OxMonolingML DTD by one
of our freelance or in-house developers. The structure is
very straightforward, but all content, including element
and attribute names, is in the source language, making
interoperability and reuse more difficult.

Example 2. Spanish entry for abanicar in original
source data

<ENTRADA ID="370" ORDER="370" OLDID="350">
 <ZONA-ENTRADA>
 <LEMA>abanicar</LEMA>
 </ZONA-ENTRADA>
 <CATGRAM>&verbo_transitivo_dueae;</CATGRAM>
 <ACEPCIO ACEP="1">
 <SIGNIFICAT>
 Dar aire con el abanico u otro objeto:
 </SIGNIFICAT>
 <EXEMPLE>
 Pedro se abanica descuidadamente
 con su sombrero de copa y muestra un gesto
 de aburrimiento.
 </EXEMPLE>
 </ACEPCIO>
 <ACEPCIO ACEP="2">
 <TEMA>taur</TEMA>
 <SIGNIFICAT>
 Incitar al toro agitando ante él el capote de
 un lado a otro, generalmente para que cambie
 de lugar en la suerte de varas.
 </SIGNIFICAT>
 </ACEPCIO>
 <OBSERVACIO NUM="1" CLASE="conjugacion"
 TIPO="irregular">
 Conjug. [1] como <C>sacar</C>.</OBSERVACIO>
</ENTRADA>

Page 57 of 162

From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries

Example 3, “Spanish entry for abanicar in
OxMonolingML” shows the same Spanish data following
conversion to the OxMonolingML DTD. Metadata is
still in Spanish at this point, and the structure is arguably

less transparent than the original (due to the
OxMonolingML DTD needing to capture a wide range
of content for both print and online use). We used this
data as input for our conversion framework.

Example 3. Spanish entry for abanicar in OxMonolingML

<e xrid="370" type="standard">
 <hg>
 <hw>abanicar</hw>
 </hg>
 <sg>
 <se1>
 <posg>
 <pos>verbo transitivo</pos>
 </posg>
 <se2 num="1">
 <msDict type="core">
 <df>Dar aire con el abanico u otro
objeto<genpunc tag="SIGNIFICAT">:</genpunc></df>
 <eg>
 <ex>Pedro se abanica descuidadamente con su sombrero
de copa y muestra un gesto de
aburrimiento<genpunc tag="EXEMPLE">.</genpunc></ex>
 </eg>
 </msDict>
 </se2>
 <se2 num="2">
 <lg>
 <sj>taur</sj>
 </lg>
 <msDict type="core">
 <df>Incitar al toro agitando ante él el capote de un lado
a otro, generalmente para que cambie de lugar en la suerte de
varas<genpunc tag="SIGNIFICAT">.</genpunc></df>
 </msDict>
 </se2>
 </se1>
 </sg>
 <note type="conjugacion|irregular" position="entry">Conjug. [1]
 como <i>sacar</i><genpunc tag="OBSERVACIO">.</genpunc></note>
</e>

Page 58 of 162

From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries

Example 4, “Spanish entry for abanicar in new Lexical
model” shows the output following XSLT transformation
to the new Lexical model. All metadata are now from
controlled vocabularies (e.g. partOfSpeech="verb" and

domain="bullfighting"), and the structure is more
transparent (NB conjugation information has been
omitted, as we hold language data on constructions,
conjugations and morphology in a separate repository).

Example 4. Spanish entry for abanicar in new Lexical model

<entry id="d5e1674">
 <heading xml:lang="es" partOfSpeech="verb">
 <headword>abanicar</headword>
 </heading>
 <senses>
 <sense id="d5e1683">
 <definitions>
 <definition xml:lang="es">
 <text>Dar aire con el abanico u otro objeto</text>
 </definition>
 </definitions>
 <examples>
 <example>
 <text>Pedro se abanica descuidadamente con su sombrero
 de copa y muestra un gesto de aburrimiento</text>
 </example>
 </examples>
 </sense>
 <sense domain="bullfighting" id="d5e1694">
 <definitions>
 <definition xml:lang="es">
 <text>Incitar al toro agitando ante él el capote de
 un lado a otro, generalmente para que cambie de lugar
 en la suerte de varas</text>
 </definition>
 </definitions>
 </sense>
 </senses>
</entry>

Page 59 of 162

From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries

Example 5, “Spanish entry for abanicar in RDF/XML”
shows the output following XSLT transformation of the
Lexical model to RDF/XML. Controlled vocabulary
labels have been replaced with compact URIs using
CURIE syntax [12] pointing to instances in the domain
ontology. This allows us to use inference when writing
SPARQL queries to interrogate the RDF data. For
example, domain:bullfighting is a subClassOf

domain:sport, so a query to extract all sporting terms
across all languages would identify the bullfighting term
in this example. When combined with our bilingual
dictionaries, which provide sense-level and domain-
specific translations, or external, multilingual, public
domain lexical resources, such an approach is potentially
very powerful, as discussed in Section 5, “Next Steps”.

Example 5. Spanish entry for abanicar in RDF/XML

<Lemma rdf:about="lemma:es_verb_abanicar">
 <rdfs:label xml:lang="es">abanicar</rdfs:label>
 <hasSource rdf:resource="source:oxford_gls_sudc_vox_dgle_exb1_5"/>
 <hasLanguage rdf:resource="lang:es"/>
 <hasPartOfSpeech rdf:resource="partOfSpeech:verb"/>
 <hasSense rdf:resource="sense:es_verb_abanicar_se_1"/>
 <hasSense rdf:resource="sense:es_verb_abanicar_se_2"/>
</Lemma>

<Sense rdf:about="sense:es_verb_abanicar_se_1">
 <isDescribedBy rdf:resource="definition:es_verb_abanicar_se_1_def_1"/>
 <hasExample rdf:resource="example:es_verb_abanicar_se_1_ex_1"/>
</Sense>

<Sense rdf:about="sense:es_verb_abanicar_se_2">
 <isDescribedBy rdf:resource="definition:es_verb_abanicar_se_2_def_1"/>
 <hasDomain rdf:resource="domain:bullfighting"/>
</Sense>

<StandardDefinition rdf:about="definition:es_verb_abanicar_se_1_def_1">
 <rdfs:label xml:lang="es">Dar aire con el abanico u otro objeto:</rdfs:label>
</StandardDefinition>

<StandardDefinition rdf:about="definition:es_verb_abanicar_se_2_def_1">
 <rdfs:label xml:lang="es">Incitar al toro agitando ante él el capote
 de un lado a otro, generalmente para que cambie de lugar en la
 suerte de varas.</rdfs:label>
</StandardDefinition>

<Example rdf:about="example:es_verb_abanicar_se_1_ex_1">
 <rdfs:label xml:lang="es">Pedro se abanica descuidadamente con su
 sombrero de copa y muestra un gesto de aburrimiento.</rdfs:label>
</Example>

Page 60 of 162

From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries

5. Next Steps

At this stage, the output XML meets our current
requirements, retaining both human readability and
scope for further machine processing, and we can turn
our attention to creating RDF. Because we provided for
this during data modelling and developed the XML
Schema and ontology in parallel, the XML readily
converts into our RDF model. Transformation is as
straightforward as writing some simple XSLT and adding
a step to the XProc pipeline.

Once the build process generates manifold-dictionary
RDF, we use that to populate a triplestore, which we can
query for custom, multi-source, multilingual data-sets.
For example, the following SPARQL query extracts
English musical terms and their synonyms, along with
their Spanish translations.

Example 6. SPARQL query to extract English and
Spanish musical terms

SELECT ?txt ?tran ?syntxt ?syntran
WHERE {
 ?lemma rdfs:label ?txt ;
 :hasLanguage lang:en ;
 :hasSense ?sense .
 OPTIONAL {?lemma :hasEtymology ?et .
 ?et :originatesFrom ?etl ;
 :hasDateOfOrigin ?etd .}
 ?sense :hasSynonym ?syn ;
 :hasDomain [rdfs:subClassOf domain:music] ;
 :hasTranslation ?t .
 ?t rdfs:label ?tran ;
 :hasLanguage lang:es .
 ?syn rdfs:label ?syntxt ;
 :hasSense ?synsense .
 ?synsense :hasTranslation ?synt ;
 :hasDomain [rdfs:subClassOf domain:music] .
 ?synt rdfs:label ?syntran ;
 :hasLanguage lang:es .
}

In plain English, the query finds English lemmas that
have a sense in the domain of music (or subclass thereof)
that sense has a synonym and a Spanish translation. The
synonym lemma must also have a sense in the domain of
music as well as a Spanish translation. Using the SgVizler
Javascript libraries for visualising SPARQL query results
[13], we can create an interactive graph showing the
terms coloured by date of origin:

Figure 4. Graph of musical terms in English and Spanish

Page 61 of 162

From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries

Figure 5. Inference via transitive property

lemma_1 lemma_2 lemma_3
hasCrossReference hasCrossReference

hasCrossReference

Having the data in RDF and OWL also facilitates the
discovery of new relationships which were not explicitly
stated in the original XML data. This can be achieved
through inference by using a reasoner or a rule language.
For example, consider the transitive property depicted in
Figure 5, “Inference via transitive property”.
By modelling the property hasCrossReference using
owl:TransitiveProperty a reasoner can infer a new
relationship between lemma_1 and lemma_3 which was
not present before.

More complex inference statements can be enforced
using a rule language such as SWRL [14]. For example, a
rule for inferencing new antonyms could be expressed in
SWRL as follows (the rule has been simplified for sake of
clarity):

Lemma(?x), Lemma(?y), hasAntonym(?x, ?y), hasSynonym(?y, ?z)
 -> hasAntonym(?x, ?z)

6. Conclusion

Our move towards a simpler, more consistent and
harmonised XML data model for our dictionaries allows
us to generate rich RDF representations of lexical data
with a relatively straightforward transformation process.
This is still very much an experimental approach, but it
allows us to explore and visualise our lexical data across
domains and languages in ways that were previously
impossible when the content was held in separate silos in
inconsistent XML representations.

Bibliography

[1] The Oxford English Dictionary. Oxford University Press. http://www.oed.com
[2] Oxford Dictionaries. Oxford University Press. http://www.oxforddictionaries.com
[3] Oxford Global Language Solutions. Oxford University Press. http://www.oup.com/ogls
[4] Schematron. ISO/IEC. http://www.schematron.com
[5] Resource Description Framework. World Wide Web Consortium. http://www.w3.org/standards/techs/rdf
[6] OWL 2 Web Ontology Language. World Wide Web Consortium. http://www.w3.org/TR/owl2-overview/
[7] XProc: An XML Pipeline Language. World Wide Web Consortium. http://www.w3.org/TR/xproc
[8] XSpec - BDD Framework for XSLT. Tennison, Jeni. http://code.google.com/p/xspec
[9] Jenkins. Jenkins CI. http://jenkins-ci.org
[10] Apache Subversion. Apache Software Foundation. http://subversion.apache.org
[11] The Apache Ant Project. Apache Software Foundation. http://ant.apache.org
[12] CURIE Syntax 1.0: A syntax for expressing compact URIs. World Wide Web Consortium

http://www.w3.org/TR/curie
[13] Sgvizler. World Wide Web Consortium. http://www.w3.org/2001/sw/wiki/Sgvizler
[14] SWRL: A Semantic Web Rule Language Combining OWL and RuleML. World Wide Web Consortium.

http://www.w3.org/Submission/SWRL

Page 62 of 162

From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries

http://www.oed.com
http://www.oxforddictionaries.com
http://www.oup.com/ogls
http://www.schematron.com
http://www.w3.org/standards/techs/rdf
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/xproc
http://code.google.com/p/xspec
http://jenkins-ci.org
http://subversion.apache.org
http://ant.apache.org
http://www.w3.org/TR/curie
http://www.w3.org/2001/sw/wiki/Sgvizler
http://www.w3.org/Submission/SWRL

1 ScalaTest - http://scalatest.org
2 Akka - http://akka.io/
3 Play Framework - http://www.playframework.com/
4 scala.xml API - http://www.scala-lang.org/files/archive/nightly/docs/xml/
5 scala-xml GitHub repository - https://github.com/scala/scala-xml/

XML Processing in Scala
Dino Fancellu

Felstar Ltd
<dino@felstar.com>

William Narmontas

Apt Elements Ltd
<william@scalawilliam.com>

Abstract

Scala is an established static- and strongly-typed functional
and object-oriented scalable programming language for the
JVM with seamless Java interoperation.

Scala and its ecosystem are used at LinkedIn, Twitter,
Morgan Stanley among many companies demanding
remarkable time to market, robustness, high performance
and scalability.

This paper shows you Scala's strong native XML support,
powerful XQuery-like constructs, hybrid processing via
XQuery for Scala, and increased XML processing
performance. You will learn how you can benefit from
Scala’s practicality in a commercial setting, ultimately
increasing your productivity.

Keywords: Scala, XML, XQuery, XSLT, XQJ, Java,
Processing

1. Introduction

Programming style: Scala’s immutability, functional
programming, first-class XML make it rather similar to
XQuery. Scala’s for-comprehensions were inspired by
Philip Wadler from his work with XQuery. [1]

Ecosystem: Scala’s seamless Java interoperation gives
you access to all of Java’s libraries, the JVM [2] and many
outstanding Scala libraries 1 2 3.

Scalability: Scala’s scalability and design negate the
need for design patterns in solving a language’s design
flaws. It is everything that Java should have been.

XML handling: Scala’s XML handling includes the
standard XML types such as Element, Attribute, Node. It
also includes the NodeSeq type which extends Seq[Node]
(a sequence of nodes), meaning that all of Scala’s
collections functionality for sequences is available for
XML types. The key Scala XML documentation can be
found at its author’s Burak Emir's Scala XML book [3],
scala.xml API 4 and scala-xml GitHub repository 5 .

2. Five minutes to understanding
Scala

This paper covers a relevant selection of Scala’s
capabilities. There are many great resources to learn
about traits, partial functions, case classes, etc. We will
cover the necessary essentials for this paper. See Scala
crash course [4] and a selected presentation [5] for
detailed walk-throughs.

Like with XQuery and other functional
programming languages we recommend programming
Scala in an immutable fashion, although Scala allows you
to program in an Object Oriented fashion or hybrid of
the two, making it especially suited to migrating from a
Java code base.

Scala’s types are static, strong and mostly inferred, to
the extent that it can feel like a scripting language [6] .
Your IDE and Scala’s compiler will inform you of your
program’s correctness very early on - including XML
well-formedness.

Scala’s ‘implicits’ enable you to define new methods
on values in a limited scope. With implicits and type
inference your code becomes very compact [7] [8]. In
fact, this paper displays types only for the sake of clarity.

doi:10.14337/XMLLondon14.Narmontas01 Page 63 of 162

http://scalatest.org/
http://scalatest.org
http://akka.io/
http://akka.io/
http://www.playframework.com/
http://www.playframework.com/
http://www.scala-lang.org/files/archive/nightly/docs/xml/
http://www.scala-lang.org/files/archive/nightly/docs/xml/
https://github.com/scala/scala-xml/
https://github.com/scala/scala-xml/
mailto:dino@felstar.com
mailto:william@scalawilliam.com

Scala is about expressions, not statements. The last
expression in a block of expressions is the return value.
The same applies to if-statements and try-catch.

Scala is best used from within IntelliJ IDEA and
Eclipse with the Scala IDE plug-in. [9]

2.1. Values and functions

Scala & XQuery:
• def fun(params): type similar to

declare function local:fun(params): type

• val xyz = {expression} similar to
let $xyz := {expression}

Functions can be passed around easily. Example:

def incrementedByOne(x: Int) = x + 1

(1 to 5).map(incrementedByOne)

 Vector(2, 3, 4, 5, 6)

This example however can be slimmed down to

(1 to 5).map(x => x + 1)

 Vector(2, 3, 4, 5, 6)

Where x => x + 1 is an anonymous (lambda) function.
It can be slimmed down further to

(1 to 5).map(_+1)

 Vector(2, 3, 4, 5, 6)

Scala’s collections, such as lists, sets and maps come in
mutable and immutable flavours [10] . They will be used
throughout the examples.

2.2. Strings and string interpolation

The triple double-quote syntax negates escaping of
double-quotes in string literals. E.g.

val title = """An introduction to "Scala""""

Scala supports string interpolation [11] similar to that in
PHP, Perl and CoffeeScript - with the ‘s’ modifier:

val language = "Scala"
val interpolatedTitle =
 s"""An introduction to "$language""""

String interpolation turns $language into
${language.toString}.

Scala’s triple-quoted strings may be multi-line, as
shown in the examples section.

2.3. Named parameters

Where further clarity for method calls is needed, you can
use named parameters:

def makeLink(url: String, text: String) =
 s"""$text"""

makeLink(text = "XML London 2014",
 url="http://www.xmllondon.com/")

 XML London 2014

2.4. For-comprehensions

For-comprehensions [12] will be familiar to a
programmer who has used Python, LINQ, XQuery,
Ruby, Haskell, F#, Erlang, Clojure.
You can rewrite the previous example
(1 to 5).map(x => x + 1) as a for-comprehension:

for (x <- (1 to 5)) yield x + 1

 Vector(2, 3, 4, 5, 6)

These comprehensions yield results by iterating over
multiple collections:

val software = Map(
 "Browser" -> Set("Firefox", "Chrome",
 "Internet Explorer"),
 "Office Suite" -> Set(
 "Google Drive", "Microsoft Office",
 "Libre Office")
)
for { (softwareKind, programs) <- software
 program <- programs
 if program endsWith "e"
} yield s"$softwareKind: $program"

 List(Browser: Chrome, Office Suite: Google Drive,
 Office Suite: Microsoft Office,
 Office Suite: Libre Office)

Inside a for-comprehension, Scala and XQuery once
again share similarities:
• x <- {expression} similar to

for $x in {expression}

• if {condition} similar to
where {condition}

• abc = {expression} similar to
let $abc := {expression}

• yield {expression} similar to
return {expression}

Page 64 of 162

XML Processing in Scala

1 scala-xml library GitHub - https://github.com/scala/scala-xml/

3. Scala's strong native XML
support

Unlike in Java, XML is a first class citizen in Scala and
can be used as a native data type.

The scala.xml library source code is available on
GitHub.1

3.1. Basic Inline XML

XML literals can be embedded directly in code with
curly braces.

val title = "XML London 2014"
val xmlTree = <div>
 <p>Welcome to {title}!</p>
</div>

Serializing this XML structure works as expected:

xmlTree.toString

 <div>
 <p>Welcome to XML London 2014!</p>
 </div>

These XML literals are checked for well formedness at
compile time or even in your IDE reducing errors.

Curly braces can be escaped with double braces. e.g.

val squiggles = <root>I like {{squiggles}}</root>

 <root>I like {squiggles}</root>

3.2. Reading

Scala can load XML from Java’s File, InputStream,
Reader, String using the scala.xml.XML object. Here is
an XML document in String form:

val pun =
"""<pun rating="extreme">
| <question>Why do CompSci students need
|glasses?</question>
| <answer>To C#<!--
|C# is a Microsoft's programming language
|-->.</answer>
|</pun>""".stripMargin

Loading an XML document from a String gives us a
node:

scala.xml.XML.loadString(pun)

 <pun rating="extreme">
 <question>Why do CompSci students need
 glasses?</question>
 <answer>To C#.</answer>
 </pun>

When you need XML comments use the
ConstructingParser [13] :

scala.xml.parsing.ConstructingParser
.fromSource(scala.io.Source.fromString(pun),
preserveWS = true).document().docElem

 <pun rating="extreme">
 <question>Why do CompSci students need
 glasses?</question>
 <answer>To C#<!--
 C# is a Microsoft's programming language
 -->.</answer>
 </pun>

3.2.1. Look ups and XPath alternatives

Scala has its own XPath-like methods for querying from
XML trees

val listOfPeople = <people>
 <person>Fred</person>
 <person>Ron</person>
 <person>Nigel</person>
</people>
listOfPeople \ "person"

 NodeSeq(<person>Fred</person>,
 <person>Ron</person>, <person>Nigel</person>)

Wildcard is similar

listOfPeople \ "_"

 NodeSeq(<person>Fred</person>,
 <person>Ron</person>, <person>Nigel</person>)

Looking for descendants

val fact = <fact type="universal">
<variable>A</variable> = <variable>A</variable>
</fact>
fact \\ "variable"

 NodeSeq(<variable>A</variable>,
 <variable>A</variable>)

Querying attributes is similar

fact \ "@type"

 : scala.xml.NodeSeq = universal

fact \@ "type"

 : String = universal

Page 65 of 162

XML Processing in Scala

https://github.com/scala/scala-xml/
https://github.com/scala/scala-xml/

Looking up elements by namespace (see Appendix A, The
showNamespace(-s) methods for showNamespaces):

val tree = <document>
 <embedded xmlns="urn:test:embedding">
 <description>
 <referenced xmlns="urn:test:referencing">
 <metadata>
 <title xmlns="">Untitled</title>
 </metadata>
 </referenced>
 </description>
 </embedded>
</document>

(tree \\ "_").
 filter(_.namespace == "urn:test:referencing").
 map(showNamespace).foreach(println)

 {urn:test:referencing}referenced
 {urn:test:referencing}metadata

Looking up attributes by namespace:

<node xmlns="urn:meta" demo="test"/> \ "@demo"

 test

<node xmlns:meta="urn:meta" meta:demo="test"/> \
 "@{urn:meta}demo"

 test

The reason that backslashes were chosen instead of the
usual forward slashes is due to the use of // for Scala
comments. i.e. the // would never even be seen.
Scala's XML is displayed as a NodeSeq type which
extends Seq[Node]. This means we get Scala's collections
for free. Here are some examples:

val root = <numbers>
 {for {i <- 1 to 10} yield
 <number>{i}</number>}
</numbers>
val numbers = root \ "number"
numbers(0)

 <number>1</number>

numbers.head

 <number>1</number>

numbers.last

 <number>10</number>

numbers take 3

 NodeSeq(<number>1</number>, <number>2</number>,
 <number>3</number>)

numbers filter(_.text.toInt > 6)

 NodeSeq(<number>7</number>, <number>8</number>,
 <number>9</number>, <number>10</number>)

The default apply method for NodeSeq is an alias for
filter:

numbers(_.text.toInt > 6)

 NodeSeq(<number>7</number>, <number>8</number>,
 <number>9</number>, <number>10</number>)

numbers maxBy(_.text)

 <number>9</number>

numbers maxBy(_.text.toInt)

 <number>10</number>

numbers.reverse

 NodeSeq(<number>10</number>, <number>9</number>,
 <number>8</number>, <number>7</number>,
 <number>6</number>, <number>5</number>,
 <number>4</number>, <number>3</number>,
 <number>2</number>, <number>1</number>)

numbers.groupBy(_.text.toInt % 3)

 Map(
 2 -> NodeSeq(<number>2</number>,
 <number>5</number>, <number>8</number>),
 1 -> NodeSeq(<number>1</number>,
 <number>4</number>, <number>7</number>,
 <number>10</number>),
 0 -> NodeSeq(<number>3</number>,
 <number>6</number>, <number>9</number>))

val jokes = <jokes>
 <pun rating="fine">
 <question>Q: Why did the functions stop
calling each other?</question>
 <answer>A: Because they had constant
arguments.</answer>
 </pun>
 <pun rating="extreme">
 <question>Why do
CompSci students need glasses?</question>
 <answer>To C#<!--
C# is a Microsoft programming language
-->.</answer>
 </pun>
</jokes>

Querying descendant attributes works as expected

jokes \\ "@rating"

 NodeSeq(fine, extreme)

Querying elements by path works fine

jokes \ "pun" \ "question"

 NodeSeq(<question>Q: Why did the functions stop
 calling each other?</question>, <question>Why do
 CompSci students need glasses?</question>)

Page 66 of 162

XML Processing in Scala

1 https://github.com/scala/scala-xml/issues/25

Querying attributes by path:

jokes \ "pun" flatMap (_\ "@rating")

 NodeSeq(fine, extreme)

(jokes \ "pun") \\ "@rating"

 NodeSeq(fine, extreme)

However node equality can surprise with XML literals 1:

<node>{2}</node> == <node>2</node>

 false

<node>{2}</node> == <node>{2}</node>

 true

3.3. Scala XML namespace handling

Namespaces are handled well. The empty namespace is
'null'. (see Appendix A, The showNamespace(-s) methods
for showNamespaces):

val tree = <document>
 <embedded xmlns="urn:test:embedding">
 <description>
 <referenced xmlns="urn:test:referencing">
 <metadata>
 <title xmlns="">Untitled</title>
 </metadata>
 </referenced>
 </description>
 </embedded>
</document>

showNamespaces(tree)

 {null}document
 {urn:test:embedding}embedded
 {urn:test:embedding}description
 {urn:test:referencing}referenced
 {urn:test:referencing}metadata
 {null}title

3.3.1. Scala XML is unidirectional and immutable

Unlike the XPath model, Scala XML is unidirectional,
i.e. a node does not know its parent, so lacks reverse axes,
also no forward/sibling axes. This was done because
adding in parents is expensive whilst maintaining
immutability. For many problem spaces that may not
matter. If it does for you then you are free to fall back to
the full XPath/XQuery/XSLT model as shown below

3.3.2. XQS

We use a tiny wrapper library called XQS (XQuery for
Scala) [14] in various places throughout this paper. Its
main aim is to allow for a Scala metaphors when using
XQuery. However even outside of XQuery usage, it
allows for easy interoperation between the worlds of
Scala XML and Java DOM. For example in the XPath
example below, it supplies toDom to turn Scala XML to
a w3c DOM, and the ability to turn a NodeSet into a
Scala NodeSeq.

3.3.3. Using XPath from Scala

import com.felstar.xqs.XQS._
val widgets = <widgets>
 <widget>Menu</widget>
 <widget>Status bar</widget>
 <widget id="panel-1">Panel</widget>
 <widget id="panel-2">Panel</widget>
</widgets>
val xpath = XPathFactory.newInstance().newXPath()
val nodes: NodeSeq = xpath.evaluate(
 "/widgets/widget[not(@id)]",
 toDom(widgets),
 XPathConstants.NODESET
).asInstanceOf[NodeList]
nodes

 NodeSeq(<widget>Menu</widget>,
 <widget>Status bar</widget>)

Natively in Scala:

(widgets \ "widget")(
 widget => (widget \ "@id").isEmpty
)

 NodeSeq(<widget>Menu</widget>,
 <widget>Status bar</widget>)

Page 67 of 162

XML Processing in Scala

https://github.com/scala/scala-xml/issues/25

3.3.4. XML Transformations

Scala provides XML transformation functionality via a
RuleTransformer that takes multiple RewriteRules. The
following example uses pattern matching and a native
XML extractor:

val peopleXml = <people>
 <john>Hello, John.</john>
 <smith>Smith is here.</smith>
 <another>Hello.</another>
 </people>

val rewrite =
 new RuleTransformer(new RewriteRule {
 override def transform(node: Node) =
 node match {
 case <john>{_}</john> =>
 <john>Hello, John.</john>
 case <smith>{text}</smith> =>
 <smithX>{text}!!!!</smithX>
 case n: Elem if n.label != "people" =>
 n.copy(label = "renamed")
 case other => other
 }
})
rewrite.transform(peopleXml)

 <people>
 <john>Hello, John.</john>
 <smithX>Smith is here.!!!!</smithX>
 <renamed>Hello.</renamed>
 </people>

Alternatively: calling XSLT from Scala

val stylesheet =
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">
 <xsl:template match="john">
 <xsl:copy>Hello, John.</xsl:copy>
 </xsl:template>
 <xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="node()|@*"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>
import com.felstar.xqs.XQS._
val xmlResultResource = new java.io.StringWriter()
val xmlTransformer =
 TransformerFactory
 .newInstance().newTransformer(stylesheet)
xmlTransformer.transform(peopleXml,
 new StreamResult(xmlResultResource))
xmlResultResource.getBuffer

 <?xml version="1.0" encoding="UTF-8"?><people>
 <john>Hello, John.</john>
 <smith>Smith is here.</smith>
 <another>Hello.</another>
 </people>

We found XSLT more effective than Scala for designing
XML transformations as XSLT has been designed
explicitly for this task. Thus we can mix-and-match
transformations when XSLT is nicer than Scala and vice-
versa. John Snelson's transform.xq showcases mixed
transforms with querying in XQuery [15]. Alike can be
achieved in Scala.

Page 68 of 162

XML Processing in Scala

3.3.5. XML Pull Parsing from Scala

// 4GB file, comes back in a second.
val downloadUrl =
 "http://dumps.wikimedia.org" +
 "/enwiki/20140402/enwiki-20140402-abstract.xml"
val src = Source.fromURL(downloadUrl)
val er = XMLInputFactory.newInstance().
 createXMLEventReader(src.reader)

implicit class XMLEventIterator(ev: XMLEventReader)
 extends scala.collection.Iterator[XMLEvent] {
 def hasNext = ev.hasNext
 def next = ev.nextEvent()
}

er.dropWhile(!_.isStartElement).take(10)
 .zipWithIndex.foreach {
 case (ev, idx) =>
 println(s"${idx+1}:\t$ev")
 }

src.close()

 1: <feed>
 2:

 3: <doc>
 4:

 5: <title>
 6: Wikipedia: Anarchism
 7: </title>
 8:

 9: <url>
 10: http://en.wikipedia.org/wiki/Anarchism

3.3.6. Calling XQuery from Scala

The standard API for XQuery on Java is XQJ [16]. XQJ
drivers are available for several databases such as
MarkLogic and XQuery processors such as Saxon [17]
[18] meaning Scala can consume XQuery result sets.

import com.felstar.xqs.XQS._
val conn = getYourXQueryConnection()
val ret: NodeSeq = conn(
 "/widgets/widget[not(@id)]", widgets)

 NodeSeq(<widget>Menu</widget>,
 <widget>Status bar</widget>)

val ret2: NodeSeq = conn(
 """|for $w in /widgets/widget
 |order by $w return $w""".stripMargin,
 widgets)

 NodeSeq(<widget>Menu</widget>,
 <widget id="panel-1">Panel</widget>,
 <widget id="panel-2">Panel</widget>,
 <widget>Status bar</widget>)

A pure Scala version:

(widgets \ "widget").sortBy(_.text)

4. Extensibility

Using Scala’s “implicits” you can enrich types by adding
new functionality.

val oo = <oo>
<x id="1">123</x>
<x id="2">1234</x>
<x id="x">xxxxx</x>
<x id="3">1235</x>
</oo>

Treating attribute values, which are strings, as doubles,
implicitly when needed, and without any
NumberFormatExceptions. Uses the scala.util.Try class
that wraps exceptions in a functional manner

implicit def toSafeDouble(st: String) =
 scala.util.Try{st.toDouble}.getOrElse(Double.NaN)

(oo \ "x").filter(_ \@ "id" < 3)

 NodeSeq(<x id="1">123</x>, <x id="2">1234</x>)

(oo \\ "@id").map(_.text: Double).
 filterNot(_.isNaN).sum

 6.0

Page 69 of 162

XML Processing in Scala

Here are some examples of selecting multiple items
according to their index:

val root = <nodes>
 <node>a (0)</node>
 <node>b (1)</node>
 <node>c (2)</node>
 <node>d (3)</node>
 <node>e (4)</node>
 <node>f (5)</node>
 <node>g (6)</node>
 <node>h (7)</node>
 <node>i (8)</node>
</nodes>
val nodes = (root \ "node")

implicit class indexFunctionality(ns: NodeSeq) {
 def filterByIndex(p: Int => Boolean): NodeSeq =
 ns.zipWithIndex.collect {
 case (value, index) if p(index) => value
 }
 def filterByIndex(b: GenSeq[Int]*): NodeSeq=
 filterByIndex(b.flatten.toSet)
 def apply(n1: Int, n2: Int*) =
 ns(n1) ++ ns.filterByIndex(n2.toSet)
 def apply(b: GenSeq[Int]*): NodeSeq =
 filterByIndex(b.flatten.toSet)
}
nodes.filterByIndex(_ > 6)

 NodeSeq(<node>h (7)</node>, <node>i (8)</node>)

nodes(0, 4, 7)

 NodeSeq(<node>a (0)</node>, <node>e (4)</node>,
 <node>h (7)</node>)

nodes(1 to 3)

 NodeSeq(<node>b (1)</node>, <node>c (2)</node>,
 <node>d (3)</node>)

nodes(1 to 3, 5 until 7)

 NodeSeq(<node>b (1)</node>, <node>c (2)</node>,
 <node>d (3)</node>,
 <node>f (5)</node>, <node>g (6)</node>)

Note that root can alternatively be generated using:

val root = <nodes> {('a' to 'i').zipWithIndex.map{
 case (letter, index) =>
 <node>{letter} ({index})</node>
}}</nodes>

This is how we lookup elements by namespace. You can
see how extensible Scala becomes (using Appendix A, The
showNamespace(-s) methods):

val tree = <document>
 <embedded xmlns="urn:test:embedding">
 <description>
 <referenced xmlns="urn:test:referencing">
 <metadata>
 <title xmlns="">Untitled</title>
 </metadata>
 </referenced>
 </description>
 </embedded>
</document>
implicit class nsElement(nodeSeq: NodeSeq) {
 val regex = """^\{(.+)\}(.+)$""".r
 def \\#(path: String): NodeSeq = {
 val regex(namespace, el) = path
 for {
 node <- nodeSeq \\ el
 if node.namespace == namespace
 } yield node
 }
 def \#(path: String): NodeSeq = {
 val regex(namespace, el) = path
 for {
 node <- nodeSeq \ el
 if node.namespace == namespace
 } yield node
 }
}

(tree \\# "{urn:test:referencing}_").
 map(showNamespace).mkString("\n")

 {urn:test:referencing}referenced
 {urn:test:referencing}metadata

Page 70 of 162

XML Processing in Scala

4.1. Further Extensibility: XQuery-like constructs

Here we implement the XQuery 3.0 use case Q4 Part 3 [19].

Page 71 of 162

XML Processing in Scala

XQuery code: <result>{
 for $store in /root/*/store
 let $state := $store/state
 group by $state
 order by $state
 return
 <state name="{$state}">{
 for $product in /root/*/product
 let $category := $product/category
 group by $category
 order by $category
 return
 <category name="{$category}">{
 for $sales in /root/*/record[
 store-number = $store/store-number
 and product-name = $product/name]
 let $pname := $sales/product-name
 group by $pname
 order by $pname
 return
 <product name="{$pname}"
 total-qty="{sum($sales/qty)}"/>
 }</category>
 }</state>
}</result>

Scala code: def loadXML(ref: String) = {
 val filename = s"benchmarks-xml/$ref"
 val file = new File(filename)
 scala.xml.XML.loadFile(file)
}

val allStores = loadXML("stores.xml") \ "store" groupByOrderBy "state"
val allProducts = loadXML("products.xml") \ "product" groupByOrderBy "category"
val allRecords = loadXML("sales-records.xml") \ "record" groupByText "product-name"

<result>{
 for {
 (state, stateStores) <- allStores
 storeNumbers = (stateStores \ "store-number").textSet
 } yield <state name={state}>{
 for {
 (category,products)<- allProducts
 productRecords = allRecords.filterKeys{(products\"name").textSet}
 } yield <category name={category}>{
 for {
 (productName, productSales)<- productRecords
 filteredSales = productSales.filter(n => storeNumbers(n\"store-number" text))
 if filteredSales.nonEmpty
 totalQty = (filteredSales \ "qty").map(_.text.toInt).sum
 }
 yield <product name={productName} total-qty={totalQty.toString}/>
 }</category>
 }</state>
 }</result>

An extensibility class used is attached in Appendix B, Extensions for NodeSeq.

5. Performance vs XQuery

5.1. Assumptions

Core i7-3820 @ 3.6 GHz, 4 core, Windows 7
Professional, 64 bit, 16 GB Ram, Java 7 u51 64bit,
default JVM settings. Scala 2.11, XMLUnit, XQJ
interfaces, XQS Scala bindings 2 XQuery
implementations A and B. Sources are located on
GitHub [20].

5.2. Methodology

Using prepared statements for the XQuery, can be
switched off, B performance drops like a stone without
it, and not really fair, so turn on prepared statements.
Scala has no concept of these, as there is nothing to
prepare or parse. Also cached the conversion of XML to a
DOMSource for the XQuery, so we don’t measure that
effort when timing the XQueries. Put in switch to
serialize results to string, so as to ensure that any
potential lazy values are materialized. Selected various
queries from [21] also a XQuery 3.0 example from [19].
Runs both XQuery and Scala in a single run, 3 runs of
10,000 queries, with the results of the first 2 runs thrown
away to get a good JVM jit warmup. Its very easy to get
misleading results from badly thought out benchmarks.
Warm up is very important, JVM runs best when code is
hotspotted. For each query we emits the XQuery time,
Scala time, and the ratio of these times, XQuery:Scala.
We plot a graph of these values, showing first 2 values as
a bar, the ratio as a line.

5.3. Benchmarks

 Impl A XQuery vs Scala (Prep Statements, serialized)

Table 1. Impl A XQuery vs Scala

Query Ratio XQuery Scala

Q1 38.27 2449 64

Q2 29.89 2600 87

Q3 33 2574 78

Q4 7.75 3325 429

Q5 23.91 3372 141

Q6 40.1 2927 73

Q7 17.86 2590 145

Q9 32.04 1602 50

Q10 12.48 2994 240

Q11 26.86 2847 106

Q4_3.0 6.89 4921 714

Impl B XQuery vs Scala (Prep Statements, serialized)

Table 2. Impl B XQuery vs Scala

Query Ratio XQuery Scala

Q1 9.57 603 63

Q2 7.11 619 87

Q3 7.4 592 80

Q4 1.74 750 430

Q5 5.44 816 150

Q6 8.26 611 74

Q7 3.89 579 149

Q9 4.59 225 49

Q10 2.21 478 216

Q11 6.33 658 104

Q4_3.0 2.49 1715 688

Page 72 of 162

XML Processing in Scala

1 Akka - http://akka.io/
2 Play framework - http://www.playframework.com/
3 http://www.playframework.com/documentation/2.2.x/ScalaJson
4 Play Framework documentation, WebSockets in Scala guide - http://www.playframework.com/documentation/2.2.x/ScalaWebSockets
5 http://lampwww.epfl.ch/~hmiller/pickling/
6 http://json4s.org/

5.4. Conclusions

Scala is faster in all these use cases. Very similar to
XQuery in its language construction. No doubt there are
use cases where XQuery may be better, like an XML
database. This is not black or white, a religious issue,
simply a matter of choice.

6. Practicality

6.1. Enterprise usage

Scala is well established in enterprises [22]. While having
access to the JVM Scala makes it easy to reuse the solid
and tested libraries of the JVM ecosystem as well as an
enterprise’s legacy Java code [23]. Scala’s terseness makes
domain modelling much more precise [24]. Enterprise
can migrate slowly to using all-Scala. The amount of
code to maintain decreases, so number of moving parts
decreases.

6.2. ScalaTest

ScalaTest, then test either your whole domain with
property based testing, and ensure that the parties you
are dealing with understand what your XML processing
code does. Again, whether your XML processing code is
inside Scala, XSLT, XQuery or MarkLogic, makes no
difference. XMLUnit works nicely with Scala.

6.3. Other integration features

Scala 2.11 makes itself available as a scripted language to
JSR-223 [25]. Scala’s Akka 1 and 2 provide many
integration features with the rest of the world including
JSON 3 and WebSockets 4. With macros you can create
programs that create programs. Meaning your language is
not getting in your way with ‘design patterns’ when
focusing on the problem you’re trying to solve. This
includes creating bindings such as serializers and
deserializers of your favourite formats (e.g. binary via
Scala Pickling 5, JSON via json4s 6.

We would like to see more research in querying with
Scala such as Fatemeh Borran-Dejnabadi's paper [26] .

7. Conclusions

Possibilities with using Scala for XML processing are
almost limitless. Pick and mix how you want to process
your XML in Scala: powerful collections methods, for-
comprehensions, XML generation, XPath, XSLT, XML
databases and XQuery engines via XQS/XQJ, XML
streaming via StAX. Scala makes it possible to simplify
complex logic into domain specific programs and use a
combination of the best tools for achieving your targets.
As Java has not advanced as far in terms of the language,
Scala has secured the niche of the effective programmer
and the effective business. For you as a functional
programmer Scala’s concepts will already be familiar. You
lose none of your existing Java ecosystem and gain so
much more. It is another important tool in your armoury
for efficient and lucid data processing.

Page 73 of 162

XML Processing in Scala

http://akka.io/
http://akka.io/
http://www.playframework.com/
http://www.playframework.com/
http://www.playframework.com/documentation/2.2.x/ScalaJson
http://www.playframework.com/documentation/2.2.x/ScalaWebSockets
http://www.playframework.com/documentation/2.2.x/ScalaWebSockets
http://lampwww.epfl.ch/~hmiller/pickling/
http://json4s.org/

Bibliography

[1] Martin Odersky on the Future of Scala (25:00). http://www.infoq.com/interviews/martin-odersky-scala-future
Sadek Drobi and Martin Odersky. InfoQ.

[2] What is Scala? Seamless Java interop. Martin Odersky.
http://www.scala-lang.org/what-is-scala.html#seamless_java_interop

[3] Scala XML Book. Burak Emir. https://sites.google.com/site/burakemir/scalaxbook.docbk.html?attredirects=0
[4] Scala Crash Course. February 20, 2014. University of California, San Diego. Ravi Chugh.

http://cseweb.ucsd.edu/classes/wi14/cse130-a/lectures/scala/00-crash.html
[5] Scala - The Short Introduction. Jerzy Müller. http://scalacamp.pl/intro/#/start
[6] Scala: The Static Language that Feels Dynamic. Bruce Eckel. Artima, Inc.. June 12, 2011.

http://www.artima.com/weblogs/viewpost.jsp?thread=328540
[7] Implicit classes overview, Scala documentation. http://docs.scala-lang.org/overviews/core/implicit-classes.html
[8] Pimp my Library. Martin Odersky. Artima, Inc.. October 9, 2006.

http://www.artima.com/weblogs/viewpost.jsp?thread=179766
[9] Scala: Which is the best IDE for Scala Development?. Quora. Navad Samet. January 13, 2014.

http://www.quora.com/Scala/Which-is-the-best-IDE-for-Scala-Development/answer/Nadav-Samet-1
[10] Scala Collections overview. scala-lang.org. http://docs.scala-lang.org/overviews/collections/overview.html
[11] String Interpolation. scala-lang.org. Josh Suereth.

http://docs.scala-lang.org/overviews/core/string-interpolation.html
[12] Iteration & Recursion - Scala crash course. Ravi Chugh. University of California, San Diego. February 27, 2014.

http://cseweb.ucsd.edu/classes/wi14/cse130-a/lectures/scala/01-iterators.slides.html
[13] scala.xml.parsing.ConstructingParser. scala-lang.org.

http://www.scala-lang.org/files/archive/nightly/docs/xml/#scala.xml.parsing.ConstructingParser
[14] XQuery for Scala. Dino Fancellu. https://github.com/fancellu/xqs
[15] Transform.xq: A transformation library for XQuery 3.0. John Snelson. XML Prague 2012.

http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
[16] JSR 225: XQuery API for Java (XQJ). Maxim Orgiyan and Marc Van Cappellen.

https://jcp.org/en/jsr/detail?id=225
[17] XQJ.NET. Charles Foster. http://xqj.net/
[18] XQuery API for Java. http://en.wikipedia.org/wiki/XQuery_API_for_Java.
[19] XQuery 3.0 Use Cases - Group By Q4. W3C Working Group.

http://www.w3.org/TR/xquery-30-use-cases/#groupby_q4
[20] Benchmark sources. https://github.com/ScalaWilliam/XMLLondon2014/. Dino Fancellu.
[21] XML Query Use Cases. W3C Working Group. March 23, 2007. http://www.w3.org/TR/xquery-use-cases/
[22] Case Studies & Stories. Typesafe, Inc.. https://typesafe.com/company/casestudies
[23] The Guardian case study. Typesafe, Inc..

http://downloads.typesafe.com/website/casestudies/The-Guardian-Case-Study-v1.1.pdf
[24] Implementing a DSL for Social Modeling: an Embedded Approach Using Scala. Jesús López González. Juan

Manuel. October 13, 2013. http://www.infoq.com/presentations/speech-dsl-social-process
[25] SI-874 JSR-223 compliance for the interpreter. https://github.com/scala/scala/pull/2238. Adriaan Moors.
[26] Efficient Semi-structured Queries in Scala using XQuery Shipping. Fatemeh Borran-Dejnabadi. February 2006.

http://infoscience.epfl.ch/record/85493/files/Scala_XQuery.pdf

Page 74 of 162

XML Processing in Scala

http://www.infoq.com/interviews/martin-odersky-scala-future
http://www.scala-lang.org/what-is-scala.html#seamless_java_interop
https://sites.google.com/site/burakemir/scalaxbook.docbk.html?attredirects=0
http://cseweb.ucsd.edu/classes/wi14/cse130-a/lectures/scala/00-crash.html
http://scalacamp.pl/intro/#/start
http://www.artima.com/weblogs/viewpost.jsp?thread=328540
http://docs.scala-lang.org/overviews/core/implicit-classes.html
http://www.artima.com/weblogs/viewpost.jsp?thread=179766
http://www.quora.com/Scala/Which-is-the-best-IDE-for-Scala-Development/answer/Nadav-Samet-1
http://docs.scala-lang.org/overviews/collections/overview.html
http://docs.scala-lang.org/overviews/core/string-interpolation.html
http://cseweb.ucsd.edu/classes/wi14/cse130-a/lectures/scala/01-iterators.slides.html
http://www.scala-lang.org/files/archive/nightly/docs/xml/#scala.xml.parsing.ConstructingParser
https://github.com/fancellu/xqs
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
https://jcp.org/en/jsr/detail?id=225
http://xqj.net/
http://en.wikipedia.org/wiki/XQuery_API_for_Java
http://www.w3.org/TR/xquery-30-use-cases/#groupby_q4
https://github.com/ScalaWilliam/XMLLondon2014/
http://www.w3.org/TR/xquery-use-cases/
https://typesafe.com/company/casestudies
http://downloads.typesafe.com/website/casestudies/The-Guardian-Case-Study-v1.1.pdf
http://www.infoq.com/presentations/speech-dsl-social-process
https://github.com/scala/scala/pull/2238
http://infoscience.epfl.ch/record/85493/files/Scala_XQuery.pdf

A. The showNamespace(-s) methods

def showNamespace(node: Node) =
 s"{${node.namespace}}${node.label}"

def showNamespaces(ofTree: NodeSeq) =
 (ofTree \\ "_").map(showNamespace).mkString("\n")

B. Extensions for NodeSeq

val XQueryEquals = new Equiv[NodeSeq] {
 def equiv(a: NodeSeq, b: NodeSeq): Boolean = {
 (a.map(_.text).toSet &
 b.map(_.text).toSet).size > 0
 }
}

implicit class nsExtensions(nodeSeq: NodeSeq) {

 def ===(b: NodeSeq): Boolean =
 XQueryEquals.equiv(nodeSeq, b)

 def ===(b: GenTraversable[String]): Boolean =
 b.exists(text =>
 XQueryEquals.equiv(nodeSeq, Text(text)))

 def ===(hasValue: String): Boolean =
 nodeSeq.text == hasValue

 def sortedByText: NodeSeq =
 nodeSeq.sortBy(_.text)

 def sortedText: Seq[String] =
 nodeSeq.map(_.text).sorted

 def sortedByLookup(ofPath: String): NodeSeq =
 nodeSeq.sortBy(node => (node \ ofPath).text)

 def groupByText(ofPath: String)
 : Map[String, NodeSeq] =
 nodeSeq.groupBy(node => (node \ ofPath).text)

 def groupByOrderBy(ofPath: String)
 : List[(String, NodeSeq)] =
 groupByText(ofPath).toList.sortBy(_._1)

 def textSet: Set[String] =
 nodeSeq.map(_.text).toSet

}

Page 75 of 162

XML Processing in Scala

XML Authoring On Mobile Devices
George Bina

Syncro Soft / oXygen XML Editor
<george@oxygenxml.com>

Abstract

Not too long ago XML-born content was not present in a
mobile-friendly form on mobile devices. Now, many of the
XML frameworks like DocBook, DITA and TEI provide
output formats that are tuned to be used on mobile devices.
These are either different electronic book formats (EPUB,
Kindle) or different mobile-friendly web formats.

Many people find XML authoring difficult on
computers, let alone mobile devices. However, due to the
constantly increasing number of mobile devices, that made
people create mobile-friendly output formats from XML
documents, there is clearly a need to provide also direct access
to authoring XML content on these devices.

I would like to explore the options for providing XML
authoring on mobile devices and describe our current work
and the technology choices we made to create an authoring
solution for mobile devices. Trying to enable people to create
XML documents on mobile devices is a very exciting, mainly
because the user interaction is completely different on a
mobile device: different screen resolutions, different
interaction methods (touch, swipe, pinch), etc. See how we
imagined XML authoring on an Android phone or on iPad!
How about editing XML on a smart TV? Leverage speech
recognition/dictation and handwriting recognition
technologies that are available on mobile devices to enable
completely new ways of interacting with XML documents!

Keywords: XML, authoring, mobile, review, user
experience

1. Introduction

When an XML-based solution is implemented the lowest
impedance for communicating between different
processing steps is to use XML, so people try to use XML
in as many places as possible, but there are usually a few
processes where using XML is not always easy. One of
these processes is the review of XML content. Another
process is the contribution of initial content from people
that are not familiar with XML.

A traditional review process will convert the XML
information to an output format, usually PDF, and have
reviewers annotate that PDF with comments, then align
the PDF with the XML documents that generated it to
identify the places in the XML source the comments
refer to and manually act on those comments to make
the corresponding changes to the XML documents.

Figure 1. Traditional review process

This process has many steps and some of them are not
automated so they not only consume time but errors can
appear at different stages. Many of the issues can be
solved by adopting a direct XML review process, where
users can annotate directly on the XML content, and add
not only comments but also make changes to the
document that will be considered proposed changes.
Thus, responding to a comment by identifying the XML
source the comment refers to and then updating the
document as described in the comment can be replaced
with an simple action to accept a proposed change to the
document.

Figure 2. Direct XML review process

doi:10.14337/XMLLondon14.Bina01Page 76 of 162

mailto:george@oxygenxml.com

Contributing initial content is very much linked to the
tools the users already know and the devices he has access
to. Thus initial content is contributed in whatever format
the users can use and then converted to XML to be able
to enter the XML-based solution. Usually people use
Word and there is a conversion process that tries to get
from Word to XML. We can cut the conversion cost if
we are able to get this initial content in XML form.

Figure 3. Non XML data conversion to XML vs XML
first

When you move to an XML-based solution it is
important to be able to cut costs on the review process
and to implement an XML-first system, where people
can contribute initial data directly in XML. We tried to
address these problems and we currently provide
solutions for both the review process and for creating an
XML-first solution. However, the current solution
requires the use of a laptop or a desktop computer.

The people that perform reviews or the ones that
contribute initial content are in general external to the
department that deals with the XML-based solution, so it
is difficult to control the resources available to these
people. The increasing use of mobile devices during the
last years and the projections for next years show that
mobile devices are not something we can ignore (mobile
devices are expected to exceed the number of desktops
this year) and the only device some of those people have
may be a mobile one. So, if we want to be able to cut the
costs and the complexity of processes similar to the ones
described, we need to be able to provide at least direct
XML review and simplified XML authoring on mobile
devices.

2. Technology choices

Once we decided to start building a tool for XML
authoring on mobile devices the next step was to decide
on what technologies that will be based on. The first
decision was if it was to be a native application or a web
application.

From our experience with oXygen we found that it is
great to be able to support multiple platforms with the
same code - oXygen being built in Java works on any
platform that provides a JVM. So one problem with a
native solution was that we had to build a different
application for each mobile platform while a web
application will allow us to reuse the same code for all
devices, as long as they support the required web
technology (HTML5 and JavaScript). A web application
has also other advantages over a native application like
immediate update, no app-store interference and an
important one - the fact that it will work also on
desktops. A disadvantage will be that the access to device
specific functionality will not be possible but it should be
possible to use a hybrid application if such functionality
will be critical in the future.

Another decision point was on how much processing
should be done on the client and how much on the
server. Targeting mobile devices we wanted to have as
little as possible processing on the client, in order not to
drain the device battery. This factor and the fact that we
already have in Java many of the components needed for
XML authoring made us decide to prefer the server side
processing to the client processing and keep the current
oXygen on the server and have only the display part on
the client side, like a remote display, thus reusing almost
all of the existing components and technology stack.

We experimented with different approaches for a
rendering XML in the web application, including:
1. Placing XML directly inside an HTML document

and render it though the same CSS that we use now
2. Using the Canvas to display the rendered XML

document, similar to how it is done inside oXygen,
using a CSS parser that will provide the rendering
styles for each element

3. Render/convert the XML as/to HTML and convert
the CSS used for XML to match the converted
HTML format

In the first case we hit limitations in the browser support
for CSS that made it impossible to use this approach. For
example browsers do not support the CSS attr/2

function as specified in CSS3, where along with the first
parameter that specifies the attribute name you can
specify also a second parameter that represents the
attribute value type. This is used in oXygen to specify
that an attribute value is a URI and it should be a link.

In the second case we implemented all the rendering
primitives that are used in oXygen (we have a Graphics
interface that is used for rendering the XML documents
and the methods from this interface were implemented
also based on the HTML5 Canvas) but then we needed
also the CSS parser, the layout engine, caret
management, etc. which were not easy tasks.

Page 77 of 162

XML Authoring On Mobile Devices

Figure 4. oXygen web application architecture

In the 3rd approach we converted the XML document to
HTML5 and then we modified the CSS that matched on
XML to match on the converted HTML5 structure to
obtain the same rendering as the XML+CSS that we
currently use. This allows us to use the browser editing
support for HTML to modify the document content.

For mobile interaction we use JQuery mobile due to
existing experience - we use this also for the mobile-
friendly WebHelp transformations that we provide for
DITA and DocBook. However, other frameworks may
be used as we plan to support multiple templates for the
user interface.

3. Web application architecture

In Figure 4. oXygen web application architecture a
diagram showing the current architecture outling how
the oXygen existing support is reused on the server side.
Three components can be identified:
• oXygen on the server
• The HTML+JavaScript that render the document on

the client side
• Content storage that can be in the form of a CMS

oXygen on the server is a Java servlet that encapsulates
the Java-based oXygen to provide the visual editing
support. It reuses the same customizations created for the
oXygen desktop that come in the form or frameworks
and plugins. This allows for example to reuse the editing
support for DITA, DocBook, etc. as well as plugins that
provide access to remote repositories like the CMS
connector plugins.

The server part will generate HTML5+JavaScript for
an XML file that when rendered will provide the view for
that XML document. The generated HTML5 content
keeps XML related information in data-* attributes. The
CSS that matched on XML is automatically converted to
match on the generated HTML5 and its data-*

attributes that encode the XML information. The
conversion from XML to HTML5 uses mainly div

elements but sometimes it also takes advantage of specific
HTML elements, like the table element for example.

Page 78 of 162

XML Authoring On Mobile Devices

4. Samples

We will demo XML reviewing functionality, using
custom XML interfaces and full XML editing. Here you
can see some screen-shots taken on iPad:

Figure 5. A DITA topic

Note the highlights that represent areas with associated
comments as well as the added and deleted content styled
with underline and strikeout decorations.

Figure 6. A DocBook article

Here we have a DocBook article rendered though CSS
with different structure like images and lists. Note again
the comment highlights and the decorations for changed
content.

Page 79 of 162

XML Authoring On Mobile Devices

Figure 7. Review Panel showing all review comments
and changes

You can swipe right on the editing area to make the
Review Panel visible. When you swipe over a review
entry the available actions are displayed so you can easily
act on a review to edit or remove a comment, accept or
reject a change. Swipe left to hide the Review Panel and
return to the editor.

Figure 8. A custom XML editing interface

Note the inline action marked with “[+]” that can be
used to add a new section to the document.

Page 80 of 162

XML Authoring On Mobile Devices

Figure 9. Enter a date value using the standard iPad
date picker

Different form controls can be used to build custom
interfaces that will provide access to text and attribute
values, thus making the editing simpler and removing the
need to train users. Each form control will use the native
support on each platform, thus the user will have the
same editing experience he is already used to on that
device.

Figure 10. Text editing with changes recorded as
tracked-changes

Here you can see the editing mode, where we have the
keyboard show up and the document contains a caret.
The changes in this case are recorded as tracked changes.

Page 81 of 162

XML Authoring On Mobile Devices

Figure 11. Inserting markup

You can insert markup either with the dedicated action
or by pressing the enter key in the virtual keyboard. That
will show a popup with valid element names where you
can filter to see only the elements that match, then select
one to insert in the document.

Figure 12. A DITA topic on a smart TV

The web editing platform works on any device
supporting HTML5 and JavaScript, in this case we have
it running on a smart TV.

5. Conclusions

XML editing on mobile devices can solve some real use-
cases where people that are not XML-aware can
contribute XML content using their preferred or
available device at that moment. Creating a customized
user interface using form controls bind to attribute values
and inline actions reduce the training sometimes to zero -
probably this is the way further, putting more effort on
the developer to customize the user interface so that users
will not have to think in terms of XML concepts but
focus on the information they want to record.

There are large costs connected with integrating the
reviewers feedback on some output format back into the
XML source and sometimes that feedback is lost. A
solution that will record reviewers feedback directly in
the XML documents reduces dramatically the costs and
effort and elliminates many steps in the workflow that
can introduce errors.

There is a lot of exploration to come up with the best
possible user interface that takes advantage of specific
input methods and interaction patterns from mobile
devices and this is just the start.

More generally, the web editing support for XML
makes it available on any device, not only on mobile
devices and it will be interesting to see if we can get
different other applications based on XML like an XML-
based blogging system or an XML-based wiki-like
system.

Page 82 of 162

XML Authoring On Mobile Devices

Engineering a XML-based Content Hub for
Enterprise Publishing

Elias Weingärtner

Haufe Group

Christoph Ludwig

Haufe Group

Abstract

Being one of the leading publishing houses in the domains of
tax, human resources and law in Germany, delivering large
amounts of XML-based content to our customers is a vital
part of our business at Haufe Group. We currently make use
of several legacy and proprietary systems for this purpose.
However, recent business needs such as the requirement for
flexible transformation or complex structural queries push
these systems to both conceptual and technical limits. Along
with new business requirements derived from our company's
business strategy, we are currently designing a new service
that centrally manages our entire document corpus in XML.
We term this service "Content Hub". In this paper, we sketch
the architecture of this system, discuss important software
architectural challenges and illustrate how we are
implementing this system using standard XML technology.

1. Introduction

Fifteen years ago, books, newspapers and magazines still
were the most prominent media for the presentation of
textual content. In the year of 2014, e-book readers,
smartphones, tablet PCs and laptops are commonly
observed as the major devices used for delivering
information in digital form. This radical shift in how we
access, read and retrieve content has turned the
requirements and processes at media houses upside
down.

The delivery of content for business customers in the
domains of tax and law has always been one of the core
businesses of Haufe Group. Since the 1960s, our
company has been distributing loose leaf editions. There
is to this day a surprising demand for paper-bound
editions. Nevertheless, Haufe reacted to the rise of the
WWW and entered the market with web-based content
products for professional customers in the late 1990s.

For the purpose of publishing digital content the Haufe
Group has developed a both comprehensive and
sophisticated information ecosystem. We currently
operate a set of custom-built systems that cover all steps
ranging from content production based on SGML over
content transformation to content presentation.

Even if our systems are stable, there is a core problem
with our current information infrastructure: Core
services such as search, document storage and retrieval as
well as content-based authorization are saturated across
the entire system landscape. For example, this results in
the need of indexing content at different search engines,
in a lot of duplicated content and partially also in
limitations with regard to possible sales models. For this
reasons, we are currently rethinking the way we store,
manage and retrieve content in general. Speaking of the
content body, we now provide around 50 millions of
hypertext documents to our customers; and this amount
is steadily increasing.

For these reasons, we are currently designing a new
core service that centrally manages the entire document
body using a NoSQL XML store. In this paper, we first
sketch the requirements of this system (Section 2). In a
second step, we briefly describe the future architecture of
this system (Section 3) and related technical challenges
(Section 5). Possible implementation approaches are
sketched in Section 4 before we conclude the paper in
Section 6.

2. Requirements

The Content Hub will be a core service in Haufe's future
application landscape and as such has to meet many
stakeholders' requirements, both functional and non-
functional.

doi:10.14337/XMLLondon14.Weingaertner01 Page 83 of 162

2.1. Functional Requirements

The following list can be understood as the set of
minimal core functionalities that need to be
implemented by our content hub.
• XML and Blob Storage: We envision the content hub

to serve as the central store for all of our content.
While we currently rely on SGML as source format
for all of our 50 million documents, we are already
have a working infrastructure for converting these
documents to XML. Due to the higher flexibility of
XML with regard to transformation and general
tooling, we have decided to establish XML as the base
line format for storing our documents in the content
hub. Moreover, we are also in the need of storing a
large amount of complimentary content (mostly
images, but also software artifacts and audio-visual
content). For this reason, it is vital for the content
hub to be able to handle not only XML files, but also
binary content.

• Flexible Search Capabilities: The most prominent way
how our customers access content is by performing
various search actions. As a matter of fact, the content
hub has to support full-text searches across the entire
document corpus. Naturally, this search service needs
to support different languages and provide all features
common to off-the-shelf search engines like support
for facets and indexed meta-data. Beyond these
common search functionalities, our products also
offer domain-specific query constructs. For example,
if a customer enters a query that matches a common
citation rule, the corresponding document is returned
directly if it is available in the datastore. Hence, the
search component of the content hub must be able to
check if a query matches a certain pattern, and if yes,
a specialized query handler must be triggered in order
to process the query adequately.

• Semantic Relationships and Inference: Our content is
highly structured and we maintain many different
types of relationships among our content objects. For
example, imagine a law document displayed by a user.
This law document may relate to other documents
like comments or news articles and even to seminars
offered by a affiliated partner company. Documents
are also often not stored as a single file, instead they
consist of sub documents, and we use relations to glue
these documents logically together. Hence, it is vital
that we can use XML technologies like XPointer,
XLink and semantic annotations using RDF to model
these semantic relationships in our content.

Technology wise, it is vital that the underlying
technology will allow us to traverse these semantic
networks efficiently. We are also interested in
performing inference tasks in a second step.

• Staging Support: Many of our internal processes
require staging of large amounts of content. One
example is publishing a new content product, which
may consist of many thousand XML files. We here
need staging support to facilitate internal review
processes before the publication becomes publicly
available. The actual publication must be an atomic
operation. If the product's publication fails for some
reason half the way through, then it must be rolled
back completely.

• Flexible Authorization Concept: The Content Hub
must restrict access to its documents based on
policies. An obvious policy requires that a direct
Haufe customer may only read content that is part of
a product subscribed by the customer. This extends to
search results as well; a user must only see search
results he is allowed to retrieve. The policies must also
cover end-users authenticated by key account
customers or external partners. At the same time,
Haufe is not always free to grant access as it sees fit,
even for Haufe's own applications. Some content is
used within license contracts that impose constraints
on its usage. In consequence, the authorization
policies must respect usage restrictions for individual
documents.

2.2. Non-Functional Requirements

Being a core service of our information platform, the
content hub needs to fulfill a set of non-functional
requirements commonly found for network services [1].
For example, the system needs to scale horizontally as we
expect larger amounts of content to be added
dynamically to the system. We also require the system to
achieve a high degree of availability. Finally, we require a
strong degree of data consistency especially between the
search indices and the data store, as we both want to
avoid dead content or dead links in search result lists.
Another important aspect is deployment flexibility. First,
we require the future system to be easily deployable in a
cloud environment. Second, we aim at a high degree of
automation for common tasks such as horizontal scaling
and content migration. Finally, we target the
implementation of standardized operations interfaces in
order to integrate the content hub with standard
monitoring and logging tools.

Page 84 of 162

Engineering a XML-based Content Hub for Enterprise Publishing

Figure 1. Conceptual layered architecture of the future content hub.

V

Content
Sources ...

Content
Consuming

Systems
...

Content Access Interface
(CMIS)

Metadata Interface
(SPARQL)

Search Interface
& Query Processor

Authorization

Transformation

Aggregation

Content Access Interface
(CMIS)

Single Document Ingest Bulk Ingest

Ingest Authorization

Validation, Extraction & Transformation

Transaction Management

3. Conceptual Architecture

Figure 1 shows the future architecture of the content
hub. The content hub provides three interfaces to
external systems, for example web applications. These
interfaces facilitate retrieving, searching and navigating
through the document body.
• The Content Access Interface implements a standard

CMIS interface, allowing convenient access for a
variety of both legacy and off-the-shelf content
management systems. We also consider amending the
Content Access Interface with interfaces secondary to
CMIS if our upcoming proof-of-concept prototype
should indicate this need.

• A SPARQL [2] -based Interface will be used for all
retrieval tasks related with meta data. Recall that our
content is highly structured and that relations
between content objects play a major role. Using
RDF for modeling these semantic relations and

employing SPARQL as query language provides us
with the possibility to handle our complex document
graph. Moreover, we expect SPARQL to be a door
opener for future linked data applications.

• We are currently in the progress of defining a search
interface . Its task is to enable querying the document
body using full-text search and faceted search
operations; the interface will also enable one to
restrict the result set based on policies. At present, we
also are discussing how we can include contextual
information such as the active product, the location of
the user and its language into the information passed
to the system as query. The search interface will be
enhanced by a custom query processor . It will support
query configurative extension hooks based on the
domain conventions of the respective products' target
audiences.

Page 85 of 162

Engineering a XML-based Content Hub for Enterprise Publishing

Similarly, the content hub needs to implement two
interface to ingest XML documents from a larger
number of sources. Here we need to distinguish between
the ingest of single documents and bulk imports that
may range up to hundreds of thousands of documents at
once.

3.1. Core Components

Internally, the content hub consists of six "sandwich"
layers that span across the three core building blocks of
the content hub, namely a XML document store, a triple
store and a full-text search engine (denoted by the large
icons in the diagram). Directly on top of these layers sits
a thin Aggregation Layer that serves as a unified facade
and combines the search, retrieval and triple-store related
functionalities in one place. The upper two layers are of
higher complexity:
• The Transformation Layer converts the XML-based

content to a set of intermediate and target formats,
for example XHTML, EPub or PDF. Depending on
the target format, the transformations could be
implemented by means of XSLT, XML-FO, or more
specific rendering mechanisms. In this regard we also
want to emphasize that the content-hub only
performs transformations directly related to the
content it stores. Further transformations required for
the content delivery will be performed at the content
presentation services, for instance by a web content
management system connected to the content hub.

• As mentioned before, restricting the access based on
authorization policies is vital for our business. Hence,
we envision a central Authorization Layer that is able
to control content search and retrieval for every
request sent to the system. Within the current phase
of system design, XACML 3.0 [3] seems to be a very
promising candidate for this task. Regarding the need
of authentication, we are currently evaluating the
integration of different authentication providers, for
example OAuth 2.0.

In an analog way, we perform both authorization
operations and content transformations also for
incoming content in the Ingest Authorization and in a
Ingest Transformation Layer . This layer also performs
validations based on XML schema to reject malformed
content. In addition, we here also extract meta-data and
potentially carry out automated RDF annotations.

Finally, a Transaction Management layer ensures the
data integrity among the core building blocks. This is
especially important for bulk updates, for which we are
in the need of performing roll-backs if adding or
updating operations fail in between a bulk operation.

4. Implementation Considerations

Having sketched the overall architecture of the system,
we are left with three strategies how such a system can be
implemented.
1. Build everything from scratch: In the past, a lot of

infrastructure-heavy systems, for instance a legacy
document store, have been built in-house, mostly
using Java and Python/Zope technology.

2. Integrate an XML-Database, a triple-store and an open-
source search engine such as Elasticsearch: While this
solution is certainly viable, a core challenge is
maintaining data consistency among these three
systems. Especially implementing transactional
semantics on a distributed system is challenging, as
this requires distributed snapshots to be taken for the
purpose of enabling conditional roll-backs.

3. Use a enterprise NoSQL datastore with XML-
capabilities: In order to circumvent consistency issues,
an alternative approach is to rely on a NoSQL
datastore that is able to handle large amounts of XML
documents.

After sketching prototypes for each of the three options,
we found option 3 to be the most appealing strategy.
First, we can save tremendous development efforts, as we
do not have to implement a lot of data-management
functionalities. Second, we believe that off-the-shelf-
solutions like MarkLogic Server [4] - which is our
present No.1 candidate for the implementation - are
much more stable than any home-brew implementation
will ever be able to. We here favour such enterprise
solutions over open source XML stores due to the better
availability of specialized consulting services. Thirdly,
certain business requirements demand the content hub
to execute in a cloud environment. Modern NoSQL
stores such as MarkLogic already are well prepared for
such deployments.

5. Further Technical Challenges

There are different technical challenges that are very
decisive success criteria for such a system. First, we need
to integrate external systems such as authentication
providers and in-house systems for license management.
We are currently investigating if we can achieve this
using XQuery and REST calls or if we need to rely on
the Java API of MarkLogic to carry out these tasks.

Page 86 of 162

Engineering a XML-based Content Hub for Enterprise Publishing

Second, there is performance . As indicated earlier, we
envision the content hub to serve several hundreds to a
couple of thousands requests a second. Hence, we need
to consider different strategies for operating the content
hub in a cluster in order to ensure availability of the
service even under high-load or in the case of node
failure. In addition, we currently develop caching
strategies to be implemented at different layers in the
system.

The third crucial aspect is the data model used to
store our content, as the data model directly influences
the performance of any database technology. We are
currently in a requirements engineering phase in order to
further clarify business demands; we will use the
outcome to revise the first draft of our data model that
we have developed over the past months.

6. Summary and Outlook

We have sketched a preliminary architecture for a
content hub that is presently designed to serve as the
central repository for XML and Blob content at Haufe
Group. We here envision a combination of a NoSQL
XML store, on-the-fly content transformation, enterprise
search capabilities and a triple store to form a more
flexible backbone for digital publishing that also opens
up new business opportunities. Within the next months,
we will develop a proof-of-concept implementation to
further investigate the concept. We look forward to
discussing our present and upcoming ideas and questions
with the audience at the conference.

References

[1] Distributed Systems: Principles and Paradigms. 1st Edition. Prentice Hall, 2001.
[2] SPARQL 1.1 Overview. March 2013.

Online Resource: http://www.w3.org/TR/sparql11-overview/ (accessed 03/2014)).
[3] eXtensible Access Control Markup Language (XACML) Version 3.0 . January 2013.

Online Resource: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html (accessed 03/2014)).
[4] Inside MarkLogic Server. MarkLogic Corporation. 2013.

Page 87 of 162

Engineering a XML-based Content Hub for Enterprise Publishing

A Visual Comparison Approach to Automated
Regression Testing

Celina Huang

Antenna House, Inc.
<celina@antennahouse.com>

Abstract

Antenna House Regression Testing System (AHRTS) is an
automated solution designed to perform visual regression
testing of PDF output (PDF to PDF compare) from the
Antenna House Formatter software by converting a set of
baseline PDFs and a set of new PDFs to bitmaps, and then
comparing the bitmaps pixel by pixel. Several functions of
the system make use of XML and the final reports are
generated using XML and XSL-FO. This paper addresses the
importance of PDF to PDF comparison for regression testing
and explains the visual comparison approach taken. We
explain the issues of traditional methods such as manual
regression testing and why the need for an automated
solution. We also look at how AHRTS works and discuss the
benefits we’ve seen since using it internally to test new
releases of our own software. Given its visual-oriented
capabilities, we then explore other possible uses beyond the
original design intent.

Keywords: regression testing, PDF, XML, XSL-FO

1. Introduction

We developed the Antenna House Regression Testing
System to meet our own internal need to test releases of
our formatting software to make sure that what worked
before still worked in the new releases. In developing the
system, we arrived at a set of design requirements. These
included:
• The system had to visually compare PDFs.

Comparing the internal code would not work because
differences in the internal structure of a PDF could
still produce the same visual output, e.g., tagged PDF
and PDF 1.5.

• A reasonable throughput speed was important. Our
test suite of 10,000+ pages was taking several people
up to 3 days to manually regression test by looking at
the PDF pages side by side. We wanted to speed up
the process and reduce the number of people and
effort required.

• Ease of usability, with a graphical user interface and
application programming interfaces, so both the
Developers and the Support Team that did regression
testing could use the tool.

• Where possible, we wanted to use our own tools,
XML and XSL-FO.

• Reports needed to be meaningful, easy to navigate,
customizable (this is where the XML and XSL-FO
fits), and that were not overly verbose.

Our need to regression test is the same as for any
software developer. As software evolves and improves
overtime, the possibility of newly, unwanted behavior
occurring always exists. Every time software is upgraded
or a system is changed in some way, regression tests need
to be run to ensure that the changes do not introduce
new faults [1] and that the intended results are still being
produced. Having been named “an unsung hero of the
software testing world” by Jean Hartmann (Microsoft’s
test architect) [2], regression testing is truly vital to
guarantee an error-free product and should never be
overlooked. Providing valued customers with significant
enhancements is of no benefit if the upgrade process
manages to break features that were working successfully
in previous versions of the software.

There are many methods to regression testing that
can be performed, but in this paper, we will focus on
visual regression testing which involves comparing
outputs visually to determine if the new document
matches, or deviates, from the reference document. For
organizations producing PDF documents from XML,
this is a sure way to detect problems such as missing
content or broken graphics that might result from a
system upgrade or change. In fact, this is the way
Antenna House performs regression testing on new
releases of our formatting software.

doi:10.14337/XMLLondon14.Huang01Page 88 of 162

mailto:celina@antennahouse.com

The traditional method to regression testing of a
formatted paged output is to visually compare two
documents side-by-side and page-by-page to ensure
changes in the software has not disrupted the production
process in any way. [3] Test cases can vary between a
subset and a large collection of documents. The test cases
that we collected over the years are almost all customer
files that provide a good sampling of formatting jobs and
truly exercise features of our formatting engine, AH
Formatter. We now have an extensive collection of files
that are rerun as regression tests and have become the
means for verifying that our software is behaving
correctly. It’s important to note the issues with manual
regression testing:
• It is a tedious task that testers have to endure and

overtime, the level of attention to detail will decline
causing unwanted changes to go unnoticed.

• It is extremely time consuming (especially if the
outputs being tested are large files) and results in
delayed product releases if the tests are not completed
on time.

• It can be costly due to the amount of resources and
time it takes to do the regression testing.

• It is unreliable and often leads to subtle errors that are
left undetected by the naked eye.

• It may not be done frequently enough due to how
much time, money, and human effort it takes to
successfully complete, which results in testing only on
candidate release versions of the software.

Because our software required testing on a large scale,
where there is a massive volume of information and
repetitiveness, we needed to migrate to an automated
process. It would make the process faster, more efficient,
reduce the risk for human error, and increase the overall
quality of the test. The challenge was finding an
automated tool that would compare outputs on a visual
level, as opposed to the underlying code, and also be able
to handle the PDF to PDF comparison on a large scale.
Due to these unique requirements, we could not find a
suitable tool and thus, Antenna House set out to custom
develop an automated solution to be used internally to
test the output from new releases of our software.

2. Automated Visual Regression
Testing

The Antenna House Regression Testing System
(AHRTS) is a simple, fast, and scalable solution for
automating the visual comparison of formatted
documents or pages. Its main function is to identify the
visual dissimilarities that exist between a pair or set of
documents. It is important to note that this is not a
solution for tracking changes or locating variations in the
content of multiple versions of the same document.
However, it is capable of finding content discrepancies
within a limited set of parameters. AHRTS is unique in
that it quickly converts the PDFs to bitmaps and then
performs a precision pixel-by-pixel comparison of two
PDF files and generates a user friendly report that
quickly identifies changes between a set of PDF files.

2.1. A Visual Method

Converting the PDFs to pixels and comparing pixel-to-
pixel overcomes the issues of just looking at the
underlying page codes. It also mitigates issues involved in
testing multi-lingual documents and documents with
vectors and bitmaps. For most organizations producing
PDFs from XML, the most important thing is that the
final output looks the same as it did before the software
was altered. Minute differences as the name implies,
might be small, but they can have a serious impact on
the accuracy of a document. On graphics, lines, labels,
fills, end caps might change or disappear. Text within the
document might move unexpectedly. We believe that
only a pixel-to-pixel comparison can locate even the most
subtle of differences between two PDF documents. A
detailed flowchart of how AHRTS works can be seen in
Figure 1, “PDF2PDF Compare Flowchart”.

Page 89 of 162

A Visual Comparison Approach to Automated Regression Testing

Figure 1. PDF2PDF Compare Flowchart

Page 90 of 162

A Visual Comparison Approach to Automated Regression Testing

The process of comparing two PDF files starts with
extracting the PDF code as character strings and then
doing a checksum comparison to see which files need to
be further tested. If document pairs with the same
checksums are found, they are the same and will not be
tested any further. If the documents differ, then the
system will render them to bitmaps and then checksum
compare each set of pages. Only the pages with different
checksum are then compared at the pixel-to-pixel level.
The differences found will be used to create a composite
image and included in the final report along with the
correspponding pages of the original PDF files being
compared. Originally, our 10,000+ page test suite took
close to 3 days of machine time to run. Once we
implemented the two different checksum comparisons,
the time to run the same test suite was reduced to less
than 2 hours.

2.2. Handling Large Document Comparisons

Individual documents can vary from one page up to
thousands of pages and collections of documents can be
extremely large. AHRTS is able to handle document
testing of any size, scaling from individual PDFs to
directories of PDFs. Comparing multiple PDFs is no
different from comparing individual PDFs when using
AHRTS. Testers can choose the folders that need to be
tested and a batch process will be performed to compare
all of those documents in the specified folders. This
system has no limit on the number of PDF files, the size
of each file, or the number of pages being tested. We
have actually tested a batch run of over 1,000
documents, containing a total of over 10,000 pages,
without encountering any problems. A single PDF
document with over 100,000 pages has also been tested
with no issues at all. Being able to handle PDF
documents of any size not only makes this system
versatile to fit into different workflows, but also greatly
reduces time and human resources devoted to regression
testing.

2.3. High Speed Performance

A valuable system is one that is able to regression test
large collections quickly. In order to achieve such speed,
AHRTS does a checksum comparison first (as seen in
Figure 1, “PDF2PDF Compare Flowchart”), to detect
which files are identical and which are not. When doing
the checksum comparison, we do exclude some
information such as the creation date and time of the
PDF, which will have no bearing on the actual page
output. Then only the documents with different
checksums will move to the next testing phase where the
discrepancies are identified. When AHRTS is used to test
different versions of AH Formatter, two stages in the
process can be set to multi-thread to attain even greater
speed.

2.4. Exclude Margins from Testing

This is a new feature that allows us to exclude portions of
the page in the trim and bleed areas that do not need to
be tested. We can select an area from the top, bottom,
left and/or right margin of the page to exclude from
testing. A preview of individual pages being tested will
appear in a separate window, as shown in Figure 2,
“Margin Selection Preview Window”, to see what will be
excluded as the margins are adjusted. You might want to
use this for example, if the only known differences
between the documents are an automatically generated
date-time stamp.

Page 91 of 162

A Visual Comparison Approach to Automated Regression Testing

1 A restricted copy of AH XSL Formatter is provided with AHRTS for only the purpose of generating reports.

Figure 2. Margin Selection Preview Window This option is also useful for certain documents that have
updated content in the header or footer, but the rest of
the content in the main body remains the same. By being
able to exclude areas of the page, those intended
differences would not cause every page of the document
to be identified as different in the generated report.

2.5. Generates Usable Reports

After the comparison process is completed, an XML
report is generated and formatted with AH XSL
Formatter1 to produce a usable PDF. The XSL stylesheet
for the report produces a cover page that provides the
total number of pages tested and locates which pages
have differences. When testing multiple PDF files, an
overview report is produced displaying which documents
have differences and which documents are identical.
Documents identified as having differences are
hyperlinked to individual reports for each document.
This individual report, as illustrated in Figure 3,
“Individual Report”, shows which pages are different and
then presents a page composed of three panels for each
pages with differences.

Figure 3. Individual Report

Page 92 of 162

A Visual Comparison Approach to Automated Regression Testing

The left pane is the actual original PDF page extracted
from the baseline document and the right pane is the
PDF page extracted from the new document. This is
possible with AH XSL Formatter’s ability to merge
selected individual pages from a PDF into a single PDF
file it creates. The center pane is the bitmap used for the
pixel-to-pixel comparison with the added composite of
the two pages highlighting where the changes are. There
is an option to overlay the bitmap composite on top of
the compared PDF files in the report for a better visual
comparison. Color coding is used to further help identify
what sort of change occurred between the original and
new documents. If a portion of the page was
intentionally excluded from testing, it can also be
colored. It is important to note that only pages with
differences are presented in each report. This way, if only
4 out of 500 pages have differences, you will only have to
look at and scroll through those 4 specific page sets.

The XSL stylesheet that produces the reports can be
modified to tailor the reports as wanted and all the XSL-
FO capabilities of Antenna House Formatter are
available for the report generation. This has enabled us to
quickly try a large number of report layouts in order to
arrive at the final report that best displays the
information we want and the way we want it.

3. Regression Testing New Releases
of AH Formatter

As previously mentioned, this software was originally
developed for our own internal use to test new releases of
AH Formatter. During the course of a year we will do
close to 20 releases, which includes maintenance releases
and new version releases of the versions of AH Formatter
that are still being fully supported. What used to take
several people several days, and was limited to only
candidate releases of the software, now just takes a couple
hours of machine time and is performed regularly on
development versions as well. AHRTS has enabled us to
detect possible negative regressions much earlier in the
development cycle. It also resulted in more regular
releases of AH Formatter, less associated problems in the
new releases, and an overall better product.

So how does it work? When used to regression test
releases of AH Formatter, AHRTS takes the documents
and first creates a batch file. The batch file is then used to
create the PDFs for both versions of AH Formatter that
are being compared. Next, it does the comparison of the
files and then creates all the associated reports. The final
step is where a user has to review the finished reports.

3.1. The User Interface

This application can be launched via command-line
interface or graphical user interface (GUI), but we will be
focusing on the latter for the purposes of this paper and
presentation. The GUI is written in Java so it will look
the same whether you are using it on Windows, Linux,
or a Mac operating system. A screenshot of the GUI with
the “Compare” tab open can be seen below in Figure 4,
“AHRTS User Interface”.

Figure 4. AHRTS User Interface

When the AHRTS GUI is first opened, it has default
settings of where to locate and store files needed to
complete the regression testing process. If AHRTS is
integrated in a bigger system, users can change where
they want the saved files to be stored in the “Settings” tab
and reuse them in other applications in their workflow.
The data for the reports generated is XML making it
easily accessible.

The following features, numbered in Figure 4,
“AHRTS User Interface”, are the main steps to perform
regression testing of AH Formatter:
1. Test Samples- We first create test cases by obtaining

the original source files (.fo files) that Antenna House
has collected over the years to make up our test suite.
When AHRTS makes the test cases, it will store the
XSL-FO file and include a XML file in a directory
specified in the “Settings” tab, which was discussed
earlier. It will also prepare new file names for the test
cases for the Render and Compare steps.

Page 93 of 162

A Visual Comparison Approach to Automated Regression Testing

2. Render- Next, we select the versions of AH Formatter
to be added to a queue to render the test cases from a
drop down menu. AHRTS uses engine files to locate
and identify the different versions of Formatter that
will be used with the system. There are premade
engine files specified in XML format that will work
for default installations of AH Formatter. If a version
of AH Formatter is located in a different folder other
than the default, users can manually change the
directory path in the engine file so AHRTS can find
it. This step is just rendering the test cases, so it is
possible to run test cases through 3 or more different
versions of AH Formatter. Since AH Formatter is
thread safe, there is also an option to set the rendering
jobs to multi-thread and enhance speed and
performance. The number of threads set would
depend on the number of processors or cores on the
machine.

3. Compare- Once AHRTS confirms that each of the
rendering engines have finished their jobs and
produced PDF files, we can continue with the
Compare step. In this demonstration, we chose
Version 5 as the baseline engine and Version 6.1 as the
new engine to be tested. AHRTS will follow the same
process as illustrated in Figure 1, “PDF2PDF
Compare Flowchart” in this stage. After the
comparisons are completed, a new window will
automatically open with a detailed PDF report to
review. In both the “Compare” and “PDF2PDF
Compare” tab, users can adjust the highlight radius,
DPI settings, and margins to be excluded from
testing.

4. Highlight radius- The yellow halo that highlights
where the changes are in the composite image of the
report can be increased or decreased in size. The
default is a radius of 5 millimeters, but it can be set to
0 for no highlight at all or enlarged depending on a
user’s preference. Prior to the addition of the highlight
feature, subtle differences such as the end of a line in a
graphic were sometimes hard to locate in the color
coded composite bitmap.

5. DPI setting- The Dots Per Square Inch (DPI) of a
comparison is the resolution at which a PDF
document from a rendering engine is rasterized. This
setting allows the user to control the level of
comparison and how sharp the composite page
appears in the final report. With that in mind, a
higher DPI means more pixels to compare per page
and will take more time and power to finish the
comparison process. The default is set at 30 DPI (900
dots per square inch), which we have found to be
more than enough resolution to find differences in
font types, minor alterations in spacing and line
width, as well as larger ones such as differences in the
breaking of pages.

6. Margins setting- This calls up Figure 2, “Margin
Selection Preview Window”, as previously discussed.

4. Other Possible Use Cases

Beyond being a regression testing system for new releases
of AH Formatter, there are many other possible use cases
for AHRTS, which we now discuss:
• Regression testing any document formatting or

conversion software. A PDF to PDF comparison can
be performed to regression test PDFs from virtually
any source, as well as a growing list of image formats.
This could include other formatting engines besides
those provided by Antenna House, ranging from
word processing, OCR, conversion, to business
software. The only requirements are two PDFs or
images to be compared.

• Pre-production system check: For documents that
have extended periods between production such as an
annual directory, PDF differencing can ensure that
during the preceding period, no changes were made
to the tool chain that adversely affect the previously
good output.

• Stylesheet development: By comparing PDFs, you can
quickly see if changes to the stylesheet actually
achieved the desired results. For instance, did
changing the thickness of a rule or bolding a heading
cause type to overflow a block? Did shifting a line a
couple points cause content to be lost or shifted in the
wrong direction? Any of these unforeseen
consequences that occur while developing a stylesheet,
can be identified with a PDF to PDF comparison
tool.

Page 94 of 162

A Visual Comparison Approach to Automated Regression Testing

• Installation validation: Installing a new system where
the final output is a document or publication,
typically involves a lot of components that include an
authoring or data source, a database or content
management system, software to manipulate and
assemble the data, and finally the tool that formats the
output in a document. Each of these components in
turn can have multiple, moving parts. Typically, a
solution is implemented first on a development
system and then quite often replicated on training
systems, staging systems, QA systems, backup
systems, and the actual production system. All of
these systems need to produce exactly the same
output, using the same tool chain and from the same
source. AHRTS provides a way to take output that
was successfully produced on the development or first
system and compare that with output generated by
each of the subsequently implemented systems.

• System(s) certification: In a multisystem environment
where software is installed on more than one system,
either locally or remotely, comparing PDFs helps
validate that each system produces exactly the same
document output from a collection of documents
used for testing.

• Ensuring that different versions of PDF are producing
the same visual output. It is conceivable that a
document rendered to PDF/A or tagged PDF displays
differently. At times, it would be important to know
what those differences are.

5. Conclusion

In the beginning of this paper, we emphasized the
importance of regression testing and how it plays a major
role in any testing process in the software world. More
specifically we’re focusing on groups producing PDF
documents from XML, like Antenna House, who need
to test the visual output of their systems. Traditional
methods proved to be unreliable, time consuming, costly,
and overall a tedious task to say the least. Now with
automation and using a visual comparison approach,
AHRTS greatly increases the efficiency of regression
testing, reducing the time and effort required to check
output discrepancies, and enabling users to find even the
slightest change in the visual appearance of a document.
To achieve the visual PDF to PDF comparison we
convert the PDFs to bitmaps and then compare them
pixel to pixel. This produces a highly reliable check that
will catch even the slightest differences between PDFs.
Originally designed as a regression testing tool for AH
Formatter, AHRTS has evolved into a tool that can play
many roles in a development cycle for any system
generating visual outputs.

Bibliography

[1] The Art of Software Testing. Glenford Myers. Wiley. December 2011. ISBN: 978-1-118-03196-4.
[2] 30 Years of Regression Testing: Past, Present and Future. Jean Hartmann.

http://www.uploads.pnsqc.org/2012/papers/t-67_Hartmann_paper.pdf
[3] Antenna House: Antenna House Regression Testing System.

http://www.antennahouse.com/antenna-house-regression-testing-system/

Page 95 of 162

A Visual Comparison Approach to Automated Regression Testing

http://www.uploads.pnsqc.org/2012/papers/t-67_Hartmann_paper.pdf
http://www.antennahouse.com/antenna-house-regression-testing-system/

Live XML Data
Steven Pemberton

CWI, Amsterdam

Abstract

XML is often thought of in terms of documents, or data
being transferred between machines, but there is an aspect of
XML often overlooked, and that is as a source of live data,
that can be displayed in different ways in real time, and
used in interactive applications.

In this paper we talk about the use of live XML data,
and give some examples of its use.

1. Introduction

In [1], Tim Bray, one of the developers of XML, said

"You know, the people who invented XML
were a bunch of publishing technology
geeks, and we really thought we were doing
the smart document format for the future.
Little did we know that it was going to be
used for syndicated news feeds and purchase
orders."

In other words, they did they not anticipate XML's use
outside of documents and publishing, as data, as
interactive documents, and so on.

But with the increasing availability of apps, live data
is becoming more and more significant.

2. Live Data

Live XML data is the use of XML in an application
where the data is constantly updated, either by repeated
polling of an external source, or through interaction with
the user, or a combination of both.

To give an example [2], it is currently good practice
to give suggestions if a user is searching in a large
database or similar. Using XML and XForms [3], [4], [5],
[6], [7], it is easy to specify this: the search string is kept
in instance data:

<root xmlns="">
 <search/>
</root>

which is input with an incremental control, that updates
the data each time a key is pressed:

<input ref="search" incremental="true">
 <label>Search: </label>
</input>

Whenever the value is changed in the control (which
invokes an xforms-value-changed event), the data is
submitted to the site (in this case wikipedia):

<send ev:event="xforms-value-changed"
 submission="s1"/>

The submission that causes this specifies that the results
of the submission are returned into a different instance

<submission id="s1" resource="
http://en.wikipedia.org/w/api.php?action=opensearch
" method="get"
 replace="instance"
 instance="iresults"/>

The results are then displayed to the user, as a series of
'triggers', which when clicked on, set the value of the
search string:

<repeat id="results"
 nodeset="instance('iresults')/*[2]/*">
 <trigger appearance="minimal">
 <label><output value="."/></label>
 <action ev:event="DOMActivate">
 <setvalue
 ref="instance('isearch')/search"
 value="instance('iresults')
 /*[2]/*[index('results')]" />
 </action>
 </trigger>
</repeat>

doi:10.14337/XMLLondon14.Pemberton01Page 96 of 162

And the result looks like this:

This is a general idiom that can be used in many places:
source data is changed in some way, possibly by
interactions from the user, and this causes data to be
updated from external sources.

3. XForms

XForms is a language originally developed for dealing
with forms on the web. However, thanks to the
generality of its design it was soon realised that, with a
little more generality, it could be used for more general
applications as well. So since XForms version 1.1,
applications can be built with XForms. In fact, a form is
really just the collection of data, some calculation, and
some output, as well as submission of data. But this is a
actually the description of an application as well. The
only real noticeable difference is the manner in which the
data is collected and presented.

XForms has been in use for more than a decade now,
by a wide range of users including the BBC, the Dutch
national weather service, NASA, and Xerox, just to name
a few. Experience has shown that XForms greatly reduces
the time needed to produce an application (by about an
order of magnitude). This is largely due to the approach
used by XForms, of declaratively specifying what is to be
achieved, rather than how to achieve it.

4. An Example

In XForms you can put the URL of an image in your
data:

<instance>
 <data xmlns="">
 <url>
 http://tile.openstreetmap.org/10/511/340.png
 </url>
 </data>
</instance>

and output it with

<output ref="url"/>

This would give as output:

http://tile.openstreetmap.org/10/511/340.png

But if you add a mediatype to the <output>, the image
itself is output instead:

<output ref="url" mediatype="image/*" />

5. URL Structure

An Open Street Map URL is made up as:
http://<site>/<zoom>/<x>/<y>.png

Page 97 of 162

Live XML Data

So we can represent that in XForms data:

<instance>
 <map xmlns="">
 <site>http://tile.openstreetmap.org/</site>
 <zoom>10</zoom>
 <x>511</x>
 <y>340</y>
 <url/>
 </map>
</instance>

and calculate the URL from the parts:

<bind ref="url"
 calculate="concat(../site, ../zoom, '/',
 ../x, '/', ../y, '.png')"/>

But now that we have the data, we can also input the
different parts:

<input ref="zoom"><label>zoom</label></input>

This means that we can enter different values for the tile
coordinates, and because XForms keep all relationships
up-to-date, a new tile URL is calculated and the
corresponding tile is displayed.

However, since entering numbers like this is
inconvenient, we can also add some nudge buttons, of
the form:

<trigger>

 <label>→</label>

 <setvalue ev:event="DOMActivate" ref="x"
 value=". + 1"/>
</trigger>

so it looks like this:

6. Zoom

A problem with this is that while the x and y nudge
buttons work fine, the zoom button doesn't. This is
because at each level of zoom the x and y coordinates
change: at the outermost level of zoom, 0, there is one
tile, x=0, y=0. At level 1, the coordinates double in both
direction, [0-1], so there are 4 tiles; at level 2, the
coordinates are [0-3], and there are 8 tiles, 16 at level 3,
and in general 2z at level z (up to level 18).

So to make zoom work properly, we must save our
location in world coordinates, each value between 0 and
226 (which is the 18 levels of zoom, plus 8 bits for the
256 pixels of each tile), and then calculate the tile at any
level of zoom from that:

scale=226 - zoom
x=floor(posx/scale)
y=floor(posy/scale)

In XForms:

<bind ref="scale"
 calculate="power(2, 26 - ../zoom)"/>
<bind ref="x"
 calculate="floor(../posx div ../scale)"/>
<bind ref="y"
 calculate="floor(../posy div ../scale)"/>

Now when you zoom in and out, the area remains the
same:

Page 98 of 162

Live XML Data

7. Location, location, location

You'll notice from the two images above that we got the
tile that contains our location, but the location (in this
case, central London) is at a different part of the tile. This
is because if you have a tile where the location is in the
middle of the tile, when you zoom in, you get one of the
4 quadrants, and so by definition, the location is no
longer at the centre of the tile:

From a usability point of view of course, we want our
location to remain in the middle of the view, so to
achieve this, we create a 3×3 array of tiles, with a
porthole over it. The porthole stays static, and we shift
the tiles around underneath so that our location remains
in the centre. This we do by calculating offsets that the
tile array has to be shifted by, and then using these to
construct a snippet of CSS to move the tile array:

<bind ref="offx"
 calculate="0 - floor(((
 ../posx - ../x * ../scale)
 div ../scale)*../tilesize)"/>
<bind ref="offy"
 calculate="0 - floor(((
 ../posy - ../y * ../scale)
 div ../scale)*../tilesize)"/>
 ...
<div style="margin-left: {offx};
 margin-top: {offy}">

Now we have a live map, where we can zoom in and out,
and pan left and right and up and down. Here is a view
also showing the parts that would normally not be
visible, outside of the porthole:

Page 99 of 162

Live XML Data

Unfortunately, in a paper, you can't see interactive
applications like this working. You can see it in action,
and look at the code, at [8].

8. Mouse

Of course, what we really want is to be able to drag the
map around with the mouse, not have to click on nudge
buttons. Now we're really going to see the power of live
data! We will want to know the position of the mouse,
and the state of the button, up or down. So we create
instance data for that:

<mouse>
 <x/><y/><state/>
</mouse>

and then we catch the mouse events:

<action ev:event="mousemove">
 <setvalue ref="mouse/x"
 value="event('clientX')"/>
 <setvalue ref="mouse/y"
 value="event('clientY')"/>
</action>
<action ev:event="mousedown">
 <setvalue ref="mouse/state">down</setvalue>
</action>
<action ev:event="mouseup">
 <setvalue ref="mouse/state">up</setvalue>
</action>

Now we have live data for the mouse!
We can show the state of the mouse by changing the

mouse cursor from a hand into a clenched hand:

<div style="cursor: {
 if(mouse/state='up', 'pointer', 'move')
}">...

9. Capturing a move

The last bit is that we want is to save the start and end
point of a move, so we can calculate how far we have
dragged. The instance data is extended:

<mouse>
 <x/><y/><state/>
 <start><x/><y/></start>
 <end><x/><y/></end>
 <move><x/><y/></move>
</mouse>

We capture the start point of the drag when the mouse
button goes down:

<action ev:event="mousedown">
 <setvalue ref="mouse/state">down</setvalue>
 <setvalue ref="mouse/start/x"
 value="event('clientX')"/>
 <setvalue ref="mouse/start/y"
 value="event('clientY')"/>
</action>

While the mouse button is down, we save the end
position:

<bind ref="mouse/end/x"
 calculate="if(mouse/state = 'down',
 mouse/x, .)"/>
<bind ref="mouse/end/y"
 calculate="if(mouse/state = 'down',
 mouse/y, .)"/>

Page 100 of 162

Live XML Data

And calculate the distance moved as just end - start:

<bind ref="mouse/move/x"
 calculate="mouse/end/x - mouse/start/x"/>
<bind ref="mouse/move/y"
 calculate="mouse/end/y - mouse/start/y"/>

10. Dragging the map

So now we have the scaffolding we need to be able to
drag the map. You may recall that the position of the
map is recorded in posx and posy. That position now also
depends on the mouse dragging. So we add instance data
to record the last position:

<lastx/><lasty/>

and add a calculation to keep posx and posy updated
(remember scale is the number of positions represented
on a tile, so we divide by the tile size to get the number
of positions represented by a pixel):

<bind ref="posx"
 calculate="../lastx -
 ../mouse/move/x *
 (../scale div ../tilesize)"/>
<bind ref="posy"
 calculate="../lasty -
 ../mouse/move/y *
 (../scale div ../tilesize)"/>

and only one other thing, namely reset lastx and lasty
when the dragging stops:

<action ev:event="mouseup">
 <setvalue ref="lastx"
 value="posx"/>
 <setvalue ref="lasty"
 value="posy"/>
 <setvalue ref="mouse/start/x"
 value="mouse/end/x"/>
 <setvalue ref="mouse/start/y"
 value="mouse/end/y"/>
</action>

Now it is possible to drag the map around. Although
from the user's point of view it feels like you are grabbing
the map and dragging it around, all that is happening
underneath is that we are tracking the live data
representing the mouse, and using it to alter the live data
that represents the centre of the map.

11. Bells. Whistles

Once we have this foundation, it is trivial to add things
like a "Home" button, to add keystroke shortcuts, to
zoom in and out with the mouse wheel, or to select tiles
for another version of the map. For instance:

<select1 ref="site">
 <label>Map</label>
 <item>
 <label>Standard</label>
 <value>
 http://tile.openstreetmap.org/
 </value>
 </item>
 <item>
 <label>Cycle</label>
 <value>
 http://tile.opencyclemap.org/cycle/
 </value>
 </item>
 <item>
 <label>Transport</label>
 <value>
 http://tile2.opencyclemap.org/transport/
 </value>
 </item>
 ...
</select1>

Thanks to the live data, any time a different value is
selected for "site", all the tiles get updated, without any
further work from us.

Page 101 of 162

Live XML Data

12. Implementation

The implementation used in the online version of this
application is XSLTForms [9], a client-side
implementation of XForms that runs in all modern
browsers, using a mixture of XSLT and Javascript.
However, the code only uses standard XForms, and does
not use any special facilities of this implementation. As
long as the XForms implementation correctly catches the
DOM mouse events used, the code should work in any
implementation of XForms.

13. Conclusion

In a very abstract sense, a map like the one presented
above can be seen as the presentation of two values, an x
and y coordinate, overlaid with an input control to affect
the values of x and y. The ability of XForms to abstract
the data out of an application and make the data live via
simple declarative invariants that keep related values up
to date makes the construction of interactive applications
extremely simple. The above example map application is
around 150 lines of XForms code, in sharp comparison
with the several thousand lines that a procedural
programming language would need.

References

[1] A Conversation with Tim Bray, Searching for ways to tame the world's vast stores of information.. Jim Gray. ACM
Queue. 20-25. 3. 1. February 2005. http://queue.acm.org/detail.cfm?id=1046941

[2] WIKIPEDIA OpenSearch Test Form. Alain Couthures.
http://www.agencexml.com/xsltforms/wikipediasearch.xml

[3] XForms 1.0. Micah Dubinko, Leigh Klotz, Roland Merrick, and T V Raman. W3C. 2003.
http://www.w3.org/TR/2003/REC-xforms-20031014/

[4] XForms 1.1. John Boyer. W3C. 2009. http://www.w3.org/TR/2009/REC-xforms-20091020/
[5] XForms 2.0 (draft). John Boyer, Erik Bruchez, Leigh Klotz, Steven Pemberton, and Nick Van den Bleeken.

W3C. 2014. https://www.w3.org/MarkUp/Forms/wiki/XForms_2.0
[6] XForms 1.1 Quick Reference. Steven Pemberton. W3C. 2010.

http://www.w3.org/MarkUp/Forms/2010/xforms11-qr.html
[7] XForms for HTML Authors. Steven Pemberton. W3C. 2010.

http://www.w3.org/MarkUp/Forms/2010/xforms11-for-html-authors
[8] http://www.cwi.nl/~steven/Talks/2014/xml-london
[9] XSLTForms. http://www.agencexml.com/xsltforms

A. Credit

Open Street Map data is © OpenStreetMap contributors , licensed as CC BY-SA.

Page 102 of 162

Live XML Data

http://www.openstreetmap.org/copyright

Schematron - More useful than you’d thought
Philip Fennell

MarkLogic
<philip.fennell@gmail.com>

Abstract

The Schematron XML validation language has been around
for about as long as XML and has been used extensively for
validation tasks outside the gamut of what XML Schema
1.0 was designed for. The reference implementation is
implemented, with great care, in XSLT, and with
extensibility in mind. There are a number of points in the
Schematron compilation process that provide opportunities
to extend its basic behavior and allow other modes of report
output to be generated. This paper looks at one example of
extending Schematron to create an XML to RDF Mapping
Language for flexible RDF triple construction and built-in
source-data validation rules.

1. Introduction

This paper looks at one example of extending
Schematron [1] to create an XML to RDF Mapping
Language with built-in data validation rules and flexible
RDF triple construction.

The Schematron XML validation language has been
around for about as long as XML and has been used
extensively for all those validation tasks that fell outside
the gamut of what XML Schema 1.0 was designed for.
Put simply, Schematron allows you to define a context
for a set of rule tests that, when applied to a source XML
document, must fail if they’re not met or to report on the
occurrences of nodes that you want to know about, and
all using just XPath expressions.

<iso:schema
 xmlns:iso="http://purl.oclc.org/dsdl/schematron">

 <iso:ns prefix="atom"
 uri="http://www.w3.org/2005/Atom"/>
 <iso:title>Simple Atom Feed Rules</iso:title>

 <iso:pattern>
 <iso:title>Atom Feed Root</iso:title>
 <iso:rule context="/">
 <iso:assert test="atom:feed">
 The document root must be
 an atom:feed element.
 </iso:assert>
 </iso:rule>
 </iso:pattern>

 <iso:pattern>
 <iso:title>Required elements of
 an Atom Feed</iso:title>
 <iso:rule context="/atom:feed">
 <iso:assert test="atom:title">
 atom:title is missing,
 this is a required element.
 </iso:assert>
 <iso:assert test="atom:id">
 atom:id is missing,
 this is a required element.
 </iso:assert>
 <iso:assert test="atom:updated">
 atom:updated is missing,
 this is a required element.
 </iso:assert>
 </iso:rule>
 </iso:pattern>
</iso:schema>

In the above example two contexts are defined, one for
the document root, so we can test for the presence of the
root element and the second is the root /atom:feed
element itself, so we can test for its required child nodes.
It is this principle that we will use later to help define the
contexts for mapping XML nodes to RDF triples.

doi:10.14337/XMLLondon14.Fennell01 Page 103 of 162

mailto:philip.fennell@gmail.com

Now, it’s not that Schematron is under used and nor is it
under appreciated but still there is a lot more to
Schematron than meets the eye. Firstly, the reference
implementation is implemented, with great care, in XSLT
[2]. This must have seemed a natural choice given the
type of input documents, XML, and the community of
developers that it would be serving and also not
withstanding the fact that, as XML, XSLT can be created
and transformed by XSLT - quite possibly my most
favourite aspect of XSLT.

The original core of the reference implementation
was written with extensibility in mind but its output, the
validation report, was somewhat limited by being a plain
text format. Therefore, secondly, with its endorsement as
an ISO standard, came the Schematron Validation and
Reporting Language (SVRL), which gave the report a
structured XML output. Finally, the multi-step pipeline
that is used to compile the Schematron schema into
XSLT allows for multiple extension points to suite your
desired application.

2. Where else to use a rules-based
reporting language?

With the increasing interest in the Semantic Web
technologies, a lot of work has been done to bridge the
gap between the existing RDBMS world and that of the
Semantic Web so that the vast array of Relational systems
can be queried with the SPARQL query language [3] as
though they were actually RDF graphs. This requires
either a simplistic direct mapping from table rows and
columns to RDF triples or a more thoughtful, and in
reality far more practical, one that uses an intermediate
mapping language to describe the construction of triples
from the table schema. The W3C have
Recommendations for both a Direct Mapping
(RDB2RDF) [4] and a Relational to RDF Mapping
Language (R2RML) [5].

Tools currently exist that support both the Direct
Mapping and the Mapping Language and can be used
either as a SPARQL query layer, on top of an RDBMS,
or as a standalone export tool that will dump a table, or
tables, as RDF. As an aside, I think if you are to use these
tools then you get the most value out of the SPARQL
layer in prototyping the Mapping and then use the
mapping to dump the database to RDF
so you can bulk ingest into
your Triple Store.

But what of XML to RDF? Certainly there is plenty of
XML content, feeds, streams and data that exist out there
but the options for extracting and mapping that
information to RDF are confined to bespoke pieces of
code. What would be useful is a way to express, in an
XML and RDF oriented way, the identification of targets
in the source XML, the context for a set of triples, define
the subject URI, the properties (elements and attributes)
you wish to map to your target RDF vocabulary and
where to get the values that will become the objects of
your triples. A rule-based language, like Schematron,
gives us a hint as to how this might work.

3. A sketch of how we might use
Schematron to map XML to RDF

If we look again at what a Schematron rule actually does,
it defines a context, a node set, within an XML
document, and allows you, by the use of XPath, to assert
a validity test or report on the occurrence of a node
relative to that context. Putting aside validity assertions
for the moment, the iso:report instruction is the key
here; although originally intended to simply report the
presence of a node that matches a specific XPath pattern,
it can be overridden to output, instead of a simple textual
report message, any structured XML you require - in our
case an RDF triple for each occurrence of the target
node. The target node maps to the predicate of an RDF
triple. Schematron has an iso:value-of instruction
which, when used in conjunction with iso:report, can
insert values, from the source document, into the
message or in this case the object value of our triple. For
each predicate/object pair one must define a subject URI,
which can be derived wholly, or in part, from the context
of the rule. More on this last aspect later.

Source XML:

<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Example Feed</title>
 <link href="http://example.org/"/>
 <updated>2003-12-13T18:30:02Z</updated>
 <id>http://example.org/feeds/60a76c80</id>
</feed>

Mapped RDF Triples:

Page 104 of 162

Schematron - More useful than you’d thought

@prefix rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix atom-owl: <http://bblfish.net/work/atom-owl/2006-06-06/#> .

<http://example.org/feeds/60a76c80> rdfs:type atom-owl:Feed ;
 atom-owl:title "Example Feed"@en ;
 atom-owl:updated "2003-12-13T18:30:02Z"^^xsd:dateTime .

In the above example we can see that there is a mapping
that has been applied from the source Atom XML
document to an RDF vocabulary called AtomOwl [6]
which is an RDF modelling of Atom Feed format [7].
The following schema fragment illustrates how a
conventional Schematron report can capture the
necessary information to build the subject, predicate and
object components of an RDF triple:

<iso:rule context="/atom:feed">
 <iso:assert test="atom:title">
 atom:title is missing,
 this is a required element.
 </iso:assert>
 <iso:report test="atom:title">
 The '<iso:value-of select="atom:id/text()"/>'
 feed has a title of
 '<iso:value-of select="atom:title/text()"/>'
 </iso:report>
</iso:rule>

The 'http://example.org/feeds/60a76c80'
feed has a title of 'Example Feed'

In addition, if we want to introduce data validity
constraints then the Schematron iso:assert instruction
is still available for ensuring the integrity of the source
XML before it is mapped to RDF.

4. XML Scissor-lift: An XML to
RDF Mapping Language

May be it should have been called X2RML (XML to
RDF Mapping Language), but, XML Scissor-lift derives
its name from the term 'schema lifting', which is used by
the Semantic Web community to describe the process of
lifting the semantics of an XML grammar to a higher
level by mapping its elements and attributes to terms in a
target RDF vocabulary.

Scissor-lift uses Schematron along with aspects of the
XML Pipeline Language (XProc) [8], URI Templates [9],
the Web Application Description Language (WADL)
[10] and the Triples in XML (TriX) [11] representation
of RDF to provide some pre-existing patterns that should
make it quicker to pick-up. XSLT is used for pre-
compilation processing, extending Schematron and post
mapping conversion to alternative RDF graph
serializations.

4.1. A Basic Mapping Description

Looking at the previous source XML (Atom Feed) and
the target RDF Vocabulary (AtomOWL), we see here a
simple Scissor-lift mapping document:

<lift xmlns="https://github.com/anonymous/scissor-lift" xmlns:atom="http://www.w3.org/2005/Atom"
 name="atom-to-atom-owl" version="1.0">

 <title>Simple Atom Feed Rules</title>

 <variable name="feedURI" select="concat('http://example.org/feeds/',
 substring-after(/atom:feed/atom:id, 'feeds/'))"/>
 <pattern>
 <title>Atom Feed</title>
 <rule context="/">
 <triple match="atom:feed">
 <uri select="$feedURI"/>
 <uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</uri>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#Feed</uri>
 </triple>
 </rule>
 <rule context="/atom:feed">
 <triple match="atom:title">
 <uri select="$feedURI"/>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#title</uri>
 <plainLiteral xml:lang="en" select="atom:title"/>
 </triple>
 <triple match="atom:updated">
 <uri select="$feedURI"/>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#updated</uri>
 <typedLiteral
 datatype="http://www.w3.org/2001/XMLSchema#dateTime"
 select="atom:updated"/>
 </triple>
 </rule>
 </pattern>
</lift>

Page 105 of 162

Schematron - More useful than you’d thought

In the above example we first define a feedURI variable
that takes its value from the feed's atom:id element, this
variable has global scope so can be used in any mapping
rule. Then we define a pattern for the Feed which
contains two rules; the first rule’s context is the
document’s root and we generate a triple on matching
the atom:feed element where we map the element to the
Feed class of the AtomOwl Ontology. The match attribute
takes an XPath expression who's context is that of the
containing rule. The second rule’s context is the
atom:feed element itself and we generate triples upon
matching the atom:title and atom:updated elements. In
both these cases we identify the predicates from the
target vocabulary's title and updated terms respectively
and selects the value of the objects from the atomized
value of their matched elements.

The grammar for the triples is taken directly from the
TriX RDF representation; the uri, plainLiteral and
typedLiteral elements have been extended to accept
either a literal string as their value or a select attribute
which takes an XPath expression, including declared
variables, that are evaluated at run time to provide the
value for those elements. The context for the XPath
expression is the context expression for the enclosing
rule.

By default, Scissor-lift will generate a simple XML
representation of the resulting graph using the TriX
format, which directly corresponds to the format that we
use to express the mapping:

<trix xmlns="http://www.w3.org/2004/03/trix/trix-1/">
 <graph>
 <uri/>
 <triple>
 <uri>http://example.org/feeds/60a76c80</uri>
 <uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</uri>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#Feed</uri>
 </triple>
 <triple>
 <uri>http://example.org/feeds/60a76c80</uri>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#title</uri>
 <plainLiteral xml:lang="en">Example Feed</plainLiteral>
 </triple>
 <triple>
 <uri>http://example.org/feeds/60a76c80</uri>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#updated</uri>
 <typedLiteral
 datatype="http://www.w3.org/2001/XMLSchema#dateTime">
 2003-12-13T18:30:02Z
 </typedLiteral>
 </triple>
 </graph>
</trix>

From the TriX representation it is easy to generate N-
Triples [12], Turtle [13], JSON-LD [14] and RDF/XML
[15] using a subsequent XSLT transform.

4.2. Compiling and Executing a Mapping

As the mapping language is an extension of Schematron
so its compiler implementation is an extension of the
Schematron transforms. ISO Schematron uses a three
step compilation process to generate the resulting XSLT
transform:
1. Include
2. Expand
3. Compile

Page 106 of 162

Schematron - More useful than you’d thought

which Scissor-lift adds a 'Translate' step before Schematron's Include step. The translation step converts the lift
document into a ISO Schematron schema document:

<rule context="/atom:feed">
 <triple match="atom:title">
 <uri select="$feedURI"/>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#title</uri>
 <plainLiteral xml:lang="en" select="atom:title"/>
 </triple>
</rule>

becomes:

<iso:rule context="/atom:feed">
 <iso:report test="atom:title">
 <sl:uri select="$feedURI"/>
 <sl:uri>http://bblfish.net/work/atom-owl/2006-06-06/#title</sl:uri>
 <sl:plainLiteral xml:lang="en" select="atom:title"/>
 </iso:report>
</iso:rule>

The children of the iso:reprot element are not in the
ISO Schematron namespace so are not touched by
Schematron's Include and Expand transforms but are
processed, as we will see later, by the extensions to the
Compile transform.

The resulting XSLT transform can be used to convert
individual XML source document instances into RDF
and the transform can be run in editors like oXygen [16],
where I tend to do all my development, and I use an
XProc pipeline to orchestrate the compilation and
transformation processes.

The transform can also operate in an XML database
where it can be set to work converting XML documents
in the database to RDF that can, in turn, be inserted into
an RDF Triple Store. In the case of sending triples to a
Triple Store, one of the standard RDF representations
can be generated by using an XSLT transform to convert
the afore mentioned TriX output into one of the
recommended representations: N-Triples, Turtle, JSON-
LD or RDF/XML.

4.3. Advanced Mapping Features

The following sections look at more advanced features of
Scissor-lift that help us to build URIs, re-use definitions
and determine data types.

4.3.1. Constructing URIs - URI Templates

A useful feature that was copied from WADL, but is a
standard in its own right, are URI templates.

Page 107 of 162

Schematron - More useful than you’d thought

<pattern>
 <title>Atom Entry</title>

 <rule context="/atom:feed/atom:entry">
 <triple match=".">
 <uri template="http://example.org/feeds/{feedID}/entries/{entryID}">
 <param name="feedID"
 select="substring-after(/atom:feed/atom:id, 'feeds/')"
 type="xs:string"/>
 <param name="entryID"
 select="substring-after(atom:id, 'entries/')"
 type="xs:string"/>
 </uri>
 <uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</uri>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#Entry</uri>
 </triple>
 </rule>
</pattern>

Rather than using, a potentially long-winded, concat()
XPath expression to build a URI within a select

attribute we can make use of the URI Template syntax
and parameter declarations to insert values into the URI
declared in the template attribute. In the above example
we have the subject URI being comprised of two variable
components, the feed's ID {feedID} and the entry's ID
{entryID}. The param elements define the expressions
that retrieve their respective values from the source XML.
Although, not strictly speak required, the type attribute
is provided to remind you what type of value you're
generating.

The URI templates can be used on subject, predicate
and object URIs, giving you maximum flexibility in
create mappings.

4.3.2. Reuse - Abstract Patterns and Rules

Another feature that has been re-used from Schematron
is the Abstract Patterns and Rules. Defining groups of
triple mappings that can be re-used throughout the
whole mapping saves a lot of time and duplication. In
the following example we will see that there are a set of
required elements for Atom that are common to both the
feed and its entries: title, id and updated. The 'required'
pattern is defined as abstract and its definition is used
where a real pattern identifies itself 'is-a' instance of the
'required' pattern.

<pattern abstract="true" id="required">
 <title>Abstract Required</title>

 <rule context="$context">
 <triple match="atom:title">
 <uri select="$thisURI"/>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#title</uri>
 <plainLiteral xml:lang="en-GB" select="atom:title"/>
 </triple>
 <triple match="atom:id">
 <uri select="$thisURI"/>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#id</uri>
 <typedLiteral datatype="http://www.w3.org/2001/XMLSchema#anyURI"
 select="atom:id"/>
 </triple>
 <triple match="atom:updated">
 <uri select="$thisURI"/>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#updated</uri>
 <typedLiteral datatype="http://www.w3.org/2001/XMLSchema#dateTime"
 select="atom:updated"/>
 </triple>
 </rule>
</pattern>

<pattern id="feed-required" is-a="required">
 <title>Feed Required</title>
 <param name="context" select="/atom:feed"/>
 <param name="thisURI" select="$feedURI"/>
</pattern>

<pattern id="entry-required" is-a="required">
 <title>Entry Required</title>
 <param name="context" select="/atom:feed/atom:entry"/>
 <param name="thisURI"
 select="concat($feedURI, '/entries/', substring-after(atom:id, 'entries/'))"/>
</pattern>

Page 108 of 162

Schematron - More useful than you’d thought

The parameters context and thisURI, defined where the
abstract pattern is used, have their values substituted into
the resulting triple mappings.

A more complex mapping used to convert an Atom link
element into its corresponding triples can be defined as
an abstract rule:

<pattern abstract="true">
 <title>Abstract Rules</title>

 <rule id="links" abstract="true">
 <triple match="." >
 <uri select="$feedURI"/>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#link</uri>
 <id select="."/>
 </triple>
 <triple match="." >
 <id select="."/>
 <uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</uri>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#Link</uri>
 </triple>
 <triple match="." >
 <id select="."/>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#to</uri>
 <id select="@href"/>
 </triple>
 <triple match="@href" >
 <id select="@href"/>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#src</uri>
 <uri select="@href"/>
 </triple>
 </rule>
</pattern>

<pattern>
 <title>Atom Feed Root</title>

 <rule context="/">
 <triple match="atom:feed">
 <uri select="$feedURI"/>
 <uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</uri>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#Feed</uri>
 </triple>
 </rule>

 <rule context="/atom:feed/atom:link">
 <extends rule="links"/>
 </rule>
</pattern>

and re-used in a pattern for the given context. Here the
abstract rule is defined in the same way as the abstract
pattern but is used where a rule declares that it 'extends'
the abstract rule.

4.3.3. Hierarchical Structure and Blank Nodes

Quite often there will be situations where you need to
map some XML node to a Class in the target vocabulary.
In the previous example the atom:link element has
attributes we also need to capture in the mapping, and
although the link element is implicitly related to the feed
by being a child of that feed we need to express that
explicitly in RDF. The link has no specific ID (an
anonymous resource) so we use the concept of a Blank
Node (BNode) to assign a unique identifier to the link
that is unique within the scope of the graph.

Page 109 of 162

Schematron - More useful than you’d thought

Scissor-lift provides a select attribute on the id element
to define a context for creating the unique ID that can be
shared by the respective subject and object URIs.

4.3.4. Type Discovery - XML Schema Reflection

As mentioned previously, the mapping process can run in
an XML database, and in the case of MarkLogic [17] this
enables an additional feature of Scissor-lift - auto-
datatype discovery. If the source XML documents have
an XML Schema associated with them, that is also
loaded into MarkLogic, then during the conversion to
RDF the transforms make use of MarkLogic's, little
known, Schema Components API.

You can explicitly set the type of the triple's object using
the type attribute on the typedLiteral element.
However, if you leave this attribute off and, as already
mentioned, you have an XML Schema in place, the
transform will use the XML type annotations on the
source XML to determine the base, Simple Type, of the
source nodes and automatically assign that to their
corresponding triple objects.

4.3.5. Data Integrity Checking - Assertions

Scissor-lift makes use of Schematron's iso:report

instruction to carry the triple annotations into the
compilation process. This leaves us free to use
Schematron's iso:assert instruction to provide content
validation tests that will help us ensure the integrity of
the source XML.

<rule context="/atom:feed">
 <assert match="atom:title">atom:title is a required element.</assert>
 <triple match="atom:title">
 <uri select="$thisURI"/>
 <uri>http://bblfish.net/work/atom-owl/2006-06-06/#title</uri>
 <plainLiteral xml:lang="en-GB" select="atom:title"/>
 </triple>
</rule>

The above example illustrates how an assertion can be
used as part of a triple mapping to ensure that the source
XML contains a required element. The mapping process
will fail for the context document if an assertion fails.

5. How Schematron was Extended

The reference implementation of Schematron, which uses
XSLT for the compilation and validation execution, has
been written with extension in mind. This was how the
earlier version was extended to incorporate the SVRL
report output. Starting from this point, it is relatively
simple to override the SVRL generating templates to
create the XML you wish to output from a report.

Scissor-lift uses XSLT's import mechanism to
override the original behaviours of the
iso_schematron_skeleton_for_saxon.xsl transform,
where the main jump-off points are the "process-root"
and "process-report" named templates which, as their
names suggest, are the templates that processes the
container for the rules and the iso:report instructions
respectively. From this point onwards it is a case of
creating templates that process the Scissor-lift triple-
mapping instructions that will replace the original SVRL
output.

(5. continued) Resulting from the compiler, the XSLT
transform contains the templates that match the rule
contexts and the logic that triggers the triple generation
according to the matches declared in the mapping rules.

6. Other Mapping Options

There is another, pre-existing XML to RDF mapping
technique that was devised as part of the all-
encompassing W3C Web Services work.

6.1. Semantic Annotations for WSDL and
XML Schema (SAWSDL)

The SAWSDL [18] technique uses annotation written
into an XML Schema to define the mapping from XML
to a target RDF vocabulary.

<xs:complexType name="feedType"
 sawsdl:modelReference=
"http://bblfish.net/work/atom-owl/2006-06-06/#Feed">
 ...
</xs:complexType>

Page 110 of 162

Schematron - More useful than you’d thought

The above example demonstrates a simple mapping of
the feed's root element to AtomOwl's Feed class. This
approach works fine for simple cases but when building a
SAWSDL processor you are very limited as to how you
create subject and object URIs without reverting to
referencing external XSLT transforms to do the
complicated pieces.

Other issues with SAWSDL include the need for an
XML Schema in the first place and the willingness to add
annotations to it. It was these restriction that provided
the impetus to come up with an alternative approach
that was both flexible and could be applied to arbitrary
and schema-less XML.

7. Conclusions

Schematron as a rule-based XML validation language is
very effective and used extensively to build bespoke
validation rule sets. The way the XSLT reference
implementation was built has made it relatively straight
forward to extended and override its original behaviour
to allow new instructions into the Schematron grammar
to generate different outputs from a rule-set processed by
the compiler.

XML Scissor-lift is one such extension of Schematron
that illustrates how Schematron can be used to generate a
completely different type of 'report' document. The
pipelines, transforms and related code have been used in
a number of projects to map existing XML source
content/data to RDF to good effect.

8. Further Work

Any application that embeds XPath into its documents
should be able to 'validate' the XPath expressions prior to
evaluating them. Scissor-lift requires an additional
pipeline step, before 'translation', to check that the
XPath expressions are valid. This can be easily achieved
using a user-defined XProc step to evaluate all the select
and match attribute expressions against a 'dummy' source
document. There is no need for the expressions to match
anything but the simple act of attempting to evaluate
them will allow the XProc engine to parse the expression
and report an syntax errors.

The Scissor-lift project can be found on GitHub [19]
where more documentation and examples are waiting to
be created.

Page 111 of 162

Schematron - More useful than you’d thought

References

[1] ISO Schematron. 01 June 2006.
http://www.schematron.com/

[2] XSL Transformations (XSLT). W3C Recommendation. 23 January 2007.
http://www.w3.org/TR/xslt20/

[3] SPARQL 1.1 Query Language. W3C Recommendation. 21 March 2013.
http://www.w3.org/TR/sparql11-query/

[4] A Direct Mapping of Relational Data to RDF. W3C Recommendation. 27 September 2012.
http://www.w3.org/TR/rdb-direct-mapping/

[5] RDB to RDF Mapping Language. W3C Recommendation. 27 September 2012.
http://www.w3.org/TR/r2rml/

[6] AtomOwl Vocabulary. 26 June 2006.
http://bblfish.net/work/atom-owl/2006-06-06/AtomOwl.html

[7] Atom Syndication Format. December 2005.
http://tools.ietf.org/html/rfc4287

[8] XML Pipeline Language (XProc). W3C Recommendation. 11 May 2010.
http://www.w3.org/TR/xproc/

[9] URI Templates. March 2012.
http://tools.ietf.org/html/rfc6570

[10] Web Application Description Language (WADL). W3C Submission. 31 August 2009.
http://www.w3.org/Submission/wadl/

[11] Triples in XML (TriX). 13 May 2004.
http://www.hpl.hp.com/techreports/2004/HPL-2004-56.html

[12] N-Triples. W3C Recommendation. 25 February 2014.
http://www.w3.org/TR/n-triples/

[13] Terse RDF Triple Language. W3C Recommendation. 25 February 2014.
http://www.w3.org/TR/turtle/

[14] A JSON-based Serialization for Linked Data. W3C Recommendation. 16 January 2014.
http://www.w3.org/TR/json-ld/

[15] RDF 1.1 XML Syntax. W3C Recommendation. 25 February 2014.
http://www.w3.org/TR/rdf-syntax-grammar/

[16] Oxygen XML Editor. by SyncRO Soft SRL.
http://www.oxygenxml.com/

[17] MarkLogic Sever. by MarkLogic.
http://www.marklogic.com/

[18] Semantic Annotations for WSDL and XML Schema. W3C Recommendation. 28 August 2007.
http://www.w3.org/TR/sawsdl/

[19] scissor-lift. Philip Fennell.
https://github.com/philipfennell/scissor-lift

Page 112 of 162

Schematron - More useful than you’d thought

http://www.schematron.com/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/r2rml/
http://bblfish.net/work/atom-owl/2006-06-06/AtomOwl.html
http://tools.ietf.org/html/rfc4287
http://www.w3.org/TR/xproc/
http://tools.ietf.org/html/rfc6570
http://www.w3.org/Submission/wadl/
http://www.hpl.hp.com/techreports/2004/HPL-2004-56.html
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.oxygenxml.com/
http://www.marklogic.com/
http://www.w3.org/TR/sawsdl/
https://github.com/philipfennell/scissor-lift

1 http://brightstardb.com/ and source code at https://github.com/BrightstarDB/BrightstarDB
2 http://dotnetrdf.org/
3 http://msdn.microsoft.com/en-us/library/bb397926.aspx

Linked Data in a .NET World
Kal Ahmed

Networked Planet Limited

1. Introduction

This paper discusses two different ways in which .NET
applications can access linked data. We start with a
discussion of using LINQ to query data from a SPARQL
endpoint that will describe how and why you might use
LINQ queries against a compile-time data model to
query a dynamic, open data set. In the second section we
discuss OData - Microsoft's approach to publishing data
on the web - and its relationship to RDF and the Linked
Data approach, and we show how an OData endpoint
can be easily constructed as a type-safe "view" over an
RDF data set.

2. LINQ to SPARQL

BrightstarDB1 is an open-source triple store for .NET.
Written entirely in C#, BrightstarDB builds on the
DotNetRDF2 library to provide a native .NET
persistence mechanism for RDF complete with a
RESTful API. However some of the coolest features of
BrightstarDB are above the raw RDF/SPARQL level
where we interact with the world of .NET. One of these
is the way in which we provide runtime binding of an
entity model to RDF triples and extend that to support
converting .NET Language Integrated Query3 (LINQ)
queries to SPARQL queries.

2.1. Binding a Static Model to RDF

At first this probably seems like a mad idea. You have the
flexibility with RDF to create and extend models; to
work with data in an open-world model where anyone
can add any properties to anything. A set of C# classes or
interfaces are the exact opposite of that – a closed world,
fixed at compile-time. Why would you want to give up
on the freedom of RDF ?

Well there are a number of answers to that:

1. Domain models are useful abstractions. A fixed
domain model provides focus and enables you to
concentrate on expressing the solution to your
problem(s). They provide a clear well-understood way
to reason about the data that is being handled.

2. Compile-time models provide compile-time checking.
This is not to say that dynamically typed
programming languages aren't incredibly powerful,
but there is something reassuring about catching
errors before your IL gets generated.

3. A lot of useful .NET functionality (Intellisense for
LINQ in particular) is based on introspection over the
domain model.

4. In reality many applications have a data model that is
constrained (e.g. by their user interface).

5. Actually you aren't giving anything up. The domain
model does not constrain the underlying data it
represents in anyway, it just provides a formalized way
of dealing with one particular view of that data. Any
number of different domain models can co-exist over
a single data set, each providing access to different,
possibly overlapping aspects of the data.

2.2. Data Binding Annotations

BrightstarDB uses a model-first approach to defining the
objects that are to be data-bound to RDF. The
programmer creates the interfaces that describes his
domain model and uses attributes to decorate the
interfaces with the additional information required to
map types and properties to RDF resources. A default
mapping is generated by convention, so the minimal
amount of decoration required is simply a marker to tell
the code-generator that this is an interface that needs to
be processed.

[Entity]
public interface IPerson {
 string Id { get; }
 string Name {get; set;}
 ICollection<IPerson> Knows {get; set;}
}

doi:10.14337/XMLLondon14.Ahmed01 Page 113 of 162

http://brightstardb.com/
https://github.com/BrightstarDB/BrightstarDB
http://dotnetrdf.org/
http://msdn.microsoft.com/en-us/library/bb397926.aspx

By default an interface is mapped to an RDF resource
with a URI identifier generated from the default
namespace URI with the name of the interface appended
(with the leading 'I' removed). Similarly, properties are
mapped to an RDF resource with a URI identifier
generated from the default namespace URI plus the
name of the property with the first character forced to
lowercase. The default namespace can be customized
using an assembly-scoped attribute.

The Id property holds the unique key value for the
RDF resource that an instantiation of the interface will
be bound to. This maps to a URI by appending the key
to the default namespace URI. By convention this
property may be called Id, ID or {Interface name

without the leading 'I'}I[d|D]. So we could equally
well use PersonId, ID or PersonID as our identifier
property. Alternatively any other string property can be
decorated with an [Identifier] attribute to indicate that it
is the property to be used to reflect the entity key. This
property is required to be read-only as the generated class
will automatically assign IDs and provides a separate
method for overriding the ID that ensures that the triple-
store gets correctly updated.

The code generation writes a class that implements
the interface. All of the properties included in the
interface are implemented in the generated class. The
data-binder allows all of the common C# value types
including their nullable counterparts, Uri and
ICollection<T> as long as the specified type is another
interface that is decorated with the [Entity] attribute.
Any methods declared on the interface are left
unimplemented in the generated code, however the code
generator produces a C# partial class which leaves the
class open for the remainder of the interface to be
implemented in a separate source file.

To map to specific URIs, some more decoration is
required:

[Entity("http://xmlns.com/foaf/0.1/Person")]
public interface IPerson {

 [Identifier("http://example.com/person/")]
 public string Id { get; }

 [PropertyType("http://xmlns.com/foaf/0.1/name")]
 public string Name { get; set; }

 [PropertyType("foaf:knows")]
 public ICollection<IPerson> Knows {get;set;}
}

The example above shows how we have now mapped the
object to an existing RDF schema - in this case FOAF.
The entity type resource URI can be specified in the
[Entity] attribute; and to override the default property
type resource URI for a property we add the
[PropertyType] attribute. This example also shows that
we can either use complete URIs or CURIEs. In the
latter case, the CURIE prefix mapping is specified in an
assembly-scoped attribute:

[assembly:NamespaceDeclaration(
 "foaf","http://xmlns.com/foaf/0.1/")]

In addition to data-binding the triples that the entity
resource is the subject of, it is also possible to data-bind
against the triples that the entity resource is the object of
using the [InverseProperty] decorator:

[Entity("http://xmlns.com/foaf/0.1/Person")]
public interface IPerson {

 [Identifier("http://example.com/person/")]
 public string Id { get; }

 [PropertyType("http://xmlns.com/foaf/0.1/name")]
 public string Name { get; set; }

 [PropertyType("foaf:knows")]
 public ICollection<IPerson> Knows {get;set;}
 [PropertyType(
 "http://example.com/foaf-ext/knownBy")]
 [InverseProperty("Knows")]
 public ICollection<IPerson> KnownBy { get; set; }
}

In the example above we add a KnownBy property which
data-binds to the inverse of Knows - i.e. all the triples
where the entity is the object of a foaf:knows triple. Note
that the inverse binding is declared by specifying the
property that data-binds the triple in its forward
direction. Although in this case for simplicity the
property is on the same interface, it is perfectly valid to
name a property on another interface.

Page 114 of 162

Linked Data in a .NET World

In the case that an RDF property is only to be data-
bound in its reverse direction, it is possible to specify the
property URI directly using an [InversePropertyType]
attribute on the property:

[Entity("http://xmlns.com/foaf/0.1/Person")]
public interface IPerson {

 [Identifier("http://example.com/person/")]
 public string Id { get; }

 [PropertyType("http://xmlns.com/foaf/0.1/name")]
 public string Name { get; set; }

 // NOTE: no "Knows" property

 [InversePropertyType("foaf:knows")]
 public ICollection<IPerson> KnownBy { get; set; }
}

2.3. Data-Binding and Updates

The data-binding process itself is relatively
straightforward and the model should be fairly familiar
to anyone who has implemented or worked with an
object-relational mapping tool. In addition to C# partial
classes that implement the entity interfaces, the code-
generation stage also generates an application context
class that serves as the main entry point for client code.
Both the generated entity classes and the generated
application context class are derived from base classes
that implement most of the mapping logic - the
generated code is just a thin shim on top that
implements the specific properties required by the
domain model. These base classes themselves make use of
the data-access layer provided by the
BrightstarDataObjectStore, this handles the job of
managing a collection of triples mapped to generic data
objects. The BrightstarDataObjectStore also abstracts
away the differences between BrightstarDB native stores
and generic SPARQL endpoints.

Figure 1. Classes involved in the data-binding and
update process

New entities are either created using their constructor
and then added to the appropriate entity collection on
the context class; or they are created and added to the
context using a Create method provided on the entity
collection of the context class. Existing entities are
retrieved from the context object (typically via a LINQ
query as discussed later). The data-binding can work
either eagerly or lazily.

In the case of lazy loading, the initial query returns
only a list of resource identifiers and the entities are
instantiated with just the URI of the underlying RDF
resource reflected as a string key value on the Identity
property of the entity. When any other forward-direction
property is accessed, a request is made to the triple-store
to retrieve all of the triples in which the entity resource is
the subject - in this way all properties other than inverse
properties are populated in one round-trip. With inverse
properties only the specifically mapped inverse properties
are ever loaded. This pattern was chosen to enable the an
entity to be designed in such a way as to avoid retrieving
large inverse collections. For example when a small
number of entities are used to classify a large collection
of other entities (such as genres of movies), it is often
desirable to avoid loading all of the movie-genre
relationships when data-binding the genre entity.

In the case of eager loading, the LINQ query is
converted to a SPARQL CONSTRUCT query which
results in an RDF graph containing all the triples in
which the entity resource is the subject. Inverse
properties are always loaded lazily.

The data-binding process attempts to coerce RDF
data-types to .NET types. Currently it handles a limited
subset of the XML Schema datatypes, through a
compile-time mapping.

Page 115 of 162

Linked Data in a .NET World

When an existing resource is data-bound, the local state
of the object is tracked in three parts - the quads loaded
from the server, a collection of quads locally added but
not yet sent to the server, and collection of deletion quad
patterns held locally but not yet sent to the server. The
difference between a quad and a quad pattern is that the
latter allows a wildcard value to be used in one or more
of the four parts of the quad - the wildcard matches all
values so a quad containing wildcards may match
multiple quads in the datastore. Depending on the

operation carried out, items are added to or removed
from one or both of these collections. The operations are
summarized in the table below, where E is the URI of the
entity resource, PT is the URI of the property, V is the
new property value, Vo is the old property value, C is the
update context, and * is the special quad pattern
wildcard value.

The table below summarizes how these collections are
updated under different circumstances.

Property Type Operation Modifications Made

Single-value forward
property Set initial value Add (E, PT, V, C) to AddTriples

 Update value
Add (E, PT, *, *) to DeletePatterns
Add (E, PT, V, C) to AddTriples
Remove all quads matching the pattern (E, PT, Vo, *) from AddTriples

 Set value to null
Add (E, PT, *, *) to DeletePatterns
Remove all quads matching the pattern (E, PT, Vo, *) from AddTriples

Collection forward
property Add item Add (E, PT, V, C) to AddTriples

 Remove Item
Add (E, PT, Vo, *) to DeletePatterns
Remove all quads matching the pattern (E, PT, Vo. *) from AddTriples

Inverse properties are handled slightly differently. If the
property is mapped using the [InverseProperty] attribute,
the update can be applied as an update to the entity that
has the forward-direction property on it - this ensures
that local modifications are properly reflected at both
ends of the relationship. If the property is mapped to a
URI identifier using the [InversePropertyType] attribute
the update is applied by reversing E and V or E and Vo in
the table above.

Local changes made to entities in the context are tracked
in this way until the client application calls the
SaveChanges() method on the context object. At this
point a transaction is prepared and sent to the server.
BrightstarDB supports two different types of update
transaction. The first is native to the BrightstarDB store,
in this transaction the set of triples to be added and triple
patterns to be deleted are encoded as N-Triples and
passed in a simple JSON data transfer object format.
However, the code also supports connections to generic
SPARQL UPDATE endpoints in which case the
transaction is formatted as a SPARQL UPDATE request
consisting of a DELETE WHERE clause to apply the
delete patterns, followed by an INSERT DATA clause.

Page 116 of 162

Linked Data in a .NET World

2.4. Type Mapping and Type Conversion

As we have already shown, each entity is mapped to an
RDF resource which defines the entity type. This type is
assigned to an entity instance using a standard rdf:type
triple. However our goal is to support the flexibility to
"view" an RDF resource as several different kinds of
entity. Hence we have support for an RDF resource to
concurrently map to more than one type of entity. All
the mapped entities share the same underlying set of
triples that are eagerly or lazily loaded from the server.
The generated entity classes provide a Become<T>()

method. Become<T>() is invoked to map the entity to a
new entity type, this will add the required rdf:type triple
locally and returns a new instance of T that is data-
bound to the same set of underlying triples as the object
that the Become<T>() method is invoked on. An parallel
Unbecome<T>() method removes the rdf:type triple that
maps the resource to the entity type T. Become<T>() and
Unbecome<T>() provide a halfway-house between dynamic
objects and static typing - an object can change its type
dynamically at runtime but only between a small set of
compile-time types.

2.5. Optimistic Locking

Our approach to data-binding also supports a simple
form of optimistic locking when performing updates.
The locking is based on applying a version number
property on each resource. When the resource is loaded
to access any of its properties, the version number
property is retrieved and the version number is stored. If
the resource currently has no version number, a new
property is assigned with an initial version number of 1,
but in this case the client will be unable to detect any
concurrent server modifications.

On update, a conditional guard is added to the
transaction that ensures that the version number quad
still exists in the store, and a delete pattern and a new
quad are added to increment the version number.

With the BrightstarDB transaction format this guard is
natively supported. The BrightstarDB transaction format
allows guard statements that specify a collection of quads
that must exist in the store, and a separate collection of
quads that must not exist in the store prior to executing
the transaction. These guards and the guarded updates
are all processed in a single transaction, so either the
guards pass and the update completes successfully or else
no changes are made to the store. In the case that a guard
fails, the failing quads are reported back to the client and
these are used in the generated context class to propagate
the errors in a meaningful way back to the client
application. In the case of the BrightstarDB entity
mapping, this means providing access to the list of
entities that have been concurrently modified on the
server.

Unfortunately this facility cannot be used when a
store is updated using SPARQL UPDATE. The reason is
that although SPARQL UPDATE supports conditional
update through the use of DELETE WHERE and
INSERT WHERE, the response from a SPARQL server
does not distinguish between updates that completed
without making modifications (because of failures to
match in the WHERE clause) and updates that
completed with the modifications applied. The lack of
any report on (for example) number of triples modified
makes it impossible to determine if the update has been
applied successfully or not.

2.6. Mapping LINQ to SPARQL

Having a statically typed model for our domain enables
us to make use of Language Integrated Query (LINQ).
LINQ is a powerful set of features in .NET
programming languages that allow programmers to write
queries against SQL databases, XML documents,
ADO.NET datasets and object collections using the
same query language with full type-checking and
Intellisense (auto-completion) support.

Typically LINQ is used in ORM scenarios to provide
a bridge between a domain object oriented query
language and SQL. However, LINQ can be used with
other datastores by implementing a LINQ provider.
BrightstarDB includes a LINQ provider with support for
a significant subset of LINQ functionality that maps
LINQ queries to SPARQL using the mapping metadata
provided in the entity definitions. This functionality
removes the need for developers to learn SPARQL in
order to access data from a BrightstarDB or SPARQL
endpoint.

Page 117 of 162

Linked Data in a .NET World

The implementation in BrightstarDB is written to be
completely SPARQL 1.1 compliant - it does not make
use of any special features of BrightstarDB, and so it can
be used with any SPARQL endpoint that supports
version 1.1 of the Recommendation.

2.6.1. LINQ to SPARQL by Example

As already noted, the annotations used for data-binding
enable us to construct a context object which exposes a
collection for each type of entity. These collections are
LINQ-queryable, and implement the logic required to
convert a LINQ query on the collection into a SPARQL
query. These collections are always the starting point for
a LINQ query against the BrightstarDB entities.

Sample Data Model

In the following examples we will use these entity
definitions:

[Entity]
public interface IDinner
{
 [Identifier("http://nerddinner.com/dinners/")]
 string Id { get; }
 string Title { get; set; }
 string Description { get; set; }
 DateTime EventDate { get; set; }
 string Address { get; set; }
 string City { get; set; }
 string HostedBy { get; set; }
 [PropertyType(
 "http://nerddinner.com/schema/attendees")]
 ICollection<IRSVP> RSVPs { get; set; }
}

[Entity]
public interface IRSVP
{
 [Identifier("http://nerddinner.com/rsvps/")]
 string Id { get; }
 string AttendeeEmail { get; set; }
 [InverseProperty("RSVPs")]
 IDinner Dinner { get; set; }
}

In the following discussion we will assume that the base
URI configured for types is
http://nerddinner.com/schema/. To make the SPARQL
more readable, we will assume that the prefix string nd is
mapped to http://nerddinner.com/schema. In practice
the SPARQL query generator only ever uses full URIs in
its generated queries.

Simple Selection and Traversal

The simplest query would be to return the ID of each
instance of that type from the store. In LINQ:

from p in Context.Dinners select p.Id

We can convert this to a simple SPARQL query for all
instances of a Dinner. The type URI convention tells us
the URI to use for this type:

SELECT ?p WHERE {
 ?p a nd:Dinner .
}

Traversing a property is simply a question of adding
another triple pattern to the query, so to get all RSVPs
for a particular dinner, the following LINQ query could
be written:

from p in Context.Dinners
where p.Id.Equals("1")
select p.Rsvps;

Note that in the LINQ query the complete URI
identifier is not required, it is enough to specify just the
entity key (the portion that follows the fixed base
identifier URI). The RSVPs property of Dinner is
mapped to the predicate type http://nerddinner.com/
schema/attendees, so we can simply add a triple pattern
using that predicate to the query:

SELECT ?v0 WHERE {
 <http://nerddinner.com/dinners/1>
 a nd:Dinner .
 <http://nerddinner.com/dinners/1>
 nd:attendees ?v0 .
}

This approach also works for relationships that run in the
opposite direction to their mapped RDF predicate. So
with this LINQ query:

from x in Context.Rsvps where
 x.Dinner.Id.Equals("1")
select x.Id

the property we are asked to traverse is the Dinner
property of an IRsvp instance, which in our mapping is
an inverse relationship, so the triple pattern we use
appears "backwards":

SELECT ?x WHERE {
 ?x a nd:Rsvp .
 <http://nerddiner.com/dinners/1>
 nd:attendees ?x.
}

Page 118 of 162

Linked Data in a .NET World

Selecting Property Values

Selecting individual properties from related entities is just
a question of adding one more triple pattern:

from x in Context.Dinners
from r in x.Rsvps
select r.AttendeeEmail

Note also in this query we are finding all dinners and
their attendees, not just a specific dinner.

SELECT ?v1 WHERE {
 ?x a nd:Dinner .
 ?r a nd:Rsvp .
 ?x nd:attendees ?r .
 ?r nd:email ?v1 .
}

Filters

Queries that filter on property values are usually easy to
map to SPARQL FILTER (this example uses a different
data model):

from x in Context.Dinners
where x.EventDate >= DateTime.UtcNow
select x.Id

Processing the LINQ query tree will reveal the datatype
of the values in the query (in this case 1.3 is a
System.Decimal. We provide a set of mappings
between .NET datatypes and XML Schema datatypes.

SELECT ?x WHERE {
 ?x a nd:Dinner .
 ?x ns:eventDate ?v0 .
 FILTER (?v0 >=
 '2014-03-05T16:13:25Z'
 ^^<http://www.w3.org/2001/XMLSchema#dateTime>).
}

LINQ Method Calls

LINQ queries allow developers to incorporate the use of
method calls within their query, obviously it is not
possible to map all possible methods to SPARQL, but we
can map some commonly used methods such as
Contains() on a collection:

var cities = new string[] {
 "London", "Oxford", "Reading"};
var results = from x in Context.Dinners
 where cities.Contains(x.City)
 select x.Id;

This maps nicely to the use of IN in a FILTER:

SELECT ?x WHERE {
 ?x a nd:Dinner .
 ?x nd:city ?v0 .
 FILTER (?v0 IN ('London, 'Oxford', 'Reading')) .
}

Using STRSTARTS() and STRENDS() in SPARQL we can
support String.StartsWith() and String.EndsWith()

and using REGEX() we can support the variants that
perform case-insensitive comparisons:

q = Context.Dinners.Where(
 c => c.Title.StartsWith("Bright",
 StringComparison.OrdinalIgnoreCase)
).Select(c => c.Id);

SELECT ?c WHERE {
 ?c a nd:Dinner .
 ?c nd:title ?v0 .
 FILTER (regex(?v0, '^Bright', 'i')).
}

Similarly we can use CONTAINS(), STRLEN(), SUBSTR(),
UCASE() and LCASE() to support String.Contains(),
String.Length, String.Substring(), String.ToUpper()

and String.ToLower(). We can also use the various Date/
Time functions to support the various properties of
a .NET System.DateTime instance; and ROUND(), FLOOR()
and CEIL() to support the equivalent functions from
the .NET System.Math class.

Anonymous Objects

In addition to returning single properties and instances
(more on which later), LINQ allows queries to return
anonymous objects. These can be mapped quite easily to
SPARQL queries that return multiple columns, at the
cost of some extra client-side processing of the results set
to generate the anonymous objects.

from x in Context.Dinners
select new {x.Title, x.EventDate};

In this case note the use of OPTIONAL to enable
partially constructed anonymous objects:

SELECT ?v0 ?v1 WHERE {
 ?x a nd:Dinner .
 OPTIONAL { ?x nd:title ?v0 . }
 OPTIONAL { ?x nd:eventDate ?v1 .}
}

Page 119 of 162

Linked Data in a .NET World

The properties returned in the anonymous object can
also be the result of deeper traversal – the additional steps
just get pushed into the OPTIONAL pattern.

from x in Context.Rsvps
select new {
 x.AttendeeEmail,
 DinnerTitle=x.Dinner.Title
};

Results in this generated SPARQL query:

SELECT ?v0 ?v2 WHERE {
 ?x a nd:Dinner .
 OPTIONAL { ?x nd:attendeeEmail ?v0 . }
 OPTIONAL {
 ?v1 nd:attendees ?x .
 ?v1 nd:title ?v2 .
 }
}

2.7. Eager Loading Complete Entities

The LINQ to SPARQL examples shown above typically
return a single column when returning entities, and
multiple columns when returning anonymous objects. In
the former case, the returned column contains the URI
of the entities that match the query criteria. This leads to
a lazy-loading model that effectively requires N+1 server
roundtrips to query for and retrieve N entities. In many
cases, better performance will be achieved if the client is
capable of retrieving all of the triples for the entities that
match the query in a single request.

Note

In the following examples, the prefix string bs should
be assumed to be mapped to the BrightstarDB-specific
namespace URI
http://brightstardb.com/.well-known/model/.

2.7.1. A Naive Approach

At first glance it seems like SPARQL 1.1 already provides
us with all the necessary tools - CONSTRUCT and
subqueries. We can put the generated SPARQL into a
subquery, add a triple match pattern to expand the entity
URI result into all triples where the entity URI is the
subject and then use CONSTRUCT to generate the
resulting graph.

CONSTRUCT {
 ?v0 ?v0_p ?v0_o .
} WHERE {
 ?v0 ?v0_p ?v0_o .
 SELECT ?v0 WHERE {
 ...
 }
}

On the client side we will receive an RDF graph. By
grouping the triples by their distinct subject resource we
can easily extract the result entities and all their triples to
pass through to the data-binding layer.

This has the desired effect of returning all the triples
we would normally load for the selected entities in a
single query, and it is the basis of the approach we use to
eager-load query results, but it does have some issues that
need to be addressed.

2.7.2. Sorting

One place where the naive approach fails, is when it
comes to retrieving sorted results. The problem is that
the triples in the RDF graph we receive are not
guaranteed to be in any particular order. Most of the
time a SPARQL endpoint will return a graph in which
the triples are in the logically expected order, but the
SPARQL specification doesn't require this and so it is
not a safe assumption to make.

In addition CONSTRUCT patterns can only
contain variables projected from the WHERE clause and
constants, so there is no way to insert a "position in the
sort order" value into the graph built by a
CONSTRUCT.

Page 120 of 162

Linked Data in a .NET World

However when we are constructing the SPARQL, we do
know which variables are to be used for sorting, the order
(ascending vs descending) and the priority (sort by X
then by Y). So we use this information to ensure that the
sort values are added to the CONSTRUCTed graph
using well-known predicates:

CONSTRUCT {
 ?v ?v0_p ?v0_o .
 ?v bs:sortValue0 ?sv0 .
 ?v bs:sortValue1 ?sv1 .
} WHERE {
 ?v0 ?v0_p ?v0_o .
 SELECT ?v0 ?sv0 ?sv1 WHERE {
 ...
 }
}

This generates a result graph in which each distinct
subject resource has not only the triples for all of its
properties, but also the sort values for ordering the results
on the client. On the client we parse the results graph
and execute a SPARQL query against that graph to select
the entities URIs in their sort order:

SELECT ?x WHERE {
 ?x bs:sortValue0 ?sv0 .
 ?x bs:sortValue1 ?sv1 .
} ORDER BY ?sv0, DESC(?sv1)

2.7.3. Paging

If we don't use OFFSET and LIMIT then it is only
necessary to sort on the client-side. However, when
paging comes into play it is necessary to apply the sorting
on the server-side to ensure that the correct slice of
results gets returned. So the SPARQL sent to the server
would include ORDER BY, OFFSET and LIMIT
clauses:

CONSTRUCT {
 ?v ?v0_p ?v0_o .
 ?v bs:sortValue0 ?sv0 .
 ?v bs:sortValue1 ?sv1 .
} WHERE {
 ?v0 ?v0_p ?v0_o .
 SELECT ?v0 ?sv0 ?sv1 WHERE {
 ...
 } ORDER BY ?sv0 DESC(?sv1) OFFSET 10 LIMIT 10
}

Note that in this case we still need to apply the sorting
client-side because there is no guarantee that the triples
in the CONSTRUCTed graph are in sort order, but this
sorting will be applied only to the single page of results
returned by the server and as the server has already
limited the results returned, we will not need to re-apply
the paging.

2.7.4. Distinct Results

The Distinct() LINQ operator (or DISTINCT
SPARQL keyword) adds another bit of complexity. Up to
this point our result graphs are generated by expanding
on the results returned by the subquery. If the query has
no sorting applied, it is possible to simply apply the
DISTINCT keyword to the subquery. However once the
subquery is extended to project out the sort values, it can
potentially end up returning the same entity binding
multiple times.

To handle this the subquery needs to be refined. We
refine the subquery to return the highest possible value
for sort variables that are sorted in ascending order and
the lowest possible value for sort variables that are sorted
in descending order. This is achieved through the use of
grouping and the MIN and MAX aggregates. By
grouping by the entity URI and then using MAX and
MIN aggregates on the sort values we ensure that the
subquery returns only a single row for each binding
yielding the values that sort highest in the final results:

CONSTRUCT {
 ?v ?v_p ?v_o .
 ?v bs:sortValue0 ?sv0 .
 ?v bs:sortValue1 ?sv1 .
} WHERE {
 ?v ?v_p ?v_o .
 {
 SELECT DISTINCT
 ?v
 (MAX(?v_sort0) AS ?sv0)
 (MIN(?v_sort1) as ?sv1)
 WHERE {
 ...
 }
 GROUP BY ?v
 ORDER BY ASC(MAX(?v_sort0)) DESC(MIN(?v_sort1))
 }

Page 121 of 162

Linked Data in a .NET World

1 http://www.w3.org/2013/04/odw/
2 http://odata.org/
3 https://github.com/BrightstarDB/odatasparql
4 http://www.w3.org/2012/ldp
5 http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html
6 http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html#_Toc372793772

3. OData/SPARQL

This section is based on a position paper originally
written for the W3C Open Data on the Web workshop1.

OData2 is a data access protocol designed to provide
standard CRUD and query operations on a data source
via HTTP interactions. OData is built on the AtomPub
protocol using an Atom structure as the envelope that
contains the data returned from each OData request.

We have been working on exposing SPARQL
endpoints as read-only OData endpoints3. The following
is a description of our motivation and some of the
technical details about how we are approaching the
problem.

At some level there is no doubt that the SPARQL,
RDF, Linked Data Platform4 stack "competes" with the
OData stack. Both provide access to generic data models,
both attempt to play well as a RESTFul architecture,
both offer up query languages for use by remote clients
over HTTP.

OData does a better job of exposing data as entities
and OData support for containers and entity level
update is more mature than the LDP effort. RDF on the
other hand has a meta-model that is more accessible; the
unwavering use of URIs for addressing and
identification, both at the level of instance data and the
level of ontology is a real benefit as is the inherent ability
to merge heterogenous data.

However, "competes" is in scare-quotes because it is
not useful to think of public open data standards
competing with one another with each trying to operate
to the exclusion of the other. Rather we should be
focussing on the ways in which interoperability can be
achieved as running code but also at the level of the
standards making process. We have been working with
both OData and RDF now for many years and trying to
help bridge the gap between these web data worlds at the
level of running code. Based on that experience, we have
started a project to provide an OData endpoint that sits
on top of any SPARQL-compliant endpoint. Technically
this is a cool thing to play with, but it is also a way to get
a feel for issues in open data protocol interoperability
that could benefit from further standards work.

3.1. The Approach

The technical approach we have taken is to implement a
proxy that parses OData operations and rewrites them as
equivalent SPARQL operations that can then be executed
against a SPARQL endpoint. The SPARQL result set is
then parsed and rewritten as an OData result set.

The main hurdle to overcome is that an OData
service is driven by the underlying domain model. An
OData service exposes its ontology and entity collections
as a metadata document5 with a well-known URI6, and
all queries are expressed in terms of this model. For a
generic SPARQL endpoint, this is not necessarily the
case.

As the service we are exposing is OData we have
chosen to approach this problem by making use of the
annotations extension point in the OData service
metadata document. By taking this approach we enable
the OData service that the proxy provides to be defined
either:
1. As a manually configured OData service metadata

document.
2. By conversion from a known RDF schema or OWL

ontology.
3. By introspection of the SPARQL endpoint using

SPARQL queries that make use of RDF Schema /
OWL types and properties.

At present we have not implemented either (2) or (3) but
we are fairly confident that some level of useable OData
service metadata could be automatically generated in this
way. The other potential advantage is that the OData
service metadata is simply another resource that can be
published, so it would be possible for the owner of a
SPARQL endpoint to make an official OData service
description available even if they were unwilling/unable
to host the OData proxy themselves.

3.2. OData Annotations

To get things working we created a small set of
annotations that can be used to decorate the model
described in an OData service metadata document. The
annotations are used to help map OData entity and
property types to their equivalent RDF types.

Page 122 of 162

Linked Data in a .NET World

http://www.w3.org/2013/04/odw/
http://odata.org/
https://github.com/BrightstarDB/odatasparql
http://www.w3.org/2012/ldp
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html#_Toc372793772

We use the following annotation namespace for all
SPARQL OData annotations:

<Using Namespace="ODataSparqlLib.Annotations"
 Alias="Sparql"/>

This is just a way of saying that the Annotation
ODataSparqlLib.Annotations.Uri can be referenced in
the metadata document using the short name
Sparql.Uri.

3.2.1. Identity Prefix Annotation

The Identity Prefix Annotation is used to help map
simple between RDF Resource URIs to OData simple
identity attributes. For example in RDF we want to be
using a URI such as http://www.brightstardb.com/

products/1 where as in the OData entity we want to talk
about this as product with Id of '1', and connected to
this as /products(1). While it would be possible to use
the full URI of an RDF resource as its OData identifier,
it has implications for consistent URI escaping and for
the length of the resulting OData URIs.

To achieve this we use the IdentifierPrefix

annotation on the property identified as the Key property
for the OData EntityType. The following sample show its
usage.

<EntityType Name="Film">
 <Key>
 <PropertyRef Name="Id"/>
 </Key>
 <Property
 Name="Id" Type="Edm.String"
 Nullable="false">
 <ValueAnnotation
 Term="Sparql.IdentifierPrefix"
 String="http://dbpedia.org/resource/"/>
 </Property>
</EntityType>

In the above example an RDF resource with a URI like
http://dbpedia.org/resource/Un_Chien_Andalou can be
referenced through the OData proxy as
http://example.org/odata/Films('Un_Chien_Andalou').

The identity prefix mapping is specific to an OData
entity type, so each type can use a different prefix if
required.

3.2.2. Entity Type Mapping Annotation

To indicate how types in OData map to types in RDF we
use a Uri annotation on the OData EntityType

definition. In this context the Uri annotation simply
provides the full URI of the RDF resource that defines
the entity type. The following sample shows its usage (the
URI is truncated for readability):

<EntityType Name="Person">
 ...
 <ValueAnnotation
 Term="Sparql.Uri"
 String="http://mappings.dbpedia.org/…/Person"/>
</EntityType>

We also allow a default namespace URI for entity types
to be defined in the proxy configuration file, any
EntityType without an explicit mapping receives a
mapping based on appending the EntityType name to
the namespace URI. We allow for different string case
mappings to also be applied when resolving the name to
a URI e.g. force to lower-/upper-case; force to lower/
upper camel-case. This can make for a very lean set of
annotations on the OData model.

3.2.3. Literal Property Type Annotation

A similar approach is used to map OData properties to
RDF properties.

<Property Name="Name" Type="Edm.String"
 Nullable="true">
 <ValueAnnotation
 Term="Sparql.Uri"
 String="http://dbpedia.org/property/name"/>
</Property>

Again, we also allow a default namespace URI for
property types to be defined in the proxy configuration
file (separate from the default namespace for entity
types), any Property without an explicit mapping
receives a mapping based on appending the Property
name (with case conversion applied) to the namespace
URI.

Page 123 of 162

Linked Data in a .NET World

3.2.4. Association Property Type Annotations

In OData, properties that reference other entities are
described by a NavigationProperty that defines a
traversal of a separately defined Association type. This
allows OData to support bidirectional traversal of the
relationships between entities. In RDF resource to
resource relationships are directed. To accommodate
OData's bidirectionality we introduce an additional
IsInverse annotation which can be used in conjunction
with a Uri annotation to specify both the RDF property
type and the direction in which the property is traversed
(subject-to-object or object-to-subject).

<EntityType Name="Place">
 <NavigationProperty
 Name="BirthPlaceOf"
 Relationship="DBPedia.Person_BirthPlace"
 FromRole="BirthPlace"
 ToRole="Person">
 <ValueAnnotation
 Term="Sparql.Uri"
 String="http://dbpedia.org/…/birthPlace"/>
 <ValueAnnotation
 Term="Sparql.IsInverse"
 Boolean="True" />
 </NavigationProperty>
</EntityType>
<Association Name="Person_DeathPlace">
 <End Role="Person"
 Type="DBPedia.Person" Multiplicity="*"/>
 <End Role="DeathPlace"
 Type="DBPedia.Place" Multiplicity="1"/>
</Association>

Note that the Association definition is currently un-
annotated as all the necessary information is conveyed by
the annotations on the NavigationProperty.

Once again, the NavigationProperty Name can be
combined with the default ontology base URI specified
in the proxy configuration to avoid the need to provide
explicit Uri annotations.

3.2.5. A Larger Example

Putting this all together here is a complete OData service metadata document with annotations that we can use to
expose a subset of DBPedia as OData.

In this example, a base type namespace URI of http://dbpedia.org/ontology/ and a base property namespace of
http://dbpedia.org/property/ is used and names are mapped to URI components by forcing them to lower
camelcase. In this example, this means that many properties and entity types do not require a Uri annotation to be
mapped.

<?xml version="1.0" encoding="utf8"?>
<edmx:Edmx xmlns:edmx="http://schemas.microsoft.com/ado/2009/11/edmx"
 Version="3.0">
 <edmx:DataServices
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 m:DataServiceVersion="2.0">
 <Schema xmlns="http://schemas.microsoft.com/ado/2009/11/edm"
 Namespace="DBPedia">
 <Using Namespace="ODataSparqlLib.Annotations" Alias="Sparql"/>

 <!-- Thing:http://www.w3.org/2002/07/owl#Thing -->
 <EntityType Name="Thing">
 <Key>
 <PropertyRef Name="Id"/>

Page 124 of 162

Linked Data in a .NET World

 </Key>
 <Property Name="Id" Type="Edm.String" Nullable="false">
 <ValueAnnotation Term="Sparql.IdentifierPrefix"
 String="http://dbpedia.org/resource/"/>
 </Property>
 <ValueAnnotation Term="Sparql.Uri"
 String="http://www.w3.org/2002/07/owl#Thing"/>
 </EntityType>

 <!-- Work: http://dbpedia.org/ontology/Work -->
 <EntityType Name="Work" BaseType="DBPedia.Thing">
 <!--Title: Gets default URI mapping: http://dbpedia.org/property/title -->
 <Property Name="Title" Type="Edm.String" Nullable="true"/>
 <!--Director: Gets default URI mapping:
 http://dbpedia.org/property/director -->
 <NavigationProperty Name="Director"
 Relationship="DBPedia.Work_Director"
 FromRole="Work"
 ToRole ="Director"/>
 </EntityType>

 <!-- Film: http://dbpedia.org/ontology/Film
 Derived from Work -->
 <EntityType Name="Film" BaseType="DBPedia.Work">
 <Property Name="Name" Type="Edm.String" Nullable="true">

 <!--Not strictly necessary, but shown as an example -->
 <ValueAnnotation Term="Sparql.Uri"
 String="http://dbpedia.org/property/name"/>
 </Property>
 <Property Name="Runtime" Type="Decimal" Nullable="true" />
 <Property Name="ImdbId" Type="Edm.String" Nullable="true"/>

 <!-- Not strictly necessary, but shown as an example -->
 <ValueAnnotation Term="Sparql.Uri"
 String="http://dbpedia.org/ontology/Film" />
 </EntityType>

 <!-- http://dbpedia.org/ontology/Person -->
 <EntityType Name="Person" BaseType="DBPedia.Thing">
 <Property Name="Name" Type="Edm.String" Nullable="true">

 <!-- Here we use FOAF vocab for a property -->
 <ValueAnnotation Term="Sparql.Uri"
 String="http://xmlns.com/foaf/0.1/name"/>
 </Property>
 <Property Name="BirthDate" Type="Edm.DateTimeOffset" Nullable="true">
 <ValueAnnotation Term="Sparql.Uri"
 String="http://dbpedia.org/ontology/birthDate"/>
 </Property>
 <Property Name="DeathDate" Type="Edm.DateTimeOffset" Nullable="true">
 <ValueAnnotation Term="Sparql.Uri"
 String="http://dbpedia.org/ontology/deathDate"/>
 </Property>
 <NavigationProperty Name="BirthPlace"
 Relationship="DBPedia.Person_BirthPlace"
 FromRole="Person"
 ToRole="BirthPlace"/>
 <NavigationProperty Name="DeathPlace"
 Relationship="DBPedia.Person_DeathPlace"
 FromRole="Person"
 ToRole="DeathPlace"/>

Page 125 of 162

Linked Data in a .NET World

 <NavigationProperty Name="RestingPlace"
 Relationship="DBPedia.Person_RestingPlace"
 FromRole="Person" ToRole="RestingPlace"/>
 </EntityType>

 <!-- Place: http://dbpedia.org/ontology/Place -->
 <EntityType Name="Place" BaseType ="DBPedia.Thing">
 <Property Name="Abbreviation" Type="Edm.String" Nullable="true"/>
 <Property Name="Abstract" Type="Edm.String" Nullable="true"/>
 <Property Name="AnnualTemperature" Type="Edm.Decimal" Nullable="true"/>
 <Property Name="Elevation" Type="Edm.Decimal" Nullable="true"/>
 <Property Name="PopulationTotal" Type="Edm.Int32" Nullable="true"/>
 </EntityType>

 <Association Name="Work_Director">
 <End Role="Work" Type="DBPedia.Work" Multiplicity="*"/>
 <End Role="Director" Type="DBPedia.Person" Multiplicity="1"/>
 </Association>

 <Association Name="Person_BirthPlace">
 <End Role="Person" Type="DBPedia.Person" Multiplicity="*"/>
 <End Role="BirthPlace" Type="DBPedia.Place" Multiplicity="1"/>
 </Association>

 <Association Name="Person_DeathPlace">
 <End Role="Person" Type="DBPedia.Person" Multiplicity="*"/>
 <End Role="DeathPlace" Type="DBPedia.Place" Multiplicity="1"/>
 </Association>

 <Association Name="Person_RestingPlace">
 <End Role="Person" Type="DBPedia.Person" Multiplicity="*"/>
 <End Role="RestingPlace" Type="DBPedia.Place" Multiplicity="1"/>
 </Association>

 <EntityContainer Name ="Contents" m:IsDefaultEntityContainer ="true">
 <EntitySet Name="Films" EntityType="DBPedia.Film"/>
 <EntitySet Name="Persons" EntityType="DBPedia.Person"/>
 <EntitySet Name="Places" EntityType="DBPedia.Place"/>
 <AssociationSet Name="Film_Director" Association="DBPedia.Film_Director">
 <End Role="Film" EntitySet="Films"/>
 <End Role="Director" EntitySet="Persons"/>
 </AssociationSet>
 </EntityContainer>
 </Schema>
 </edmx:DataServices>
</edmx:Edmx>

Page 126 of 162

Linked Data in a .NET World

3.3. Request Transforms

Typical OData requests are for either a single entity, a set
of entities or a select format that retrieves a result that
appears as a table. To map this into a SPARQL query we
use the above annotations and then depending on the
target result use either the SELECT or CONSTRUCT
keywords.

OData select queries work in a similar fashion to
SELECT in SPARQL by returning a tabular result. So
we generate a SPARQL SELECT query and map the
resulting SPARQL table to an OData results set.

When processing OData queries that result in an
entity or collection of entities, we use SPARQL
CONSTRUCT queries. This allows us to retrieve an
RDF graph from the SPARQL endpoint that represents
the entities, their properties and relationships. The graph
is then processed by the proxy into a list of entities and,
if necessary the list is sorted by the sort criteria specified
in the original OData query. The way the
CONSTRUCT queries are built is very similar to the
approach used to map LINQ queries to SPARQL as we
have the same constraints and the same requirements
around the return results.

3.4. Update

For now update is out of scope for this project, but it
could potentially be implemented using the same set of
annotations we use for read. The main difference is that
we need to make use of SPARQL UPDATE, which is a
separate specification and more importantly usually lives
in a different place on the server, most likely, behind the
firewall.

We see the initial benefit of this work as opening up
existing RDF triple stores with public SPARQL
endpoints to OData applications. Very few of these, for
obvious reasons, offer a writeable SPARQL update
endpoint. For enterprises with RDF stores the additional
update option may be of interest.

3.5. Future work

In its current state, the library is best described as a
minimal proof of concept with basic support for selecting
entities by their ID or with a few simple property
operators such as Equals and GreaterThan. We also have
some basic sorting implemented. The current
implementation is based on Microsoft OData libraries
that implement v3 of the OData specification.

The main work to do is to create a complete
implementation of all OData path semantics, filters
options, and projection operators and upgrade the
project to support OData v4. We would also like to
provide tools for generating an OData service metadata
document from a SPARQL endpoint or its ontology and
to generate / write mappings for some of the existing
public SPARQL endpoints.

Page 127 of 162

Linked Data in a .NET World

Frameless for XML - The Reactive Revolution
Robbert Broersma

Frameless
<robbert@frameless.io>

Yolijn van der Kolk

Frameless
<yolijn@frameless.io>

Abstract

What would the web look like with functional reactive
templates driven by functional reactive query expressions?

Lots of recent innovative developments are significant
steps towards faster and more manageable web development,
but to really improve our lives by leaps and bounds we must
take a step back and consider the requirements for
unleashing all this power to front-end developers that aren't
fluent in JavaScript.

What would happen if we throw Angular expressions,
React's virtual DOM and Reactive Extensions (Rx) in a
mix? What if we use a declarative syntaxes like XSLT and
XPath to compile an instruction set for this engine? What if
we can reason about the instructions that make up your
website and automatically build minimal and optimized
modules?

It's uneconomical to obtain optimal performance for
most projects you're working on, there are just too many sides
to it: asynchronous tasks, web workers, parallel
computations, lazily loading modules, reducing file size,
splitting HTML/CSS/JS into modules, combining modules
again to reduce HTTP requests, minification, atomic DOM
updates, only rendering what's visible, only calculating what
is being rendered, only re-calculating what has changed...

But we must do better, also because performance is very
much about economic inclusiveness. Smaller web pages are
essential to those using internet in (remote) areas over slow
2.5G mobile networks, where wireless data charges are high
and every CPU cycle counts when you're using a $25 dollar
smartphone.

When we've got a reactive template solution in place we
can start thinking about using some of the kilobytes we've
saved and some of the CPU cycles to add ubiquitous support
for unsexy inclusive technologies such as accessibility,
Unicode, localization, and security.

1. Introduction

Templates are at the core of most web pages. Historically
templates are processed server side, but increasingly
additional content is provided with the servers only
sending the raw data and scripts from the web page
implementing templates to present it.

Conditionally showing validation warnings next to
form inputs. A list of autocomplete suggestions. The
latest tweets. Showing the number of unread e-mails
between parentheses after "Inbox", or not anymore when
the last unread mail is opened.

The output of any template is essentially limited to
the data that can be targeted using the query language.
When an advanced query language is not a significant
part of a template engine, complex selecting and filtering
must occur in a preprocessing step.

Frameless is created to simplify application
development and is, due to its API, great for writing
readable code.
Frameless is built on our own XSLT processor running in
the browser. It includes a custom built reactive XPath
query engine for simple, powerful querying that works
across browsers. This way we are able to include useful
features like $variables and allowing custom functions
in XPath. The current beta release works in all modern
browsers, but also works in hostile environments such as
IE6 and Firefox 1.0.
We achieve resilience in platform support by employing
extensive feature detection and never correlating the
presence of a certain platform feature to a certain browser
version. This way Frameless releases keep working when
browsers with new features are introduced, and it will
fallback to more basic platform APIs when methods or
properties are removed or renamed.

doi:10.14337/XMLLondon14.Broersma01Page 128 of 162

mailto:robbert@frameless.io
mailto:yolijn@frameless.io

Developers can quickly get up to speed with our
template engine, because we provide all template
instructions directly inside HTML pages, using HTML
syntax. These templates consist of custom elements and
attributes that instruct Frameless to conditionally show
or repeat markup snippets. In addition to this we also
support value templates inside { and } brackets for both
attributes and text content.

2. Why we created Frameless

Three years ago we started the development of Frameless,
because we felt the development of complex web
applications really lacks a solid basis. Browser differences,
internationalization, scalability and security are recurring
issues we think can and should be solved structurally and
invisibly.

We wanted to be able to use templates directly in the
HTML pages, rather then only in external files. While
there is nothing wrong with external XSLT templates, we
think there are some interesting advantages in being able
to use them inline. When using a more basic syntax for
XSLT, programming the templates will be more intuitive
to front-end developers, while the resulting code is more
readable and self explanatory than JavaScript would be.

XSLT and XPath from versions 2 and up provide very
competitive feature sets, and are arguably more mature
than the alternatives JavaScript libraries offer. That's why
we chose to start development by implementing XSLT 2:
designing for complex use cases can lead to a cleaner
architecture than optimizing for simple use cases and
later bolting on complexity.

By making the templates automatically react to
changes in the data and to changing variables,
implementing real-time user interfaces doesn't require
writing extensive DOM-manipulation code anymore,
drastically reducing development time and bugs.

Our mission is to create a framework that allows us
to write web applications by functionally describing their
flow and behavior, rather than describing what each
browser needs to hear. We want to rely on the template
renderer to resolve cross site scripting vulnerabilities and
optimally render changes to the DOM.

3. Example: reactive filtering using
full text search

Many user interfaces include search and autocomplete
functionality, showing the results as-you-type. Using
Frameless no additional code at all is needed to show
these results in real time.

In the following example we'll implement finding a
person from a list of contacts, where the code in Figure 1
produces the component found in Figure 2.

First there is a form <input> that is bound to the
$query variable. As the user is typing text into this form
field, the $query becomes more specific and filters out all
non-matching contacts. For all contacts that do match,
we want to highlight the matching parts of that person's
name.

Unicode decomposition of text is helpful in
separating the diacritics from the letters, allowing
comparison against the search query without taking
account diacritics. However, not all characters in Latin
script can be decomposed to A-Z. That's why we've
added a "confusables" option, that uses the Unicode
database to also match characters that look like the
original Latin letters. This way you can find names such
as "Sørensen" and "Đặng", names that normally
wouldn't even show up in search results.

To provide more than just regular expression based
string templates, we allow custom tokenizers for the
<analyze-string> instruction. These custom templates
could for example be used to implement syntax
highlighting for code in documents like this very
document, but in this case we're using the full-text
tokenizer to highlight matches to the search query.

Page 129 of 162

Frameless for XML - The Reactive Revolution

Figure 1. Contact Search Code

<div class='contacts-app app'>
 <div class='contacts-finder data-list-container'>
 <div class='search data-list-search'>
 <input type='text' placeholder='Search' ref='$query' id='contact-query'>
 </div>
 <div id='contact-list' class='data-list' tabindex='0'>
 <for-each select='$contacts[name contains text $query using diacritics insensitive using case
 insensitive using option confusables]'
 sort='(name/lastname, name/firstname)[1]'>
 <div class='data-list-item' tabindex='0' focus-action='open-contact(.)'>
 <analyze-string select='name/firstname' match='{$query}' tokenizer='full-text'>
 <matching-substring>
 {{.}}
 </matching-substring>
 <non-matching-substring>{{.}}</non-matching-substring>
 </analyze-string>

 <analyze-string select='name/lastname' match='{$query}' tokenizer='full-text'>
 <matching-substring>
 {{.}}
 </matching-substring>
 <non-matching-substring>{{.}}</non-matching-substring>
 </analyze-string>

 </div>
 </for-each>
 </div>
 </div>
</div>

Figure 2. Contact Search Component

Page 130 of 162

Frameless for XML - The Reactive Revolution

4. Example: reactive grouping and
sorting for interactive infographics

In this code sample we will write a couple of lines of code
found in Figure 3 to create an overview of the tallest
structures in the world, visually comparing their sizes to
other tall structures in that country. First there is an
XPath query that loads an external file, containing the
data. Once the file is loaded, the rest of the query is
executed.

All structures are grouped by country, and the countries
are sorted by the name of the country in the current
locale; English in this example. The next step is to create
a line up of all tall structures, tallest structures first. Note
also that for formatting the height a localization function
is used to present the height in meters according to the
customs of the locale.

The final rendered image can be found in Figure 4.

Figure 3. Tallest Structure Code

<for-each select="doc('buildings.xml')/buildings/structure[status = 'completed']"
 group-by="location/country" sort="localize-country(location/country)">
 <h2>Tallest buildings: {{localize-country(current-grouping-key())}}</h3>
 <div class="structures-chart" id="{current-grouping-key()}">
 <for-each select="current-group()" sort="height/meters"
 sort-order="descending" sort-data-type="number">
 <div class="structure">
 <div class="structure-content">
 <div class="structure-label">
 <p class="structure-name">{{name}} ({{year}})</p>
 <p class="structure-height">{{format-length(height/meters, 'meter')}}</p>
 </div>

 </div>
 </div>
 </for-each>
 </div>
</for-each>

Figure 4. Tallest Structures Rendered

Page 131 of 162

Frameless for XML - The Reactive Revolution

5. Using Frameless in addition to
NoSQL databases

Many organizations work hard to provide indiscriminate
access to their websites, regardless of location, ethnicity,
physical ability or economic status. In this regard, the
coming years there is likely to be a shift towards "offline
first" development, where a reliable internet connection
is no longer assumed.

The offline first approach will prove to be very
challenging because many kinds of complex
computations that are usually conveniently performed by
database servers, must be carried out entirely using just
JavaScript.

In this area Frameless can be especially helpful
bridging the gap between client and server capabilities,
by providing the same technologies that are already in
use on NoSQL servers such as MarkLogic and Zorba.

6. The road ahead

Within the next couple of months Frameless will be
ready for us to be used for building a product we have
been long looking forward to: a modular word processor.
We will also be working with partners who use Frameless
for their own application development, and improving
the framework where needed.

For example: because not all data can be made
available as XML, XPath queries in Frameless can also be
used for JSON. Frameless is currently mostly optimized
for XML so we feel that in the next year an improvement
of the current JSON support is in order.

In addition to things that already were on the roadmap,
like extending the documentation with more code
samples, and Node.js support (allowing you to render the
same HTML templates both in the browser and server-
side) we have concrete plans to improve localization and
performance of Frameless web applications.

Not only do we want to provide text translations
inside templates, we also want to implement Unicode
CLDR modules for formatting dates, numbers, et cetera.
And of course we think users should be able to switch to
another locale instantly.

Unfortunately, with every feature we add the
download size of Frameless will increase. That's why
we're working towards a module system, so every project
can only include the functionality it needs, resulting in
even smaller JavaScript downloads.

7. Summary

Reactive HTML templates excel at reducing
development time, by offering a simple and intuitive
syntax while offering a very powerful query language to
interactively group, sort and filter data. Combined with
very user-centric technologies such as full text search and
localization, nothing should stand in the way of you
making the spiffy next generation of Wikipedia or
Google Docs. Viva la revolución!

Page 132 of 162

Frameless for XML - The Reactive Revolution

Product Usage Schemas
Jorge Luis Williams

Rackspace Hosting
<jorge.williams@rackspace.com>

Abstract

In this case study we describe the process of collecting,
validating, and aggregating usage information in a large
public cloud for the purpose of billing. We also describe the
Product Usage Schema a simple xml schema language used
in-house to describe, version, and validate usage messages as
they are emitted by various products across our public cloud.

Keywords: Usage Collection, Usage Validation, ATOM
Syndication, XML Schema, WADL, XSLT, Cloud,
Utility Computing

1. Background

The advent of cloud computing has created a shift in IT
in which users may provision (or deprovision) computing
infrastructure and software platform services on demand
based on dynamic workloads. These on-demand
computing resources may be hosted on premise (private
cloud), off premise (public cloud), or may reside both
internally and externally (hybrid cloud). Hybrid clouds
allow for cloud bursting, the ability to scale work to a
public cloud when a workload exceeds the capacity of a
private cloud system.

Most cloud computing platforms make extensive use of
concepts expressed by Service Oriented Architecture
(SOA). In particular, they expose individual products as
separate loosely coupled web services. Often these
services are written using the REST architectural style as
described by [6]. Here, IT resources such as virtual
compute nodes, load balancers, databases, file storage
volumes, LAMP stacks, and so forth are mapped to URIs
accessible on the Internet (or via a private network).
Operations on those resources are expressed via the
uniform interface provided by the HTTP protocol. Thus,
the provisioning, deprovisioning, and customization of
resources can be achieved dynamically and with relative
ease by simply performing HTTP requests on a resource
URI. Likewise, the state of a resource may be monitored
via HTTP's uniform interface — that is by performing a
GET on that resource's URI. This accessible interface
coupled with the ability to dynamically monitor and
control resources are important keys to achieving cloud
bursting.

Public cloud providers offer a utility computing
model [5] to their customers in which the customer pays
only for the actual use of the resources he or she
consumes. This utility model requires the provider to
implement metering of their services in order to track
customer usage and produce monthly invoices. Resources
are often sold at different pricing tiers which we refer to
as flavors. Some flavors are higher performing or offer
additional capabilities and are therefore more expensive
than others. For example, virtual machines may be sold
in a one gigabyte of RAM flavor or in a 16 gigabyte of
RAM flavor. The 16 gigabyte flavor is significantly more
expensive. A customer is allowed to change a resource's
flavor at will — this is known as resizing. The resize
operation may have the effect of upgrading or
downgrading a resource and as a result a resource may be
charged at different rates during its lifetime.

doi:10.14337/XMLLondon14.Williams01 Page 133 of 162

mailto:jorge.williams@rackspace.com

Cloud providers allow customers to provision resources
at different geographical regions. The ability to control
the relative location of a resource allows the customer to
control network latency, build applications with a higher
level of availability and fail over, and abide by
governmental restrictions in the storage of sensitive data.
It is important to note that the exact location of the data
center in which a resource is provisioned is often
obfuscated by a service provider because it is considered a
security risk to expose it. At Rackspace, for example, we
identify regions by using airport codes: DFW, LON,
HKG. Also, note that a region may encompass multiple
data centers. While customers may control the region in
which a resource may be provision, the service provider
controls the actual data center in which the resources
lives.

The process of creating an invoice for a customer can
be broken into a number of distinct parts. First, usage
data must be collected from individual product services
across all regions and aggregated along a number of
dimensions such as:
• The owner of the resource (known as the tenant).
• The resource itself (the individual virtual compute

node, load balancer, etc.).
• And the billable usage created by the resource — the

usage type (CPU cycles, bandwidth, etc).
The aggregation process also involves producing daily
summaries of these properties and enriching the data by
adding additonal attributes such as a unique billable
account number. We refer to the process of collecting,
aggregating, summarizing, and enriching as mediation. As
a result of the mediation process raw usage is converted
into mediated usage. Finally, mediated usage is consumed
by a number of billing services responsible for rating the
usage for a particular billing cycle, applying promotions
and discounts, and producing a final bill. Together these
services form what we refer to as a billing service layer. An
example billing pipeline is illustrated in Figure 1, “Billing
Pipeline”.

Figure 1. Billing Pipeline

Invoices

Billing
Service
Layer

Product

Product

Product

Product

Usage
Mediation

Raw
Usage

Mediated
Usage

2. Rationale and First Steps

Our initial billing pipeline required the usage mediation
system to consume raw usage data directly from
underlying product implementations. Products were in
complete control of the format they used to produce this
data. This solution caused a number of problems:
• Common cross-product attributes differed from one

product to the next and the usage mediation team had
to keep track of those differences. These differences
could be very subtle, for example one product may
emit times in central standard time (CST) another in
GMT.

• Attributes described in raw usage data are likely to
change as a product evolves. None-the-less, there was
no process by which the usage mediation team could
be notified of those changes.

• Because raw usage data was not required to adhere to
any particular schema, it was difficult to catch data
generation errors. Often subtle errors found their way
to production systems — even after extensive testing.

• In cases where errors were identified in production,
they were often identified in the later stages of the
billing pipelines, at times after a customer has been
billed. Remediation required the reprocessing of a
large amounts of data and in the worst case required
Rackspace to either compensate a customer or absorb
a loss.

To address these issues we undertook a standardization
effort in order to bring consistency, strict validation, and
versioning of raw usage data into our billing pipeline.

2.1. Using AtomPub

Rather than having the usage mediation system query all
products for raw usage, the new pipeline required
products to emit usage to a centralized system using the
Atom Publishing Protocol (AtomPub) [4]. We selected
AtomPub for a number of reasons:
• We required a RESTful solution and the AtomPub

protocol is considered an authoritative example of a
RESTful protocol.

• The protocol and the underlying Atom format [1] are
backed by a large number of implementations. On
this front, Rackspace had already developed an
implementation of an AtomPub sever, Atom Hopper
[3], which we could easily leverage.

• The Atom format is extensible, so it would be trivial
to extend the protocol to suite our needs.

Page 134 of 162

Product Usage Schemas

• There is a standard AtomPub extension to support
archiving [2]. This solution provides us with a good
model for storing and providing access to long term
archives of usage data for auditing purposes.

In the AtomPub model, usage data is packaged into
discrete events in Atom Entries. These entries are
collected in feeds where we reserved one feed for
product. These feeds are mapped to a specific URI using
a shared endpoint. For example, all usage data for our
load balancer product is submitted to /lbaas/events,
usage data for our database product is sent to /dbaas/
events and so forth.

Note

Lbaas translates to Load Balancer As A Service and
Dbaas translates to Database As A Service. We refer to
some products by their internal product name, for
example the compute service is known internally as
Nova, so the atom feed is mapped to /nova/events.

In order to avoid network delays we deploy one instance
of Atom Hopper per region. The regional product service
is then responsible for submitting usage to the local
instance. For example, usage for a load balancer in the
London region is submitted to
http://feeds.lon.rackspace.com/lbaas/events and
usage for load balancer in the Dallas region is submitted
to http://feeds.dfw.rackspace.com/lbaas/events.

Each atom feed accepts two distinct types of events:
USAGE events and USAGE_SNAPSHOT events. USAGE events
capture the utility of a resource over a time duration. The
are usually emitted at constant intervals throughout the
day but they may also be emitted after a resize operation
or when a resource is deleted. This is illustrated in Figure
2, “USAGE Events Emitted for a Resource”.
USAGE_SNAPSHOT events denote cases which do not
correspond directly with the utility model such as one
time charges and subscriptions. These events are emitted
as needed on an ad hoc basis.

Figure 2. USAGE Events Emitted for a Resource

Time

Create
Resource

Resize
Resource

Delete
ResourceRate

{ {{{ {
{

{{{ {

Usage Events
at Constant
Intervals each
With a Constant
Duration

At this interval
the event
is split into two
because the
rate changes
after resize

Smaller duration
because the
resource was
deleted

2.2. The Usage Event Format

Products are required to submit usage events in a
standard format. A standard raw usage event is made up
of two elements: an event element contains attributes
which are common across all products, and a product
element which contains product specific attributes. A
load balancer usage event is illustrated in Example 1,
“Load Balancer Usage Event”.

Page 135 of 162

Product Usage Schemas

Example 1. Load Balancer Usage Event

<?xml version="1.0" encoding="UTF-8"?>
<atom:entry xmlns="http://docs.rackspace.com/core/event"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:lbaas="http://docs.rackspace.com/usage/lbaas">
 <atom:title type="text">LBAAS</atom:title>
 <atom:content type="application/xml">
 <event type="USAGE" version="1"
 tenantId="3737"
 resourceName="MyLoadBalancer"
 endTime="2012-06-15T10:19:52Z"
 startTime="2012-06-14T10:19:52Z"
 region="DFW" dataCenter="DFW1"
 id="b79cc3de-b399-3883-b555-61829bb7f966"
 resourceId="b79cc3de-b399-3883-b555-61829bbccd38">
 <lbaas:product serviceCode="CloudLoadBalancers"
 resourceType="LOADBALANCER" version="1"
 sslMode="MIXED" vipType="PUBLIC" numVips="44"
 numPolls="10"
 bandWidthOutSsl="345345346" bandWidthInSsl="364646770"
 bandWidthOut="3460346" bandWidthIn="43456346"
 avgConcurrentConnectionsSsl="4566.0"
 avgConcurrentConnections="30000.0"
 status="ACTIVE"/>
 </event>
 </atom:content>
</atom:entry>

Both the event and the product element have a set of
required attributes:

Required event attributes

id

A unique identifier for the event.
type

The type of usage event. May be one of USAGE or
USAGE_SNAPSHOT.

version

A version number for the event format.
tenantId

The owner of the resource.
region and datacenter

The specific location of the resource.
resourceId

A unique identifier for the resource.
resourceName

The name of the resource as given by the tenant.
This will be used in the invoice line item.

startTime, endTime or eventTime
For a USAGE event startTime and endTime are
required and represent the duration for the
specified usage. For a USAGE_SNAPSHOT event
eventTime is required.

Required product attributes

serviceCode

A unique identifier for the product.
resourceType

The type of resource that is being used.
version

A version number for the product element format.

While an event element is allowed to contain only the
required attributes above, the product element may
contain additional product specific attributes. It is
important to note that the product element is defined in
a product specific namespace. In Example 1, “Load
Balancer Usage Event”, the namespace is
http://docs.rackspace.com/usage/lbaas. A product may
define more than one type of USAGE event, each with a
product element in a separate namespace. The
resourceType and serviceCode, attributes are defined in
the product element because this enables product specific
validation. In other words, by defining these attributes in
the product element the product can specify a finite set
of possible attribute values as part of the product-specific
element definition.

Page 136 of 162

Product Usage Schemas

2.3. Validating Events

Validation of usage events is achieved by employing
Repose [8]. Repose is a programmable HTTP proxy
which sits in front of most of our REST services, it is
capable of extending a service's capabilities by
implementing common tasks such as authorization, rate
limiting, transformation and validation of requests. We
augmented our billing pipeline by deploying an instance
of Repose in front of our Atom Pub server as illustrated
in Figure 3, “New Billing Pipeline”.

Figure 3. New Billing Pipeline

Invoices

Billing
Service
Layer

Product

Product

Product

Product

Atom
Hopper

R
epose

Usage
Mediation

Repose can load a description of a REST service in
WADL format [7] and reject requests which do not
conform to the contract. We described the process that
Repose employs for WADL validation in detail here:
[10]. The WADL that we use to validate our usage events
looks similar to the one in Example 2, “Usage Validation
WADL for Atom Hopper”.

Example 2. Usage Validation WADL for Atom Hopper

<?xml version="1.0"?>
<application xmlns="http://wadl.dev.java.net/2009/02" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:atom="http://www.w3.org/2005/Atom">
 <grammars>
 <include href="core_xsd/entry.xsd"/>
 </grammars>
 <resources base="http://localhost/">
 <resource path="autoscale/events" type="wadl/feed.wadl#AtomFeed wadl/feed.wadl#Unvalidated"/>
 <resource path="backup/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudBackup"/>
 <resource path="bigdata/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#BigData"/>
 <resource path="cbs/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudBlockStorage"/>
 <resource path="dbaas/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudDatabase"/>
 <resource path="dns/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudDNS "/>
 <resource path="domain/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#DomainRegistration"/>
 <resource path="ebs/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#EBS"/>
 <resource path="emailapps/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#EmailApps"/>
 <resource path="files/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudFiles"/>
 <resource path="glance/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#Glance"/>
 <resource path="lbaas/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudLoadBalancers"/>
 <resource path="meta/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#AtomHopper"/>
 <resource path="monitoring/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudMonitoring"/>
 <resource path="netdevice/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#NetDevice"/>
 <resource path="nova/events"
 type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudServersOpenStack wadl/product.wadl#RHEL"/>
 <resource path="queues/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudQueues"/>
 <resource path="servers/events"
 type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudServers wadl/product.wadl#RHEL"/>
 <resource path="sites/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#CloudSites"/>
 <resource path="ssl/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#Ssl"/>
 <resource path="support/events" type="wadl/feed.wadl#AtomFeed wadl/product.wadl#Support"/>
 </resources>
</application>

Page 137 of 162

Product Usage Schemas

Each Atom feed is represented by a resource element in
the WADL. The element is associated with at least two
resource types which are defined externally either in
wadl/feed.wadl or in wadl/product.wadl. The resource
type wadl/feed.wadl#AtomFeed contains common
properties of a feed. For example, a feed accepts a GET
operation and a feed can contain a list of entries which
may be accessed independently. This resource type is used
by all product feeds. The product WADL, on the other
hand, defines product specific properties and validations.
These product specific resource types prevent the cross
posting of usage events. A usage event from the load
balancer service, for example, is not acceptable in the
DNS feed. Note that several feeds may accept the same
product resource types. In the example above, both the
OpenStack compute service (nova/events) and our legacy
compute service (severs/events) support the resource
type wadl/product.wadl#RHEL which contains rules for
processing usage messages for RedHat Enterprise Linux
(RHEL) licenses. Finally, there is a special resource type
wadl/feed.wadl#Unvalidated, this type loosens product
specific validations and is used when on-boarding a new
product before product validations are set.

Note that the WADL makes reference to an XML
schema document (XSD) [11] core_xsd/entry.xsd. This
document contains the definition of the atom entries
which contain usage events. We create a special complex
type for the atom content element that specifically refers
to our definition of a usage event element as illustrated
in Example 3, “Atom Entry Usage Content Type”. This
allows the the schema processor to strictly validate the
event element.

Example 3. Atom Entry Usage Content Type

<complexType name="UsageContent">
 <complexContent>
 <extension base="atom:BaseContent">
 <sequence>
 <choice>
 <element ref="event:event"/>
 </choice>
 </sequence>
 </extension>
 </complexContent>
</complexType>

In the definition of the event element itself, we allow for
an element in a foreign namespace which must be strictly
validated against a schema. Thus aside from defining the
common cross-product attributes in Required event

attributes, the definition of event contains the following:

<sequence>
 <any namespace="##other" processContents="strict"
 minOccurs="0" maxOccurs="unbounded"/>
</sequence>

This allows products to define their own product

elements with an XSD. These elements must contain the
attributes in Required product attributes, though we
provide no explicit constrantraint on the XSD to enforce
this requirement. Additonally, the product XSDs are
expected to annotate custom product attributes with
instructions that help guide the mediation process. For
example, the definition of the avgConcurrentConnections
attribute in Example 1, “Load Balancer Usage Event” is
defined as:

<attribute name="avgConcurrentConnections"
 use="required"
 type="p:avgConcurrentConnections1Type">
 <annotation>
 <documentation>
 <html:p>
 The amount of conncurrent connections.
 </html:p>
 </documentation>
 <appinfo>
 <usage:attributes
 aggregateFunction="WEIGHTED_AVG"
 unitOfMeasure="COUNT"
 groupBy="false"/>
 </appinfo>
 </annotation>
</attribute>

Page 138 of 162

Product Usage Schemas

Here, the usage:attributes annotation denotes that
values from this attribute should be aggregated using a
weighted average function, that the unit of measure for
these attributes is simply a count and that attributes with
the exact same value should not be grouped together.
Likewise the bandwidthIn attribute is defined as:

<attribute name="bandWidthIn" use="required"
 type="p:bandWidthIn1Type">
 <annotation>
 <documentation>
 <html:p>
 The amount of bandwidth in, in bytes.
 </html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="SUM"
 unitOfMeasure="B" groupBy="false"/>
 </appinfo>
 </annotation>
</attribute>

Here, the unit of measure is bytes and the values should
be summed together during aggregation. The goal of
these annotations is to enable the mediation process to
dynamically adjust to product changes. Additionally,
there is the potential to reduce errors by placing
declarative control of the meditation process in the hands
of product owners who best understand their product.

3. The Product Schema

Our initial implementation involved the manual creation
of product specific XSDs given the rules defined in
Section 2.3, “Validating Events”. Additionally, the
product specific resource types defined in
wadl/product.wadl were manually maintained. This was a
tedious and error prone process. Since product teams
owned their product specific XSDs, it required them to
have detailed knowledge of XML schema something
many teams were not familiar with. What's more, the
process of checking that a product schema conformed to
the rules we defined in terms of required attributes and
annotations was mostly a manual one. To help automate
the process, we developed a simplified schema format to
represent product specific attributes. We refer to
documents in this format as Product Schemas. We
developed an XProc [9] pipeline to generate product
specific XSDs and the product WADL from a collection
of these schemas.

3.1. The Product Schema Format

The product schema for the usage message in Example 1,
“Load Balancer Usage Event” is illustrated in Example 4,
“Load Balancer Usage Product Schema”.

Example 4. Load Balancer Usage Product Schema

<productSchema xmlns="http://docs.rackspace.com/core/usage/schema"
 namespace="http://docs.rackspace.com/usage/lbaas"
 serviceCode="CloudLoadBalancers"
 version="1"
 resourceTypes="LOADBALANCER">
 <description>
 Lbaas load balancer usage fields.
 </description>
 <attribute name="avgConcurrentConnections" type="double" use="required"
 aggregateFunction="WEIGHTED_AVG"
 unitOfMeasure="COUNT" min="0" max="1000000">
 The amount of conncurrent connections.
 </attribute>
 <attribute name="avgConcurrentConnectionsSsl" type="double" use="required"
 aggregateFunction="WEIGHTED_AVG"
 unitOfMeasure="COUNT" min="0" max="1000000">
 The amount of conncurrent ssl connections.
 </attribute>
 <attribute name="bandWidthIn" type="unsignedLong" use="required"
 unitOfMeasure="B" aggregateFunction="SUM" min="0"
 max="10995116277760">
 The amount of bandwidth in, in bytes.
 </attribute>
 <attribute name="bandWidthOut" type="unsignedLong" use="required"
 unitOfMeasure="B" aggregateFunction="SUM" min="0"
 max="10995116277760">
 The amount of bandwidth out in bytes.
 </attribute>

Page 139 of 162

Product Usage Schemas

 <attribute name="bandWidthInSsl" type="unsignedLong" use="required"
 unitOfMeasure="B" aggregateFunction="SUM" min="0"
 max="10995116277760">
 The amount of ssl bandwidth in, in bytes.
 </attribute>
 <attribute name="bandWidthOutSsl" type="unsignedLong" use="required"
 unitOfMeasure="B" aggregateFunction="SUM" min="0"
 max="10995116277760">
 The amount of ssl bandwidth out in bytes.
 </attribute>
 <attribute name="numPolls" type="int" use="required"
 unitOfMeasure="COUNT"
 min="0" max="288">
 The number of polls per load balancer.
 </attribute>
 <attribute name="numVips" type="int" use="required"
 unitOfMeasure="COUNT"
 min="0" max="100">
 The number of vips per load balancer.
 </attribute>
 <attribute name="vipType" type="string" use="required"
 allowedValues="PUBLIC SERVICENET">
 The vip type associated with the load balancer.
 </attribute>
 <attribute name="sslMode" type="string" use="required"
 allowedValues="ON OFF MIXED">
 The mode determining SSL status on the load balancer.
 </attribute>
 <attribute name="status" type="string" use="required"
 allowedValues="ACTIVE SUSPENDED">
 Is the load balancer currently active?
 </attribute>
 <xpathAssertion test="if (@status = 'SUSPENDED') then
 ((@bandWidthIn = 0) and (@bandWidthOut = 0) and
 (@bandWidthInSsl = 0) and (@bandWidthOutSsl = 0) and
 (@avgConcurrentConnections = 0) and
 (@avgConcurrentConnectionsSsl = 0)) else true()">
 If the status is SUSPENDED then bandWidthIn, bandWidthOut,
 bandWidthInSsl, bandWidthOutSsl, avgConcurrentConnections, and
 avgConcurrentConnectinsSsl should all be 0.
 </xpathAssertion>
 <xpathAssertion test="if (@sslMode = 'OFF') then
 ((@bandWidthInSsl = 0) and (@bandWidthOutSsl = 0) and
 (@avgConcurrentConnectionsSsl = 0)) else true()">
 If SslMode is OFF then bandWidthInSsl, bandWidthOutSsl, and
 avgConcurrentConnectionsSsl should all be 0.
 </xpathAssertion>
 <xpathAssertion test="if (@sslMode = 'ON') then
 ((@bandWidthIn = 0) and (@bandWidthOut = 0) and
 (@avgConcurrentConnections = 0)) else true()">
 If SslMode in ON then bandWidthIn, bandWidthOut, and
 avgConcurrentConnections should all be 0.
 </xpathAssertion>
</productSchema>

Page 140 of 162

Product Usage Schemas

Here, the Required product attributes are required
attributes in the schema, an error is emitted if they are
not defined. Note that the resourceTypes attribute is a
white-space separated list of resource types — in this
case, only one resource type is defined: LOADBALANCER.
The product specific namespace is simply defined with
the namespace attribute and a general description of the
usage event is in the description element.

3.2. Attributes

Attributes in the product schema have the following
properties:
• The embedded text in the attribute element serves as

documentation for the attribute and is required.
• Mediation annotations are simply defined as part of

the element (aggregateFunction, unitOfMeasure).
Once we introduced this feature, the mediation team
stopped parsing XSD annotations and began
consuming our product schemas directly instead.

• Some of the attributes correspond directly with those
defined in XSD. In particular name, type, use.

• Enumerations are defined via the allowedValues
attribute. Here, allowed values are specified as white-
space separated list of values. Enumerations work with
all basic types — not just strings.

• Ranges are defined directly via the min and max

attributes.
• The type attribute contains a finite set of types, most

inherited directly from XSD. Except that:
• We extend the list of available types to include

simple types that are common in our APIs — such
as UUID.

• The string type always includes a maximum
character length of 255 characters as this is
required by the back-end billing service layer.

• Date types are required to use the GMT timezone.
• List types are supported and denoted with a

star(*). For example int*, long*. Since lists are
white-space separated attributes string* is not
supported but name* is. Note that it is possible to
mix list types with ranges and enumerations.

3.3. Assertions

As Example 4, “Load Balancer Usage Product Schema”
illustrates, XPath validation assertions are supported.
Assertions may have a scope attribute which denotes the
current node of the XPath expression. Allowed values for
scope are simply entry (the root element of an Atom
event) and product (the element containing product
specific attributes) with product being the default. An
example of an assertion with an entry scope is illustrated
in Example 5, “Example non-product Assertion”.

Example 5. Example non-product Assertion

<xpathAssertion
 test="$event/@resourceId castable as xs:integer"
 scope="entry">
 The resourceId for a VIP should be an integer.
</xpathAssertion>

How an assertion is translated depends on the scope
attribute. Assertions which only affect the product

element are embedded directly in the generated XSD as
XSD 1.1 [12] assertions. Example 6, “Generated
ComplexType for Load Balancer usage message”
illustrates the ComplexType in the generated XSD for
Example 4, “Load Balancer Usage Product Schema”.
Note that, unfortunately, we must generate both a
xerces:message attribute an a saxon:message attribute to
ensure that a correct error message is displayed, when an
assertion fails, regardless of which XSD implementation
we're using — we continually test against both Saxon
and Xerces implementations though we are currently
utilizing Saxon in production. This sort of requirement
illustrates the benefit of generating an XSD rather than
developing it by hand.

Page 141 of 162

Product Usage Schemas

Example 6. Generated ComplexType for Load Balancer usage message

<complexType xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning"
 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns:usage="http://docs.rackspace.com/core/usage"
 xmlns:xerces="http://xerces.apache.org"
 xmlns:saxon="http://saxon.sf.net/"
 xmlns:p="http://docs.rackspace.com/usage/lbaas"
 name="CloudLoadBalancers1Type">
 <annotation>
 <documentation>
 <html:p>Cloud Load Balancer usage fields.</html:p>
 </documentation>
 <appinfo>
 <usage:core groupByResource="true" ranEnrichmentStrategy="CI_SERVICE" type="USAGE"/>
 </appinfo>
 </annotation>
 <complexContent>
 <extension base="p:BaseCloudLoadBalancersType">
 <attribute name="resourceType" use="required" type="p:ResourceTypes1"/>
 <attribute name="avgConcurrentConnections" use="required" type="p:avgConcurrentConnections1Type">
 <annotation>
 <documentation>
 <html:p>The amount of conncurrent connections.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="NONE" unitOfMeasure="COUNT" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="avgConcurrentConnectionsSsl" use="required" type="p:avgConcurrentConnectionsSsl1Type">
 <annotation>
 <documentation>
 <html:p>The amount of conncurrent ssl connections.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="NONE" unitOfMeasure="COUNT" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="avgConcurrentConnectionsSum" use="optional" type="xsd:double">
 <annotation>
 <documentation>
 <html:p>The sum amount of conncurrent connections for regular and SSL.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="WEIGHTED_AVG" unitOfMeasure="COUNT" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="bandWidthIn" use="required" type="p:bandWidthIn1Type">
 <annotation>
 <documentation>
 <html:p>The amount of bandwidth in, in bytes.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="NONE" unitOfMeasure="B" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>

Page 142 of 162

Product Usage Schemas

 <attribute name="bandWidthInSsl" use="required" type="p:bandWidthInSsl1Type">
 <annotation>
 <documentation>
 <html:p>The amount of ssl bandwidth in, in bytes.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="NONE" unitOfMeasure="B" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="publicBandWidthInSum" use="optional" type="xsd:unsignedLong">
 <annotation>
 <documentation>
 <html:p>The sum amount of bandwidth in for regular and SSL, in bytes.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="SUM" unitOfMeasure="B" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="bandWidthOut" use="required" type="p:bandWidthOut1Type">
 <annotation>
 <documentation>
 <html:p>The amount of bandwidth out in bytes.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="SUM" unitOfMeasure="B" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="bandWidthOutSsl" use="required" type="p:bandWidthOutSsl1Type">
 <annotation>
 <documentation>
 <html:p>The amount of ssl bandwidth out in bytes.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="SUM" unitOfMeasure="B" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="publicBandWidthOutSum" use="optional" type="xsd:unsignedLong">
 <annotation>
 <documentation>
 <html:p>The sum amount of bandwidth out for regular and SSL, in bytes.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="SUM" unitOfMeasure="B" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="numPolls" use="required" type="p:numPolls1Type">
 <annotation>
 <documentation>
 <html:p>The number of polls per load balancer.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="NONE" unitOfMeasure="COUNT" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="numVips" use="required" type="p:numVips1Type">
 <annotation>

Page 143 of 162

Product Usage Schemas

 <documentation>
 <html:p>The number of vips per load balancer.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="NONE" unitOfMeasure="COUNT" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="vipType" use="required" type="p:vipType1Enum">
 <annotation>
 <documentation>
 <html:p>The vip type associated with the load balancer.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="NONE" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="sslMode" use="required" type="p:sslMode1Enum">
 <annotation>
 <documentation>
 <html:p>The mode determining SSL status on the load balancer.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="NONE" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="hasSSLConnection" use="optional" type="xsd:boolean">
 <annotation>
 <documentation>
 <html:p>An attribute determining whether or not the Cloud Load Balancer
 used an SSL connection. Used for billing purposes.</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="NONE" groupBy="true"/>
 </appinfo>
 </annotation>
 </attribute>
 <attribute name="status" use="required" type="p:status1Enum">
 <annotation>
 <documentation>
 <html:p>Is the load balancer currently active?</html:p>
 </documentation>
 <appinfo>
 <usage:attributes aggregateFunction="NONE" groupBy="false"/>
 </appinfo>
 </annotation>
 </attribute>
 <assert vc:minVersion="1.1" test="if (@status = 'SUSPENDED') then
 ((@bandWidthIn = 0) and (@bandWidthOut = 0) and
 (@bandWidthInSsl = 0) and (@bandWidthOutSsl = 0) and
 (@avgConcurrentConnections = 0) and
 (@avgConcurrentConnectionsSsl = 0)) else true()"
 xerces:message="If the status is SUSPENDED then bandWidthIn, bandWidthOut, bandWidthInSsl,
 bandWidthOutSsl, avgConcurrentConnections, and avgConcurrentConnectinsSsl
 should all be 0."
 saxon:message="If the status is SUSPENDED then bandWidthIn, bandWidthOut, bandWidthInSsl,
 bandWidthOutSsl, avgConcurrentConnections, and avgConcurrentConnectinsSsl
 should all be 0.">
 <annotation>
 <documentation>

Page 144 of 162

Product Usage Schemas

 <html:p>Assertion: If the status is SUSPENDED then bandWidthIn, bandWidthOut, bandWidthInSsl,
 bandWidthOutSsl, avgConcurrentConnections, and
 avgConcurrentConnectinsSsl should all be 0.</html:p>
 </documentation>
 </annotation>
 </assert>
 <assert vc:minVersion="1.1" test="if (@sslMode = 'OFF') then ((@bandWidthInSsl = 0) and
 (@bandWidthOutSsl = 0) and (@avgConcurrentConnectionsSsl = 0))
 else true()"
 xerces:message="If SslMode is OFF then bandWidthInSsl, bandWidthOutSsl,
 and avgConcurrentConnectionsSsl should all be 0."
 saxon:message="If SslMode is OFF then bandWidthInSsl, bandWidthOutSsl,
 and avgConcurrentConnectionsSsl should all be 0.">
 <annotation>
 <documentation>
 <html:p>Assertion: If SslMode is OFF then bandWidthInSsl, bandWidthOutSsl,
 and avgConcurrentConnectionsSsl should all be 0.</html:p>
 </documentation>
 </annotation>
 </assert>
 <assert vc:minVersion="1.1" test="if (@sslMode = 'ON') then ((@bandWidthIn = 0)
 and (@bandWidthOut = 0) and
 (@avgConcurrentConnections = 0)) else true()"
 xerces:message="If SslMode in ON then bandWidthIn, bandWidthOut,
 and avgConcurrentConnections should all be 0."
 saxon:message="If SslMode in ON then bandWidthIn, bandWidthOut,
 and avgConcurrentConnections should all be 0.">
 <annotation>
 <documentation>
 <html:p>Assertion: If SslMode in ON then bandWidthIn, bandWidthOut,
 and avgConcurrentConnections should all be 0.</html:p>
 </documentation>
 </annotation>
 </assert>
 </extension>
 </complexContent>
</complexType>

Assertions with scope of entry which involve reaching
into different parts of the message, cannot be generated
directly into an XSD because the XSD specification
dictates that elements containing an assertion are
considered root elements. Because of this, assertions may
not reach out to parent elements (although the Xerces
XSD implementation currently allows this). These
assertions are instead converted into an XSLT
transformation [13] and embedded as part of the
product.wadl (since Repose supports an extension to
WADL which executes an XSLT before validating the
message). These XSLT transforms perform the identity
transformation, but fail if the XPath assertion is not
satisfied. The translated assertion for Example 5,
“Example non-product Assertion” is illustrated in
Example 7, “Generated XSLT fragment for Load
Balancer usage message assertion with entry scope”.

Example 7. Generated XSLT fragment for Load
Balancer usage message assertion with entry scope

<xsl:when
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:p="http://docs.rackspace.com/event/lbaas/lb"
 test="$event/p:product">
 <xsl:variable name="product"
 select="$event/p:product"/>
 <xsl:choose>
 <xsl:when test="$product[@version = '1']">
 <xsl:choose>
 <xsl:when test="$event/
 @resourceId castable as xs:integer"/>
 <xsl:otherwise>
 <xsl:message terminate="yes">
 The resourceId for a load balancer
 should be an integer.
 </xsl:message>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 </xsl:choose>
</xsl:when>

Page 145 of 162

Product Usage Schemas

Note that the technique of translating a series of
assertions into an XSLT for execution is similar to the
technique used by Schematron [14]. The reason for
generating an XSL rather than utilizing Schematron
directly, in this case, is that validations need to occur at a
very frequent interval (thousands of times a second) and
the approach in Example 7, “Generated XSLT fragment
for Load Balancer usage message assertion with entry
scope” is much lighter weight. We do however, utilize
Schematron to help validate WADLs when they are
initially loaded by the Repose validator.

Also note that when the scope of the assertion is
entry the variables $entry, $event, and $product are
defined for convenience and the product namespace is
always mapped to the prefix p. The prefixes atom, event
and xs are also defined.

3.4. Versioning

It is possible to define multiple product schemas with the
same serviceCode and namespace but with a different
version number. In this case, our transformation creates a
single XSD which supports multiple versions of a
message by utilizing the alternative feature of XSD 1.1.
The generated product element for our bigdata events
illustrate this in Example 8, “Alternatives used for
versioning”.

Example 8. Alternatives used for versioning

<element name="product" vc:minVersion="1.1"
 type="p:BaseBigDataType">
 <alternative test="(@version eq '1')"
 type="p:BigData1Type"/>
 <alternative test="(@version eq '2')"
 type="p:BigData2Type"/>
</element>

The versioning feature allows multiple versions of a usage
schema to co-exist in the feed. Our versioning strategy
requires that versions remain backwards compatible as
much as possible. The version attribute in a usage
message is used to for validation purposes — it identifies
which validation rules should apply. It does not imply
that the usage messages are entirely incompatible from a
client's perspective.

4. Future Work

• Our solution generates XSD 1.1 schemas, but some of
our customers would like XSD 1.0 version because
their XML binding tools such as JAXB [15] demand
it. While the schemas that we generate take advantage
of the conditional inclusion properties of XSD we still
run into high levels of incompatibility. We plan on
extending our system to generate (non-normative)
XSD 1.0 schemas which are more useful.

• The process of validating usage events introduces little
run-time overhead. On a production grade system,
validation of a usage event takes about 2 milliseconds
on average. This overhead has remained fairly stable
even as we've introduced many different types of
usage events. The initialization process of loading the
generated WADL and its related resources (XSDs and
XSLts) has been steadily increasing, however, and now
averages about 5 minutes. These long load times mean
that introducing new nodes or making making
frequent schema changes, at run-time, incur a high
cost and have the potential to affect our SLAs. We
plan on investigating ways of decreasing these high
initialization times — possibly by converting WADLs
to an internal representation in an off-line
preprocessing step.

• Since our product usage schema decouples us directly
from XSD, we are exploring the possibility of
supporting alternate formats for our usage messages
including JSON. We would like to generate JSON
schemas in the same way that we generate XML
schemas.

• We are also exploring developing GUIs and wizards to
aid products in the generation and maintenance of
their product schemas.

Page 146 of 162

Product Usage Schemas

5. Conclusion

In this case study, we examined the process of collecting,
validating, and aggregating usage events in a large public
cloud. We leveraged an XML based solution to transform
our existing billing pipeline from one in which usage
data was defined in irregular and inconsistent ways to
one in which strict standards were followed and a
declarative language was used to specify validation,
versioning, and mediation rules. The new usage event
model has allowed us to catch errors early which has
significantly reduced the number and impact of errors on
our customers. What's more, we've been able to achieve
this strict level of validation with little to no negative
impact on the overall performance of our system.

Our simple product schema format has allowed us to
leverage the power of XSD and WADL without having
to get lost in the idiosyncrasies of these languages. By
doing so, we were able to design product specific usage
data in a highly consistent manner and to communicate
requirements to the usage mediation team accurately.

Bibliography

[1] The Atom Syndication Format. M. Nottingham and R. Sayre. https://tools.ietf.org/html/rfc5023
[2] Feed Paging and Archiving. M. Nottingham. https://tools.ietf.org/html/rfc5005
[3] Atom Hopper. http://atomhopper.org/
[4] The Atom Publishing Protocol. J. Gregorio and B. de Hóra. https://tools.ietf.org/html/rfc5023
[5] IBM Systems Journal. 43. 1. 2004. “Utility Computing”. J. Ritsko and B. Birman.

http://www.research.ibm.com/journal/sj43-1.html
[6] R. Fielding. Architectural Styles and the Design of Network-based Software Architectures.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
[7] M. Hadley. Web Application Description Language. http://www.w3.org/Submission/wadl/
[8] Open Repose. http://www.openrepose.org/
[9] N. Walsh, A. Milowski, and H. Thompson. XProc: An XML Pipeline Language. http://www.w3.org/TR/xproc/
[10] Proceedings of Balisage: The Markup Conference 2012. Balisage Series on Markup Technologies. 2012. 8. August

7 - 10, 2012. “Using XProc, XSLT 2.0, and XSD 1.1 to validate RESTful services.”. J. Williams and D.
Cramer. doi:10.4242/BalisageVol8.Williams01

[11] XML Schema. http://www.w3.org/XML/Schema
[12] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. D. Peterson, S. Gao, A. Malhotra, C. M.

Sperberg-McQueen, and H. Thompson. http://www.w3.org/TR/xmlschema11-2/
[13] The Extensible Stylesheet Language Family (XSL). http://www.w3.org/Style/XSL/
[14] Schematron. http://www.schematron.com
[15] Java Architecture for XML Binding (JAXB). https://jcp.org/en/jsr/detail?id=222

Page 147 of 162

Product Usage Schemas

http://dx.doi.org/10.4242/BalisageVol8.Williams01

An XML-based Approach for Data
Preprocessing of Multi-Label Classification

Problems
Eduardo Corrêa Gonçalves

Universidade Federal Fluminense (UFF)
<egoncalves@ic.uff.br>

Vanessa Braganholo

Universidade Federal Fluminense (UFF)
<vanessa@ic.uff.br>

Abstract

Most of the data mining tools are only able to work with
data structured either in relational tables or in text files with
one record per line. However, both kinds of data
representation are not well-suited to certain data mining
tasks. One example of such task is multi-label classification,
where the goal is to predict the states of a multi-valued target
attribute. This paper discusses the use of XML as an
alternative to represent datasets for multi-label classification
processes, since this language offers flexible means of
structuring complex information, thus potentially
facilitating the major steps involved in data preprocessing. In
order to discuss from a practical point of view, we describe
the steps of an experience involving the preprocessing of a
real text dataset.

Keywords: Data Preprocessing, Text Categorization,
Multi-Label Classification

1. Introduction

Multi-label classification (MLC) can be defined as the
task of automatically assigning an object into multiple
categories based on its characteristics [1]. One of the
most common applications is text categorization, where
the goal is to associate documents to various subjects. For
example: a trained multi-label classifier could process the
text summary of the movie "The King's Speech" and
determine its genres as "Biography", "Drama", and
"History". Besides text categorization, other important
applications for MLC include functional genomics
(determining the functions of genes and proteins) and
the semantic categorization of images, video and music.

The MLC problem is more challenging than the
traditional single-label classification (SLC) in which
objects can be associated with only a single target class.
Typically, MLC applications have to deal with a huge
number of possible label combinations. Considering a
problem involving q labels, the size of the output space
in MLC is 2^q whereas it is just q in SLC. Another
important issue concerns the existence of correlations
between labels. For instance, a movie is unlikely to be
simultaneously labelled as "Romance" and "Horror",
since these two genres have a strong negative correlation.
Thus, algorithms capable of modelling label correlations
tend to be more accurate. Actually, recent research in
MLC have primarily concentrated efforts on the
development of scalable techniques for modelling label
dependencies [2], [3], [4].

However, an important characteristic that
differentiates MLC and SLC has been often neglected in
literature. It corresponds to the fact that real-world
multi-label datasets (e.g. text data, multimedia data, etc.)
are usually much larger and more complex in structure
than single-label datasets. In spite of this situation,
current multi-label platforms [5], [6] have adopted the
traditional ARFF flat file format ("one record per line")
to represent target datasets. This leads to two main
problems: (i) the format is unnatural for the
representation of multi-label data; (ii) the flat file format
makes data preprocessing activities considerably more
cumbersome, since it is not suitable for querying and
transformation.

In other to tackle these problems, this paper proposes
an XML-based approach for data representation and
preprocessing in multi-label classification. The main goal
is to discuss the advantages offered by this approach to
users of data mining tools, focusing on the text

doi:10.14337/XMLLondon14.Goncalves01Page 148 of 162

mailto:egoncalves@ic.uff.br
mailto:vanessa@ic.uff.br

1 http://www.imdb.com/interfaces

categorization problem. The rest of this paper is
organized as follows. Section 2 presents a comparison
between the ARFF and the XML formats, highlighting
the advantages associated with the use of the latter
format. Section 3 describes an experiment that applied
the XML approach for data preprocessing of a real-world
dataset with movie information. Section 4 summarizes
this work and points to future research directions.

2. Dataset Formats: ARFF versus XML

Mulan [6] and MEKA [5] are the two most used
platforms for multi-label classification in research
projects. Both work on the top of the well-known Weka
API [7] and adopt the Weka's standard ARFF format for
dataset representation. This format is simple, intuitive,
having become popular in the data mining field. Even so,
it is not suitable for representing multi-label datasets. To
support this claim, consider the following example.
Suppose we want to perform the multi-label classification
of a movie database. The goal is to classify the genres of
movies in function of the movie summaries. In this case,
both Mulan and MEKA would require an ARFF dataset
structured similarly to the example below.

@relation Movies
@attribute a {0, 1}
@attribute abandon {0, 1}
@attribute about {0, 1}
...
@attribute zoology {0, 1}
@attribute genre_drama{0, 1}
@attribute genre_mystery{0, 1}
...
@attribute genre_romance{0, 1}
@data
0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,1,...
1,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,...
...

Observe that the ARFF format requires the declaration of
every distinct word as a different attribute in the header.
The data itself is structured in the bag of words (BOW)
format. Each line contains information of a different
movie. The 1 and 0 values represent, respectively, the
presence and the absence of the correspondent word in
the summary. Although the Weka API offers filters for
the automatic conversion of free text into BOW, this
conversion represents just a small part of the data
preprocessing scenario. Typically, users of data mining
tools need to explore and transform data before executing
the classification algorithm. The BOW format is rather
inadequate for querying and transformation though.

XML is a language for specifying semi or completely
structured data adopted as a standard by many industries

[8]. In the below code we show the "movies dataset" now
structured in XML format. We can immediately realize
that XML allows for the representation of movie
information in a very natural way: each movie is simply
delimited by the tags <movie> and </movie>. More
interestingly, the definition of multi-valued data, i.e.,
movies with multiple summaries (<plot> tag) and genres
(<class> tag), can be done in a quite straightforward
fashion (differently from the ARFF format). However,
the major advantage is that XML is able to potentially
enhance data preprocessing procedures. Through an
XML environment, users of a data mining tool can
visualize, query, explore, and transform data in a simpler
and faster way, by the means of the standard languages
XSLT [9] and XQuery [10] or using the SAX API [11].
In the next section, we discuss the advantages of the
XML-based data preprocessing approach from a practical
point of view, describing an experiment performed over a
real-world text dataset.

<?xml version="1.0" encoding="ISO-8859-1"?>
<imdb>
 <movie id="500">
 <title>127 Hours</title>
 <plot>127 Hours is the true story of ...
 <plot>On April 2003, the engineer, climber ...
 <class>Adventure</class>
 <class>Biography</class>
 <class>Drama</class>
 <class>Thriller</class>
 </movie>
 <movie id="501">
 <title>The Bridges of Madison County</title>
 <plot>Photographer Robert Kincaid wanders ...
 <class>Drama</class>
 <class>Romance</class>
 </movie>
 ...
</imdb>

3. Experiment

The IMDB dataset [12] is real-world dataset that keeps
information about movies. Data is originally supplied in
several plain text files 1 which are weekly updated with
new information. Each file stores different information
regarding the movies. The experiment described in this
section involved the files "plot.list" (movie summaries)
and "genres.list" (movie genres). The goal of our
evaluation was to assess the advantages of using XML
representation in the data preprocessing step (step 2 in
Figure Figure 1, “Proposed steps for the construction of
the multi-label classifier for IMDb data”), supposing that
a multi-label classifier to associate movies to genres
would be constructed.

Page 149 of 162

An XML-based Approach for Data Preprocessing of Multi-Label Classification Problems

http://www.imdb.com/interfaces

Figure 1. Proposed steps for the construction of the multi-label classifier for IMDb data

The first step of the experiment consisted in the
development of a simple Java program called
"imdb2XML" to generate the XML dataset from the plot
and genres plain files. The structure of this dataset is
similar to the one shown in the movies XML file
presented in the last section. The final XML dataset was
composed by 153.499 movies, which corresponds to the
number of movies that are stored in the plot file and also
in the genres file. The second step represents the main
goal of this paper: the defence of an XML-based data
preprocessing environment for multi-label classification
problems. During the experiment, at this step, the
XQuery language and the SAX API were used to
querying, exploring and transforming the XML IMDb
dataset. Below, we list some of the several preprocessing
procedures that were performed. Observe that most of
these procedures cannot be directly performed over
ARFF datasets.
• Construction of a frequency table of movie genres.

Among the 28 possible genres, some of the most
frequent are "Drama" (59,177), "Comedy" (38,377),
and "Documentary" (27,590).

• Generation of a word frequency table. This table was
queried in several different ways. The query results
were used to collect information about data and to
guide data transformation operations over the XML
dataset. Some examples:
• About half of the words occurs only once in the

database (e.g. "agnosticism", "polyvision"). These
words were removed from the dataset.

• Several misspelled words and typos (e.g.
"caracters", "theforce").

• There is a large number of proper names, e.g.
"Robert" (3,053), "Rosemary" (229).

• Construction of a cross-tabulation table of words
and genres. This table has helped us to identify the
words that are most correlated to certain genres
(ex: word "Broadway" and genre "Musical").

• Calculation of the correlation coefficient between
all pairs of labels (e.g.: "Drama" x "Action",
"Drama" x "Horror", etc.) to identify labels that
are positively and negatively correlated.

4. Conclusions

Multi-label classification is a challenging problem in the
field of data mining, which requires considerable efforts
in data preprocessing. In this paper we discussed the use
of an XML-based approach as a feasible and adequate
alternative for data preprocessing of multi-label datasets.
The advantages of XML could be evidenced in distinct
two forms: first, through a comparison between the
formats XML and ARFF; second, through an experiment
involving a real text dataset. In this experiment, the
XQuery language and the SAX API were employed to
perform data exploration and transformation. As future
work we intend to conduct new evaluations on different
multi-label datasets aiming at developing a general XML-
based framework for data preprocessing.

Page 150 of 162

An XML-based Approach for Data Preprocessing of Multi-Label Classification Problems

Bibliography

[1] A tutorial on multi-label classification techniques. Andre de Carvalho and Alex Freitas. Foundations of
Computational Intelligence, 5, 2009. ISBN: 978-3-642-01535-9. doi:10.1007/978-3-642-01536-6_8

[2] A genetic algorithm for optimizing the label ordering in multi-label classifier chains. Eduardo Corrêa Gonçalves,
Alexandre Plastino, and Alex Freitas. ICTAI 2013. ISBN: 978-1-4799-2971-9. doi:10.1109/ICTAI.2013.76

[3] Classifier chains for multi-label classification. Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank.
Machine Learning 85(3). ISSN: 0885-6125. doi:10.1007/s10994-011-5256-5

[4] Incorporating label dependency into the binary relevance framework for multi-label classification. Everton Alvares-
Cherman, Jean Metz, and Maria Carolina Monard. Expert Systems with Applications 39(2). ISSN: 0957-4174.
doi:10.1016/j.eswa.2011.06.056

[5] MEKA - A multilabel/multitarget extension to WEKA. SourceForge.net. http://meka.sourceforge.net/
[6] Mulan: A Java library for multi-label learning. SourceForge.net. http://mulan.sourceforge.net/
[7] Weka 3: data mining software in Java. University of Waikato. http://www.cs.waikato.ac.nz/ml/weka/
[8] XML: some papers in a haystack. Mirella Moro, Vanessa Braganholo, Carina Dorneles, Denio Duarte, Renata

Galante, and Ronaldo Mello. ACM SIGMOD Record 38(2). ISSN: 0163-5808.
doi:10.1145/1815918.1815924

[9] XSL Transformations (XSLT) Version 1.0. W3C. http://www.w3.org/TR/1999/REC-xslt-19991116
[10] XQuery 1.0: An XML query language (second edition). W3C. http://www.w3.org/TR/xquery/
[11] SAX 2.0.1: Simple API for XML. David Megginson and David Brownell. SAX Project.

http://www.saxproject.org/
[12] IMDb – The Internet movie database. IMDb.com, Inc.. http://www.imdb.com

Page 151 of 162

An XML-based Approach for Data Preprocessing of Multi-Label Classification Problems

http://dx.doi.org/10.1007/978-3-642-01536-6_8
http://dx.doi.org/10.1109/ICTAI.2013.76
http://dx.doi.org/10.1007/s10994-011-5256-5
http://dx.doi.org/10.1016/j.eswa.2011.06.056
http://dx.doi.org/10.1145/1815918.1815924

1 NoSQL - In Wikipedia. http://en.wikipedia.org/wiki/NoSQL
2 kode1100.com - http://www.kode1100.com

Using Abstract Content Model and Wikis to
link Semantic Web, XML, HTML, JSON and

CSV
Using Semantic Media Wiki as a mechanism for storing format

neutral content model

Lech Rzedzicki
<lech@kode1100.com>

1. Introduction

2013 has been hyped as the year of Big Data [1], 2014 is
still about projects dealing with deluge of data and this
trend is going to continue as organisations produce and
retain exponentially growing amounts of data, outpacing
their capability to utilise the data and gain insight from
it.

One method of dealing with the data flood is
modeling the data - applying rules to ensure it is
consistent and predictable where possible, and flexible
everywhere else, providing definitions, examples,
alternatives and connecting related structures.

On one hand of the modeling spectrum is the
traditional relational data modeling with conceptual,
logical and physical models and levels of normalization.
Such a strict approach is definitely working well in some
environments, but not in publishing where requirements
are in constant flux and are rarely well defined.

On the other hand of the spectrum is the 'NOSQL'1
movement where data is literally dumped to storage as is
and any data validation and modelling is kept in the
application layer therefore needs software developers to
maintain. At the moment NOSQL developers are a
scarce minority amongst established publishers and a rare
and expensive resource in general.

To balance these needs and problems, at Kode1100
Ltd2 we have designed and developed a modeling system,
which to a large extent is resilient to changes in developer
fashion and taste and can be maintained by technically
savvy and otherwise intelligent folks who do not have to
be full time programmers.

2. Background

To understand better the problems Abstract Content
Model is trying to solve we need to learn a little bit more
about developer preferences and publishing industry.

I have found XML and XML validation languages
like W3C (XSD) Schema, RelaxNG and Schematron to
be excellent, flexible and powerful tools to express the
rules about the data.

The fact that these technologies are international
standards and have great community support means that
it is easier to convince large organisations to invest time
and money in such technology.

However, the developer world is much bigger and
more fragmented that it was when standards like W3C
Schema were formulated.

It is no longer reasonable to expect that everyone will
go through the learning curve and adopt XML tools and
techniques in their ecosystem.

Developers prefer to use software tools, libraries and
techniques that they are familiar with, the ones they use
anyway, everyday and they will apply the same principles
to encoding data. Web Developers use JSON. Excel
power users prefer CSV and .NET macros. Attendees of
XML London hopefully still prefer XML.

Building a system that would cater to the needs of
the above, existing and future groups was one of the core
goals.

I will use a concrete use case to illustrate some of the
concepts and techniques, but the same principles can be
potentially applied to storing and interacting with a
model of any structured or semi-structured data,
especially if it is representable as XML.

doi:10.14337/XMLLondon14.Rzedzicki01Page 152 of 162

http://en.wikipedia.org/wiki/NoSQL
http://www.kode1100.com
mailto:lech@kode1100.com

3. Technology Choices

Being an XML consultant I had a natural bias to use
XML Technologies to develop the model, but as I
explained in the background section one of the main
goals for the Abstract Content Model is the ability to
serve the needs of a variety of audiences.

My years of experience have taught that me that an
open, widely adopted standard is the only sane choice for
a long running project and fortunately the clients tend to
agree.

We decided that RDF is the right format for the
canonical version of the model: it is flexible enough to
represent all the concepts but also an open standard that
is adopted widely enough, but we needed input and
output that is easier to work with than raw RDF-XML.
The Semantic Web stack of technologies: RDF, SPARQL,
RDFS, OWL etc are excellent tools for modeling and
queries but have a pretty steep learning curve and face
the problem of not being adopted widely enough. Some
of the contributors to content model were expected not
to have a background in software programming so we
needed a layer of input and output that was easier to
work with.

Therefore we also decided to use wiki software as a
way to present and even edit the content model in a user
friendly fashion as well as to document how the system
works. Our initial user testing confirmed that editing
wiki pages, especially with predefined forms was within
capability of the user base.

We did a review of the available software and given
that ability to export to RDF was a requirement, we had
one obvious choice: Semantic Media Wiki.

MediaWiki is the open source software behind
Wikipedia. It is therefore maintained by Wikimedia
foundation and a wide community of open-source
developers.

Semantic Media Wiki is a set of Extensions to Media
Wiki to give it specific semantic capabilities to describe
linked data- forms, infoboxes, RDF Export etc. It has a
smaller but likewise responsive community. Semantic
MediaWiki still has many unresolved bugs, very often
around parsing strings, escaping characters and so on,
but because it is written in PHP and open-source, a lot
of developers can understand the code and contribute to
improving the software. At least hypothetically.

With that setup (and a lot of customisation) we were
able to export the whole wiki as RDF. It is certainly
possible to just download the whole dump and parse that
RDF file, but it is definitely not a scalable solution. In
my previous project at OHIM, the size of the RDF
dump exceeded 300MB in size.

We have therefore set up a Triple Store and a SPARQL
endpoint. We first tried Jena and have found no fault
with it- we haven't done any throughout testing of
SPARQL endpoints side by side.

To compliment the setup and keep the stack fully
Open Source, we are hosting it on Linux virtual
machines (currently running Ubuntu 14) and using
Apache HTTP server for complimentary functions.

The virtual machines are hosted at DigitalOcean and
Rackspace, but because the deployment process is
automated, it can be moved to another cloud provider
such as Amazon, if they become cheaper or more cost
effective.

4. Technical Description

The core concept of the Abstract Content Model is to
abstract the canonical form of the content model, so that
it is separated from any implementation. This allows the
content to be neutral to the technology used in a actual
production system that uses the model.

The content model is defined as an abstract graph of
connected concepts and definitions which in turn have
properties that can be abstract or more specific to a
representation.

This maps really well to an RDF graph, but by
adhering to conventions that graph can be simplified to a
tree and then the whole model can then also be
represented using hierarchical formats such as JSON or
XML.

The implementation is also pretty simple (at least to
an XML audience): the canonical form of the model is
stored as RDF-XML and there are conversion pipelines
to convert to the preferred representation format such as
XML, JSON or CSV.

Because we have used Semantic MediaWiki as the
software to interface with the content model and because
XML is, at least for now, the most used input and output
format, we have decided to optimise the content model
for that.

Since XSD representation of the content model was a
big requirement anyway and used extensively in the
initial modelling, we decided to constrain Semantic
MediaWiki content model to effectively mirror an XSD
design pattern. I strongly recommend reading a bit more
or refreshing your memory on XSD Design Patterns.

Page 153 of 162

Using Abstract Content Model and Wikis to link Semantic Web, XML, HTML, JSON and CSV

Initially we agreed on Venetian blinds pattern. It mapped
really well to Object-like representations like JSON, it
could potentially lead to being able to generate Object
oriented code classes straight from the content model
and it allowed to reuse the types. But in the end it was an
abstraction on top of Semantic MediaWiki abstraction of
a content model, which was to complicated and it also
meant that the resulting RDF representation and
therefore also SPARQL queries were unnecessarily
complicated.

Our next and current approach is Garden of Eden
and it is really simple. Every concept in the abstract
content model maps to single page on the Semantic
MediaWiki (and therefore it has it's own URI which is
really useful for RDF) and is represented as a single
element in XML Schema and XML instances.

The choice of Schema Design Pattern is merely a
convention and was based on non-wiki related
requirements, it may be more suitable for another similar
project to adopt a different pattern to suit the
requirements and such is the case with OHIM TM-XML
and DS-XML which use Venetian Blinds patterns.

Semantic MediaWiki has implemented the concept
of namespaces which is really useful to separate content
model pages that are processed programmatically from
templates, forms, auxiliary pages and just plain wiki
pages that just serve as navigation or documentation.
These namespaces, at least for now map 1:1 to
namespaces in XML and RDF representations.

Another layer of separation is the Semantic
MediaWiki concept of categories. All pages that map to
XML Elements are in a Category:Elements. This makes
Semantic MediaWiki Ask and SPARQL queries really
easy and again makes RDF, XSD and JSON clean and
easy to query or parse.

In addition to that setup we have developed a set of
XProc pipelines to output to some popular and useful
formats. The ones we developed initially were XML
Sample, XSD, JSON, raw HTML, and HTML+RDFa.

The pipelines are written as a combination of
SPARQL queries to grab a relevant subset of RDF (in
RDF-XML representation) and then an XSL stylesheet to
convert from RDF-XML to target format.

If the existing formats do not match the
requirements, there is also a possibility for a system or a
developer to work directly with the RDF.

For that we have set up automation to export RDF
and load it to a triple store and expose a SPARQL
endpoint. As discussed in the technology choices section,
the triple store is Jena, which in addition to raw
SPARQL endpoint offers a web form queries and,
optionally a Linked Data API layer, to automatically
offer RDF conversion to JSON, CSV and XML.

5. Content Modeling and everyday
use

After installing and configuring the software, developing
the required customisations we were finally ready for
some actual content modeling- developing a semi-formal
description of the content requirements in a form that
can be used by both people and computers. A simple
example of such rule could: "any printed book must have
1 title and optionally have 1 subtitle".

5.1. Modeling in XSD and importing

Initially we had an empty content model and a lot of
rules and content types to describe. It turned out that a
lot of these rules could be expressed as W3C Schema
constraints, so we started the modelling by:
1. Creating an XML sample- usually from an exiting

product
2. generating XSD from that (using OxygenXML) and

refining that XSD manually
3. Importing the XSD and XML into the wiki using a

bespoke XSL script to convert XML/XSD into wiki
markup (for example the name of the root element
would be the name of the wiki page)

4. The import process triggers the regeneration of the
RDF dump and that RDF is exported to the triple
store.

This process was a tradeoff as it didn't allow to model
rules that can't be expressed in XSD 1.0 (for example
maximum character count), but it allowed us to populate
the wiki quickly with test data to develop and test
features and even other systems and applications.

To automate the process, we have developed XProc to
combine the above steps into a single, configurable and
executable pipeline.

The pipeline is launched from a PHP upload page, so
that user can specify files using a simple form rather than
having to use the command line.

5.2. Modeling in the wiki

After the initial modeling, we focused to be able to do
some basic modeling tasks on the wiki itself- this better
reflected the typical scenarios with content model. After
the initial development, usually only minor adjustments
are needed or there is a need to develop to a variant of
the content model based on an existing content model.
For that we developed the following ways of editing the
content model:

Page 154 of 162

Using Abstract Content Model and Wikis to link Semantic Web, XML, HTML, JSON and CSV

Creating a new element page (mapping to an XML
element) with a form
Editing an existing element/page with that same form
A working proof of concept of a full-blown XForms
based XSD editor running in a browser, inside the wiki.
The editor has the capability of constructing arbitrary
XML tree using current element/page as root. Upon
saving, that is transformed back into wiki pages and
subsequently into RDF using the same pipelines used
for importing XSD/XML.
To sum up the modeling part, while there was a
considerable amount of effort to set up the software
stack, the core activity of content modeling is pretty
trivial and using the wiki, does not even expose the user
to XML or RDF per se- all the modelling activity can be
done using a few buttons in the wiki.

This in no way prevents the model from being
factually incorrect, but it does remove the technical
barriers to keeping the model up to date and reduces the
amount of time to respond to changing business
requirements.

5.3. Exporting to other formats

Other than modeling and documentation, one of the
main goals for the project was to use it as a canonical
source from which outputs and software is generated. To
enable that, every element/page has the ability to export
to all supported formats (XML Sample, XSD, JSON,
raw HTML, and HTML+RDFa).

Some examples of where it is useful: export to
HTML to populate the website (just add CSS), export to
JSON, for JavaScript-based application (js will then use
the JSON files as it's data model)

5.4. Generating apps directly from the model

One of the more exciting features of the content model is
the ability to generate custom editing experiences based
on the content type in the model.

There is sufficient amount of information in the
model to be able to generate a data-driven editor with
the usability appropriate for a given content type.

For example at book or chapter level, we can generate
a content planner, which is not very good for writing
whole books, but gives a very good high level overview of
a book and makes it easy to plan it. On the other end
you have editor for individual sections where a form
based editor may be more appropriate.

To prove the idea in practice we have developed
exactly that: a high level content planner tool and a low
level activity editing tool.

The activity tool is using XForms, specifically
Betterforms.
1. Upon launching, the editor launcher interrogates the

parameter to see if an editor for that element already
exists.

2. If the editor for the element does not yet exist, the
launcher will redirect to editor generator.

3. The generator queries the SPARQL endpoint for XSD
for a given element and generates XForm from that.

4. The XForm can be tweaked manually for better UX.
On subsequent run the XForm will not be
overwritten as per step 2.

5. Finally the editor launches, using XForm to specify
behavior and opens the XML file provided as a
parameter.

6. The editor saves locally to eXistDB. eXistDB REST
API is used to interface with 3rd party systems and
other editors.

Being able to generate a customised editing experience by
dynamically querying the content model is a very novel
approach, but looking at the pace of change on the
Internet is proving very useful.

An example of that is the need to migrate from
Adobe Flash based applications to HTML5. Had the
model been stored alongside with the Flash application,
it would have to be retired or done from scratch or
migrated somehow (this requiring someone with
knowledge of both Flash and HTML5). With the
Abstract Content Model approach, both the Flash and
HTML5 are generated from the neutral and abstract
content model. Because both app models are generated
from the same RDF source, it is much easier to specify
the migration patterns. In addition the people developing
the HTML5 based apps do not need to know about
Flash or even XML and RDF. The most likely route for a
Web Developer to interface with the Abstract Content
Model is via HTML and JSON outputs.

Such setup is also allowing to apply the (good)
practices of agile development to content modeling and
make the content modeling an internal part of agile
software development sprints. Content model can be
dynamically updated and respond quickly to changing
requirements.

6. Conclusion

To conclude, the software development world is one of
perpetual change. We mustn't oppose the change, it is
inevitable and we should embrace and prepare for it.

Page 155 of 162

Using Abstract Content Model and Wikis to link Semantic Web, XML, HTML, JSON and CSV

By abstracting the content model and using Semantic
MediaWiki as a mechanism to store it and produce
multiple, often unforeseen representations, we future
proof and make more valuable the work that has gone in
the development of the content model, its
documentation, samples and systems around it.

If you are tasked with content modeling in any
capacity, which in 2014 and beyond should be a
growingly popular, sought after and profitable activity, I
strongly recommend that you abstract you content
modeling effort and use Semantic Media Wiki or a
similar solution to be able to produce multiple
representations of the content model, both now and in
the future.

Huge thanks and credits go to: Dr. Alex Greig Muir
who was essential in developing this functionality on
behalf of Kode1100 Ltd and team of Vincente Aguilar,
Tomas Gradin and Albert Hervas Pi who developed a lot
of custom functionality for the OHIM project.

Dr. Alex Greig Muir
Alex was essential in developing this functionality
on behalf of Kode1100 Ltd and wrote a lot of the
code required to make this work.

Vincente Aguilar, Tomas Gradin and Albert Hervas Pi
These brave men, along with yours truly, in spite
of bureaucracy and distractingly good weather and
food developed a lot of custom functionality for
the OHIM project, which served as a great
learning exercise for subsequent abstract content
modeling projects.

(Semantic) MediaWiki developer community
Likewise big thanks go to the broader Media Wiki
and Semantic Media Wiki community for their
ongoing contributions to the open source project.

XML Community
Last but not least huge tanks go to the XML
community which made all this possible. As many
of you know, I have been a vigorous attendee of
many XML events. I came for the technology and
stayed for the community!

Bibliography

[1] Mark Barrenechea. Forbes. http://www.forbes.com/sites/ciocentral/2013/02/04/big-data-big-hype/

Page 156 of 162

Using Abstract Content Model and Wikis to link Semantic Web, XML, HTML, JSON and CSV

http://www.forbes.com/sites/ciocentral/2013/02/04/big-data-big-hype/

JSON and XML: a new perspective
Eric van der Vlist

Dyomedea

Abstract

A lot has already been said about the tumultuous
relationship between JSON and XML. A number of
binding tools have been proposed. Extensions to the XPath
Data Model (XDM) and functions are being considered for
XSLT 3.0 and XQuery 3.1 to define maps and arrays, two
item types that would facilitate the import of JSON objects.

The author of this paper has already published and
presented papers proposing an XML serialization for XSLT
3.0 maps and arrays, a detailed comparison between XML
and JSON data models and a proposal to extend the XDM
to better bridge the gap between these data models.

None of these efforts seems to be totally satisfying to
eliminate the fundamental impedance mismatch between
JSON and XML suggesting that we may not have found the
right angle to look at this problem.

Rather than proposing yet another conversion
methodology, this paper proposes a new perspective to look at
the differences between JSON and XML which might more
constructive than the ones which had been adopted so far.

1. State of the art

It is now admitted, even among the most traditionalist
XML communities, that the ability to seamlessly
integrate JSON and HTML5 is key to the future of the
XML ecosystem.

When a business object is serialized in XML as:

<?xml version="1.0" encoding="UTF-8"?>
<anvil reference="acme-5103">
 <weight unit="pound">9.5</weight>
 <composition>best wrought iron</composition>
 <price currency="USD">.15</price>
</anvil>

the underlying XML data model is usually not significant
and that raises endless questions such as "should we use
attributes or elements for the reference? the weight?, the
composition? the price?".

Note

It must be noted that there is not such a thing as "the
XML data model" and this paper will refer to the
XDM 2.0. The differences between the XDM versions
can be found in my paper for Balisage 2012.

JSON having been designed as the syntax to define literal
object data structure in JavaScript you don't have to
answer to these questions to serialize the same object in
JSON:

{
 "anvil": {
 "reference": "acme-5103",
 "weight": {
 "unit": "pound",
 "value": 9.5
 },
 "composition": "best wrought iron",
 "price": {
 "currency": "USD",
 "value": .15
 }
 }
}

When we look at these two documents with the model of
the object that's been serialized in mind the translation
between the two formats seems quite obvious and most
of the time it really is obvious.

The simplicity of such approaches have led to a
number of software solutions that perform this kind of
translations.

The trickiest questions they have to solve are:
• Type inference (XML > JSON)
• Distinction between singletons (single element arrays)

and primitive types (XML > JSON)
• Distinction between elements and attributes (JSON >

XML).
These approaches are working fine in many cases to
convert data representations back and/or forward
between JSON and XML, however this is not enough
when the goal is to provide an automatic conversion of
any JSON data structure:
• Some implicit or explicit knowledge of the business

data model serialized in the document is needed.

doi:10.14337/XMLLondon14.Vlist01 Page 157 of 162

http://www.w3.org/TR/xpath-datamodel/
http://balisage.net/Proceedings/vol8/html/Vlist01/BalisageVol8-Vlist01.html#d159474e108

• The "lexical space" of JSON is wider than the lexical
space of XML. This is the case for any string but we
can't do much to cope with this difference and also
for JSON keys which are commonly matched to
element and attribute names.

A solution to avoid these issues is to extend the XML
data model to add JSON maps and arrays to the existing
item types. Early Working Drafts of XSLT 3.0 and
XQuery 3.1 are both following this approach. These item
types are added to the XPath Data Model (XDM) and
coexist with the existing item types. The new item types
being designed to be a superset of JSON maps and array
it is obviously be possible to consider any JSON object as
an XDM first class object.

This does not address the conversion of XML per see
into JSON (considered as out of its scope) and creates a
clear distinction between XML nodes and the new item
types which cannot be accessed by XPath axis and require
their specific sets of functions.

To avoid this segmentation of item types, several
proposals have been made which extend the notion of
XML elements to make them compatible with JSON
maps and arrays. However it is much harder to change
existing XDM item types than add new ones and these
proposals are personal initiatives which are not likely to
influence any standard.

Another option is to serialize JSON objects in XML
and this is the approach proposed by χίμαιραλ
(chimeral) and XSLT 3.0. Such serializations can provide
JSON to XML round-tripping but are always verbose.

Note

You'll find a detailed list and classification of some of
these solutions in my talk at XML Prague 2013

2. A new perspective

I have been working on the relationship between JSON
and XML since XML Prague 2012. I have read a number
of papers, listened to many presentations and done
presentations on the topic at Balisage 2012 and XML
Prague 2013.

Even if clever practical solutions have been proposed
which work well for real world applications I still felt
some itchiness for a topic both so simple and so
complicated and I think that what we need is a new way
to look at both formats.

This new perspective will not solve the problem by itself
but might be a ground on which new proposals can be
built and the purpose of this paper is not to propose a
conversion between JSON and XML but to explore the
relationship between these formats.

Let's take the comparison published in my talk at
XML Prague 2013:

We have both maps of key/value pairs and
ordered arrays in JSON and XML, but
that's where the similarities stop!

In JSON, maps of key/value pairs are
called objects. Keys can be any string and
values may be either primitive or structured
types.

In XML, elements have a map of key/
value pairs among their properties. This
map is called attributes. Keys (i.e. attribute
names) are subject to lexical restrictions and
values cannot be structured types.

In JSON, ordered arrays are called arrays
and their members may be either primitive
or structured.

In XML, elements have an ordered array
of children nodes among their properties.
Their members can be elements, comments,
PIs or text nodes. XML text nodes are the
kind of nodes which is the more similar to
JSON's primitive types. However, adjacent
text nodes are concatenated (which of
course is not the case of adjacent primitive
values in a JSON array).

We are comparing on one side a data model composed of
maps, arrays and atomic types and on the other side a
data model composed of more complex objects,
themselves including maps and arrays.

Is that really a good idea to put on the same ground
basic building blocks and components made with these
building blocks?

Shouldn't we rather consider XML nodes as assembly
of JSON maps and arrays?

What's happening if we try to serialize the XML data
model in JSON?

The XDM defines an awful lot of properties and we
will focus on the main ones.

As a first approximation, an XML element can be
considered as a map with:
• A name
• A map of attributes (which must be atomic types)
• An array of children (which can be either strings (text

nodes) or elements.

Page 158 of 162

JSON and XML: a new perspective

http://%CF%87%CE%AF%CE%BC%CE%B1%CE%B9%CF%81%CE%B1%CE%BB.com/
http://%CF%87%CE%AF%CE%BC%CE%B1%CE%B9%CF%81%CE%B1%CE%BB.com/
http://www.w3.org/TR/xslt-30/#json-to-xml-mapping
http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf#d6e3546
http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf#d6e3546
http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf#d6e3546

Serialized with these conventions, the XML document
describing the anvil can be seen as:

{
 "name": "anvil",
 "attributes": {"reference": "acme-5103"},
 "children": [
 {
 "name": "weight",
 "attributes": {"unit": "pound"},
 "children": ["9.5"]
 },
 {
 "name": "composition",
 "attributes": {},
 "children": ["best wrought iron"]
 },
 {
 "name": "price",
 "attributes": {"currency": "USD"},
 "children": [".15"]
 }
]
}

The difference that immediately strikes the eyes when
compared to the previous JSON definition of the anvil is
that it is more verbose and that's true but this is so by
design: this is no longer a JSON description of an anvil
but a JSON description of the XML document
describing an anvil.

This description is very close to the XDM and can be
used with mixed content:

<p>I can support

 mixed content!</p>

becomes:

{
 "name": "p",
 "attributes": {},
 "children": [
 "I can support ", {
 "name": "a",
 "attributes": {
 "href":
 "http://en.wikipedia.org/wiki/PCDATA"
 },
 "children": [{
 "name": "b",
 "attributes": {},
 "children": ["mixed"]
 },
 " content"
]
 },
 "!"
]
}

3. So what?

3.1. A good theory

This exercise clearly shows the relation between JSON
and XML:
• JSON is a generic format to describe data structures

made of maps, arrays and a few basic simple types.
• XML is a more specialized format to describe tree

composed of "nodes" which do carry their own
semantic and can be serialized in JSON.

This difference is the essence of the "fat" described by
Douglas Crockford in his famous "Fat-Free alternative to
XML" paper at XML 2006 and might have been widely
acknowledged by the XML community if presented in a
less inflamed fashion.

The questions raised when trying to convert our
XML and JSON samples such as:
• from XML to JSON: is the weight a property of the

anvil? can it occur more than once and be included in
an array?, ...

• from JSON to XML: should the composition be an
element or an attribute? , ...

are a sign that we are misusing XML and using its nodes
as generic data structure components which they are not
meant to be.

3.2. Navigation

Of course, acknowledging this fundamental difference
between JSON and XML doesn't solve the issue of
converting XML to JSON (and vice versa) and does not
even diminish the need for such conversions.

That doesn't make this serialization a purely
theoretical exercise deprived of any practical use and
XML documents and serialized XML documents are in
fact quite handy to manipulate in JavaScript!

3.2.1. In plain JavaScript

Navigating amongst attributes is of course really easy:

anvil.attributes["reference"]

or when the attribute name is a valid JavaScript name:

anvil.attributes.reference

Page 159 of 162

JSON and XML: a new perspective

Navigating amongst children elements may seem more
challenging but would arguably not be more difficult
than doing so using the DOM... However it becomes
much easier if we define a simple function such as:

elt=function(name) {
 return function(o) {
 return o.name==name
 }
}

and use it to filter children:

anvil.children.filter(
 elt('price')
)[0].attributes.currency

This can be still easier if we append a new method to
JavaScript objects:

Object.prototype.elt = function(name) {
 return this.filter(elt(name))
}

and just use it to access children elements:

anvil.children.elt('price')[0].attributes.currency

3.2.2. With a JSON query library

It would be easy to add other methods to facilitate this
navigation but we can also rely on existing libraries such
as json:select() which inspiration is to be the jQuery of
JSON objects.

Let's start by defining a shorter name for
json:select()'s match() method:

js=JSONSelect.match

If we feel lucky we can access the anvil's reference like
this:

js('.reference', anvil)

This would work with our simple example but like
jQuery, json:select() does deep searches and this relies on
the fact that there is no reference attribute anywhere else
than for the anvil root element. A safer method is to
restrict our expression to match only the root:

js(':root > .attributes > .reference', anvil)

Again, this would work with our simple example because
the root element is the anvil. If we want to find the
references of any anvil element that might be anywhere
in the JSON object we should be less restrictive and
write:

js(':has(.name:val("anvil")) > .attributes > .reference', anvil)

which can be (slightly) shortened into the almost
equivalent:

js(
 '.name:val("anvil") ~ .attributes > .reference',
 anvil
).toString()

This is more verbose than the
anvil.attributes["reference"] that we've written in
plain JavaScript but that does more since it's performing
a deep search for any anvil. This is also quite generic and
the same pattern can be used to search for price's
currencies:

js(
 '.name:val("price") ~ .attributes > .currency',
 anvil
)

3.3. Other usages

The best indication that this kind of serialization may be
useful is that... it is not new and has already be
implemented for several kind of applications!

3.3.1. html2json

Developed in October 2011, html2json is very similar
the serialization used in this paper: the only differences
are in names (tag instead of name, attr instead of
attributes and child instead of children).

Unfortunately, its author hasn't documented its use
cases and we don't really know what his JavaScript
implementation has been used for.

3.3.2. JsonML

JsonML has its own website which is much more explicit
about its motivation and use cases:
JsonML (JSON Markup Language) is an application
of the JSON (JavaScript Object Notation) format. The
purpose of JsonML is to provide a compact format for
transporting XML-based markup as JSON which
allows it to be losslessly converted back to its original
form.

Native XML/XHTML doesn't sit well embedded
in JavaScript. When XHTML is stored in script it
must be properly encoded as an opaque string.
JsonML allows easy manipulation of the markup in
script before completely rehydrating back to the
original form.

--JsonML.org

Page 160 of 162

JSON and XML: a new perspective

http://jsonselect.org
https://github.com/Jxck/html2json
https://github.com/Jxck
http://www.jsonml.org/
http://json.org/
http://www.JsonML.org

The design choices behind JsonML seem to have been
drawn by this use case and bend the result toward
something which is concise and reasonably easy to read:
XML elements are represented by an array of a string
representing the element name, an optional map for its
attributes and an optional children elements which can
be either strings or arrays. With these conventions, the
serialization of the anvil is:

[
 "anvil",
 {"reference": "acme-5103"},
 [
 "weight",
 {"unit": "pound"},
 "9.5"
],
 [
 "composition",
 "best wrought iron"
],
 [
 "price",
 {"currency": "USD"},
 ".15"
],
]

While this is more concise than the serializations that
we've seen so far, I find it much less natural to convert
elements into arrays than into maps.

Beside this first use case as a serialization to transport
XML as JSON, JsonML.org mentions browser side
templating (JSBT) as a second use case.

3.3.3. fastFrag

Client-side templating is the main use case of fastFrag
which proposes its own serialization. This serialization is
basically similar to what I propose in this paper with
some added features to make it easier to use to create
HTML fragments:
• The name is optional. Called type it defaults to "div".
• The most common attributes (id, css, ...) have been

"promoted" to appear directly as keys of top level
elements objects instead of being placed in the
attributes map.

• The "attributes" key can also be spelled "attrs" or
"attr" for brevity.

• A "text" key has been added which is a shortcut to
create text only elements.

If we forget these features and the fact that FastFrag is
not meant to be used with arbitrary XML we get a
serialization which is very similar to what we've already
seen:

{
 "attrs": {"reference": "acme-5103"},
 "content": [
 {
 "attrs": {"unit": "pound"},
 "content": {"text": "9.5"},
 "type": "weight"
 },
 {
 "content": {"text": "best wrought iron"},
 "type": "composition"
 },
 {
 "attrs": {"currency": "USD"},
 "content": {"text": ".15"},
 "type": "price"
 }
],
 "type": "anvil"
}

4. Conclusion

JavaScript has become the assembly language for
programming languages on the web.

I have no doubt that JSON should be the assembly
language for any data model -including XML- on the
web and we have seen how easy it is to use JSON as a
serialization format for a subset of the XDM.

This presentation is too short to show how this subset
could be extended to support other XDM item types and
properties such as namespaces, comments, processing
instructions but I have no doubt that this could be done
in a number of different ways without altering too much
the simplicity of the serialization.

Beside the ability to round-trip XML to JSON
conversions defining such a serialization would be a good
way to document the XML data model and could be a
basis for building XML libraries on top of existing JSON
libraries.

Understanding that JSON is lower level than XML
also helps to understand why round-tripping XML to
JSON is simple while round-tripping JSON to XML is
harder and verbose or application dependent.

The simplistic representation shown in this paper is
merely a first step and defining a standard representation
of the XDM in JSON would help to acknowledge this
relationship and to implement tools to facilitate a
peaceful coexistence of both formats.

Page 161 of 162

JSON and XML: a new perspective

http://www.jsonml.org/bst/
https://github.com/gregory80/fastFrag

Charles Foster

XML London 2014
Conference Proceedings

Published by
XML London

103 High Street
Evesham

WR11 4DN
UK

This document was created by transforming original DocBook XML sources
into an XHTML document which was subsequently rendered into a PDF by

Antenna House Formatter.

1st edition

London 2014

ISBN 978-0-9926471-1-7

http://antennahouse.com

	XML London 2014
	Table of Contents
	General Information
	Sponsors
	Preface
	Benchmarking XSLT Performance
	1. Objectives and Motivation
	2. Previous work
	3. The design of the XT-Speedo benchmark
	4. Test Data
	5. The Problem of Bias
	6. Selected Results
	6.1. Ranking of Java Processors
	6.2. Comparing Saxon on Java with Saxon on .NET
	6.3. Comparing Saxon with XMLPrime
	6.4. Comparing Saxon 9.5 with Saxon 9.6
	6.5. Comparing Saxon/C with libxslt

	7. Conclusions

	Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream
	1. Disclaimer
	2. To stream or not to stream?
	2.1. Size of the input data tree
	2.2. Intrinsically streamed input data tree
	2.3. Streaming output
	2.4. Streaming unparsed text

	3. XSLT 3.0 streaming terminology
	3.1. Guaranteed streamability
	3.2. How to find out whether your processor supports streamability
	3.3. How to initiate streaming

	4. Brief overview of the Ten Rules of Thumb of streaming
	4.1. Rule 1: each template rule can have a maximum of one downward expression
	4.1.1. What are downward expressions?

	4.2. Rule 2: each individual construct can have a maximum of one downward
 expression
	4.3. Rule 3: Use motionless expressions where possible
	4.4. Rule 4: You can move up the tree, but never down again
	4.5. Rule 5: You cannot store a reference to a node
	4.6. Rule 6: Break out of streaming abundantly
	4.7. Rule 7: Understand streamable patterns
	4.8. Rule 8: Use atomic types to ground the result of templates
	4.9. Rule 9: Use motionless filters
	4.10. Rule 10: Master xsl:fork

	5. Streaming Design Patterns
	5.1. Filter expression depends on children
	5.1.1. Intent
	5.1.2. Level
	5.1.3. Motivation
	5.1.4. Applicability
	Applies to
	Does not apply to

	5.1.5. Consequences
	5.1.6. Implementation
	Example

	5.2. Patterns with non-motionless predicates
	5.2.1. Intent
	5.2.2. Level
	5.2.3. Motivation
	5.2.4. Applicability
	Applies to
	Does not apply to

	5.2.5. Consequences
	5.2.6. Implementation
	Example

	5.3. Instructions with multiple downward selects
	5.3.1. Intent
	5.3.2. Level
	5.3.3. Motivation
	5.3.4. Applicability
	Applies to
	Does not apply to

	5.3.5. Consequences
	5.3.6. Implementation
	Example

	5.4. Instructions with multiple downward selects out of
 document order
	5.4.1. Intent
	5.4.2. Level
	5.4.3. Motivation
	5.4.4. Applicability
	Applies to
	Does not apply to

	5.4.5. Consequences
	5.4.6. Implementation
	Example

	5.5. Expressions with the preceding- or following-sibling
 axes
	5.5.1. Intent
	5.5.2. Level
	5.5.3. Motivation
	5.5.4. Applicability
	Applies to
	Does not apply to

	5.5.5. Consequences
	5.5.6. Implementation
	Example

	5.6. Expressions using the preceding axis
	5.6.1. Intent
	5.6.2. Level
	5.6.3. Motivation
	5.6.4. Applicability
	Applies to
	Does not apply to

	5.6.5. Consequences
	5.6.6. Implementation
	Example

	5.7. Stylesheets requiring look-around
	5.7.1. Intent
	5.7.2. Level
	5.7.3. Motivation
	5.7.4. Applicability
	Applies to
	Does not apply to

	5.7.5. Consequences
	5.7.6. Implementation
	Example

	5.8. Dependencies on xsl:call-template
	5.8.1. Intent
	5.8.2. Level
	5.8.3. Motivation
	5.8.4. Applicability
	Applies to
	Does not apply to

	5.8.5. Consequences
	5.8.6. Implementation
	Example

	5.9. Using streamable stylesheet functions
	5.9.1. Intent
	5.9.2. Level
	5.9.3. Motivation
	5.9.4. Applicability
	Applies to
	Does not apply to

	5.9.5. Consequences
	5.9.6. Implementation
	Example

	5.10. Sorting
	5.10.1. Intent
	5.10.2. Level
	5.10.3. Motivation
	5.10.4. Applicability
	Applies to
	Does not apply to

	5.10.5. Consequences
	5.10.6. Implementation
	Example

	6. Streamable packages
	7. Conclusion
	Bibliography

	From monolithic XML for print/web to lean XML for data: realising linked data for
 dictionaries
	1. Introduction
	2. Data Modelling
	3. Data Conversion
	4. Results and Discussion
	5. Next Steps
	6. Conclusion
	Bibliography

	XML Processing in Scala
	1. Introduction
	2. Five minutes to understanding Scala
	2.1. Values and functions
	2.2. Strings and string interpolation
	2.3. Named parameters
	2.4. For-comprehensions

	3. Scala's strong native XML support
	3.1. Basic Inline XML
	3.2. Reading
	3.2.1. Look ups and XPath alternatives

	3.3. Scala XML namespace handling
	3.3.1. Scala XML is unidirectional and immutable
	3.3.2. XQS
	3.3.3. Using XPath from Scala
	3.3.4. XML Transformations
	Alternatively: calling XSLT from Scala

	3.3.5. XML Pull Parsing from Scala
	3.3.6. Calling XQuery from Scala

	4. Extensibility
	4.1. Further Extensibility: XQuery-like constructs

	5. Performance vs XQuery
	5.1. Assumptions
	5.2. Methodology
	5.3. Benchmarks
	5.4. Conclusions

	6. Practicality
	6.1. Enterprise usage
	6.2. ScalaTest
	6.3. Other integration features

	7. Conclusions
	Bibliography
	A. The showNamespace(-s) methods
	B. Extensions for NodeSeq

	XML Authoring On Mobile Devices
	1. Introduction
	2. Technology choices
	3. Web application architecture
	4. Samples
	5. Conclusions

	Engineering a XML-based Content Hub for Enterprise Publishing
	1. Introduction
	2. Requirements
	2.1. Functional Requirements
	2.2. Non-Functional Requirements

	3. Conceptual Architecture
	3.1. Core Components

	4. Implementation Considerations
	5. Further Technical Challenges
	6. Summary and Outlook
	References

	A Visual Comparison Approach to Automated Regression Testing
	1. Introduction
	2. Automated Visual Regression Testing
	2.1. A Visual Method
	2.2. Handling Large Document Comparisons
	2.3. High Speed Performance
	2.4. Exclude Margins from Testing
	2.5. Generates Usable Reports

	3. Regression Testing New Releases of AH Formatter
	3.1. The User Interface

	4. Other Possible Use Cases
	5. Conclusion
	Bibliography

	Live XML Data
	1. Introduction
	2. Live Data
	3. XForms
	4. An Example
	5. URL Structure
	6. Zoom
	7. Location,
 location, location
	8. Mouse
	9. Capturing a move
	10. Dragging the map
	11. Bells. Whistles
	12. Implementation
	13. Conclusion
	References
	A. Credit

	Schematron - More useful than you’d thought
	1. Introduction
	2. Where else to use a rules-based reporting language?
	3. A sketch of how we might use Schematron to map XML to RDF
	4. XML Scissor-lift: An XML to RDF Mapping Language
	4.1. A Basic Mapping Description
	4.2. Compiling and Executing a Mapping
	4.3. Advanced Mapping Features
	4.3.1. Constructing URIs - URI Templates
	4.3.2. Reuse - Abstract Patterns and Rules
	4.3.3. Hierarchical Structure and Blank Nodes
	4.3.4. Type Discovery - XML Schema Reflection
	4.3.5. Data Integrity Checking - Assertions

	5. How Schematron was Extended
	6. Other Mapping Options
	6.1. Semantic Annotations for WSDL and XML Schema (SAWSDL)

	7. Conclusions
	8. Further Work
	References

	Linked Data in a .NET World
	1. Introduction
	2. LINQ to SPARQL
	2.1. Binding a Static Model to RDF
	2.2. Data Binding Annotations
	2.3. Data-Binding and Updates
	2.4. Type Mapping and Type Conversion
	2.5. Optimistic Locking
	2.6. Mapping LINQ to SPARQL
	2.6.1. LINQ to SPARQL by Example
	Sample Data Model
	Simple Selection and Traversal
	Selecting Property Values
	Filters
	LINQ Method Calls
	Anonymous Objects

	2.7. Eager Loading Complete Entities
	Note
	2.7.1. A Naive Approach
	2.7.2. Sorting
	2.7.3. Paging
	2.7.4. Distinct Results

	3. OData/SPARQL
	3.1. The Approach
	3.2. OData Annotations
	3.2.1. Identity Prefix Annotation
	3.2.2. Entity Type Mapping Annotation
	3.2.3. Literal Property Type Annotation
	3.2.4. Association Property Type Annotations
	3.2.5. A Larger Example

	3.3. Request Transforms
	3.4. Update
	3.5. Future work

	Frameless for XML - The Reactive Revolution
	1. Introduction
	2. Why we created Frameless
	3. Example: reactive filtering using full text search
	4. Example: reactive grouping and sorting for interactive infographics
	5. Using Frameless in addition to NoSQL databases
	6. The road ahead
	7. Summary

	Product Usage Schemas
	1. Background
	2. Rationale and First Steps
	2.1. Using AtomPub
	Note
	2.2. The Usage Event Format
	2.3. Validating Events

	3. The Product Schema
	3.1. The Product Schema Format
	3.2. Attributes
	3.3. Assertions
	3.4. Versioning

	4. Future Work
	5. Conclusion
	Bibliography

	An XML-based Approach for Data Preprocessing of Multi-Label Classification Problems
	1. Introduction
	2. Dataset Formats: ARFF versus XML
	3. Experiment
	4. Conclusions
	Bibliography

	Using Abstract Content Model and Wikis to link Semantic Web, XML, HTML, JSON and CSV
	1. Introduction
	2. Background
	3. Technology Choices
	4. Technical Description
	5. Content Modeling and everyday use
	5.1. Modeling in XSD and importing
	5.2. Modeling in the wiki
	5.3. Exporting to other formats
	5.4. Generating apps directly from the model

	6. Conclusion
	Bibliography

	JSON and XML: a new perspective
	1. State of the art
	Note
	Note

	2. A new perspective
	3. So what?
	3.1. A good theory
	3.2. Navigation
	3.2.1. In plain JavaScript
	3.2.2. With a JSON query library

	3.3. Other usages
	3.3.1. html2json
	3.3.2. JsonML
	3.3.3. fastFrag

	4. Conclusion

