
XML LONDON 2017
CONFERENCE PROCEEDINGS

UNIVERSITY COLLEGE LONDON,
LONDON, UNITED KINGDOM

JUNE 10–11, 2017

XML London 2017 – Conference Proceedings
Published by XML London
Copyright © 2017 Charles Foster

ISBN 978-0-9926471-4-8

Table of Contents
General Information. 5

Sponsors. 6

Preface. 7

Distributing XSLT Processing between Client and Server - O'Neil Delpratt and Debbie Lockett. 8

Location trees enable XSD based tool development - Hans-Jürgen Rennau. 20

An Architecture for Unified Access to the Internet of Things - Jack Jansen and Steven Pemberton. 38

Migrating journals content using Ant - Mark Dunn and Shani Chachamu. 43

Improving validation of structured text - Jirka Kosek. 56

XSpec v0.5.0 - Sandro Cirulli. 68

Bridging the gap between knowledge modelling and technical documentation - Bert Willems. 74

DataDock: Using GitHub to Publish Linked Open Data - Khalil Ahmed. 81

Urban Legend or Best Practice: Teaching XSLT in The Age of Stack Overflow - Nic Gibson. 89

Intuitive web-
based XML-editor

Xeditor allows you to intuitively

create complex and structured

XML documents without any

technical knowledge using a

configurable online editor simi-

lar to MSWord with real-time

validation.

www.xeditor.com

General Information
Date

Saturday, June 10th, 2017
Sunday, June 11th, 2017

Location
University College London, London – Roberts Engineering Building, Torrington Place, London, WC1E 7JE

Organising Committee
Charles Foster, Socionics Limited
Dr. Stephen Foster, Socionics Limited
Geert Bormans, C-Moria
Ari Nordström, Creative Words
Andrew Sales, Andrew Sales Digital Publishing Limited
Tomos Hillman, eXpertML Limited

Programme Committee
Abel Braaksma, AbraSoft
Adam Retter, Evolved Binary
Andrew Sales, Andrew Sales Digital Publishing Limited
Ari Nordström, Creative Words
Charles Foster (chair)
Eric van der Vlist, Dyomedea
Geert Bormans, C-Moria
Norman Walsh, MarkLogic
Philip Fennell, MarkLogic

Produced By
XML London (http://xmllondon.com)

Sponsors

Xeditor - http://www.xeditor.com

Intuitive, user-friendly interface similar to MSWord

With Xeditor, the web-based XML-Editor, authors can easily create and edit structured documents and files in
XML data format, providing media-neutral data storage. The user-friendly frontend leads authors intuitively
through the defined document structure (XSD/DTD). The Editor is web-based and operates completely in the
browser.

Saxonica - http://www.saxonica.com

Developers of the Saxon processor for XSLT, XQuery, and XML Schema, including the only XSLT 3.0
conformant toolset.

Saxonica was founded by Dr Michael Kay in 2004. Saxonica now have more than 500 clients world-wide.

Evolved Binary - http://www.evolvedbinary.com

Since 2014, Evolved Binary has been engaged in Research and Development to create the next generation
document database platform, Project "Granite". Granite was initially envisaged as an Enterprise scalable
replacement for eXist-db while staying true to Open Source and it is now shaping up to be much more!
Although still operating predominantly in "stealth mode", Evolved Binary’s customers are already trialling
Granite. A public beta is scheduled for Q3 2017.

Evolved Binary was founded by Adam Retter in 2014. Evolved Binary focuses on R&D in the areas of
Information Storage, Concurrent Processing, and Transactions.

http://www.xeditor.com
http://www.saxonica.com
http://www.evolvedbinary.com

Preface
This publication contains the papers presented during the XML London 2017 conference.

This is the fifth international XML conference to be held in London for XML Developers, Semantic Web and Linked
Data enthusiasts as well as Managers, Decision Makers and Markup Enthusiasts. It is a platform for attendees to
discuss and share their experiences with other W3C technology users, while discovering the latest innovations and
finding out what others are doing in the industry.

This Conference also hosts an Expert Panel Session where invited Industry Leaders will share their thoughts around
challenges and successes found in electronic publishing projects.

The conference is taking place on the 10th and 11th June 2017 at the Faculty of Engineering Sciences (Roberts
Building) which is part of University College London (UCL). The conference dinner and the XML London 2017
DemoJam is being held in the Jeremy Bentham Room also situated at UCL, London.

— Charles Foster
Chairman, XML London

Distributing XSLT Processing between Client
and Server

O'Neil Delpratt

Saxonica
<oneil@saxonica.com>

Debbie Lockett

Saxonica
<debbie@saxonica.com>

Abstract

In this paper we present work on improving an existing in-
house License Tool application. The current tool is a server-
side web application, using XForms in the front end. The
tool generates licenses for the Saxon commercial products
using server-side XSLT processing. Our main focus is to
move parts of the tool's architecture client-side, by using
"interactive" XSLT 3.0 with Saxon-JS. A beneficial outcome
of this redesign is that we have produced a truly XML end-
to-end application.

Keywords: XSLT, Client, Server

1. Introduction

For a long time now browsers have only supported XSLT
1.0, whereas on the server-side there are a number of
implementations for XSLT 2.0 and 3.0 available. For
applications using XSLT processing, the client/server
distribution of this processsing is governed by the
implementations available in these environments. As a
result, many applications, including our in-house
"License Tool" web application, rely heavily on server-
side processing for XSLT 2.0/3.0 components.

The current License Tool web application is built
using the Servlex framework [1] [2], and principally
consists of a number of XSLT stylesheets. The HTML
front end uses XForms, and the form submission creates
HTTP requests which are handled by Servlex. We use
XSLTForms [3] to handle the form processing in the
browser, an implementation of XForms in XSLT 1.0 and
JavaScript.

The main motivation for this project is to improve
our License Tool webapp by moving parts of the server-

side XSLT processing into the client-side. This can only
be made possible by a client-side implementation of
XSLT 2.0/3.0. We would like to see which components
of the application's architecture can now be done using
client-side interactive XSLT.

Interactive XSLT is a set of extension elements,
functions and modes, to allow rich interactive client-side
applications to be written directly in XSLT, without the
need to write any JavaScript. (For information on the
beginnings of interactive XSLT, see [4], and for the
current list of ixsl extensions available see [5].)
Stylesheets can contain event handling rules to respond
to user input (such as clicking on buttons, filling in form
fields, or hovering the mouse), where the result may be to
read additional data and modify the content of the
HTML page. The suggested idea for building such
interactive XSLT applications is to use one skeleton
HTML page, and dynamically generate page content
using XSLT. Event handling template rules are those
which match on user interaction events for elements in
the HTML DOM. For instance, the template rule

<xsl:template match="button[id='submit']"

 mode="ixsl:onclick"/>

handles a click event on a specific HTML button
element. When the corresponding event occurs, this
causes a new transformation to take place, with this as
the initial template, and the match element (in the
HTML DOM) as the initial context item. The content
of the template defines the action. For example, a
fragment of HTML can be generated and inserted into a
specific target element in the HTML page using a call
such as

<xsl:result-document select="div[id='target']"

 mode="ixsl:replace-content"/>

doi:10.14337/XMLLondon17.Lockett01Page 8 of 102

mailto:oneil@saxonica.com
mailto:debbie@saxonica.com

In order to use client-side interactive XSLT 3.0 within
our License Tool, we use Saxon-JS [6] - a run-time XSLT
3.0 processor written in pure JavaScript, which runs in
the browser and implements interactive XSLT. We still
maintain some server-side XSLT processing, as required.
But by using XSLT 3.0 [7], with the interactive
extensions, we are able to do much more of the tool's
processing client-side, which means that we can achieve
our objective. The redesign means that the tool is now
XML end-to-end, without any environment specific
glue, which minimises the need to translate between
objects.

One benefit of moving the processing client-side is
that more of it is brought directly under our control, so
we should then be in a better position to resolve and in
places avoid incompatibilities between the technologies
and environments. For instance, in the current tool, we
are aware of some data encoding issues for non-ASCII
characters [8]. In the current License Tool the data is sent
by XSLTForms encoded in a certain format, but this
encoding is not what Servlex expects. The problem is
made more complicated by the multiple layers of
technologies in use, and of course the internal
XSLTForms and Servlex processing is out of our control.

The reluctance of browser vendors to upgrade XSLT
support has meant that tools such as XSLTForms are
stuck with using XSLT 1.0. Many mobile browsers do
not even support XSLT 1.0. By using Saxon-JS in the
browser, we are freed from this restriction, and so can
replace our use of XSLTForms in the License Tool. We
have worked towards a new implementation of XForms
using XSLT 3.0 and interactive XSLT, and produced a
prototype partial implementation.

Along with making improvements to the tool, we
were also interested to see how the experience gained
from this real world example may initiate further
developments for Saxon-JS itself. In particular, one major
challenge is how to handle the communications between

client and server using HTTP, within our interactive
XSLT framework.

In the following sections we will introduce what the
application actually does, how it originally worked, and
the changes we have made. We will focus on how we
have used XSLT 3.0 and interactive XSLT in the
redesign, the benefits of this change, and how it has
improved the application.

2. License Tool application: what it
does, and how it currently works

The License Tool processes license orders (i.e. purchase or
registration infomation) for the Saxon commercial
products, and then generates and issues license files
(which contain an encrypted key used to authorize the
commercial features of the product) to the customer. The
License Tool also maintains a history of orders and
licenses (as a set of XML log files) and provides simple
reporting functions based on this history.

The application is built using the Servlex framework.
Servlex is a container for EXPath Web Applications [9],
using the EXPath Packaging System [10], whose
functionality comes from XML technologies. Servlex
handles all the networking and server-side XML
processing, and connects the XML components to the
HTTP layer.

For our current tool, this means using Servlex on the
server-side to parse the license order and convert to a
custom XML format, process the XML instance data
received from the XForms form, and send feedback to
the user in the browser. This is all driven by XSLT
stylesheets on the server. On the client-side, we use
XSLTForms to handle the XForms processing. An
overview of the architecture of the License Tool is shown
in [Figure 1]. This architecture diagram shows the main
components, and technologies used, client and server
side.

Page 9 of 102

Distributing XSLT Processing between Client and Server

Figure 1. Old License Tool architecture diagram

In more detail, the tool works as follows:

1. When purchasing or registering for a license, a
customer completes a web form to provide certain
order information: contact details, the name of the
purchased product, etc.

2. This license order information is sent to us by email,
as structured text (it would be nice if it were XML or
JSON, but this is the real world). See [Figure 2] and
[Figure 3] for examples.

3. We input the license order text from the email into
the License Tool via an XForms form in the "Main
Form" HTML page of the webapp, and use the form
submit to send this data to the server.

4. All communication with the server-side of the License
Tool is done using HTTP requests, which are picked
up within the Servlex webapp by an XSLT controller
stylesheet which then processes the license order. The
first steps are to parse the text and convert it into a
custom XML format, which is then validated. See
[Figure 4] for an example of the order XML.

5. The application then returns the license order to the
user as the XML instance data of another XForms
form, the "Edit Form". At this point the order may be
manually edited. (This page can also be used to edit
existing licenses before reissuing, for instance for
upgrades and renewals.)

6. Next, when the "Edit Form" is submitted, the
customer's license file is created. This processing is
done using reflexive extension functions written in
Java within the XSLT on the server.

7. The application then reports to its user the outcome
of generating the license, for final confirmation. If
there has been a problem with the license generation,
there is again the option to manually modify the
license order. Otherwise, when the user confims the
order, the license is issued (again using a server-side
Java extension function).

8. The data model of the application is XML driven,
with the exception of the email text for a license order
used as the initial input.

Figure 2. Example license order text for an evaluation
license.

First Name: Tom

Last Name: Bloggs

Company: Bloggs XML

Country: United Kingdom

Email Address: tom@bloggs.com

Phone:

Agree to Terms: checked

Page 10 of 102

Distributing XSLT Processing between Client and Server

Figure 3. Example license order text for a purchased
license.

Order #9999 has just been placed

Email: tom@bloggs.com

Comments: ZZZ-9999

==== Items ====

item_name: Saxon-EE (Enterprise Edition),

 initial license (ref: EE001)

item_ID: EE001

item_options:

item_quantity: 1

item_price: £360.00

item_name: Saxon-EE (Enterprise Edition),

 additional licenses (ref: EE002)

item_ID: EE002

item_options:

item_quantity: 2

item_price: £180.00

==== Order Totals ====

Items: £720.00

Shipping: £0.00

Tax: £0.00

TOTAL: £720.00

-- Billing address --

company: Bloggs XML

billing_name: Tom Bloggs

billing_street: 123 Fake St

billing_city: Somewhere

billing_state: Nowhere

billing_postalCode: A1 1XY

billing_countryName: United Kingdom

billing_phone:

Figure 4. Example of an order in XML format (the
result of converting the example license order text in
[Figure 3])

<Order>

 <OrderRef>#9999</OrderRef>

 <DatePlaced>2017-05-05</DatePlaced>

 <DateOfExpiry>never</DateOfExpiry>

 <First>Tom</First>

 <Last>Bloggs</Last>

 <Company>Bloggs XML</Company>

 <Address1>123 Fake St</Address1>

 <Address2/>

 <Town>Somewhere</Town>

 <County>Nowhere</County>

 <Postcode>A1 1XY</Postcode>

 <Country>United Kingdom</Country>

 <Email>tom@bloggs.com</Email>

 <Phone/>

 <UpgradeDays>366</UpgradeDays>

 <MaintenanceDays>366</MaintenanceDays>

 <Online>true</Online>

 <OrderPart>

 <ProductCode>EE001</ProductCode>

 <Edition>EE</Edition>

 <Platform>J</Platform>

 <Features>TQV</Features>

 <Quantity>1</Quantity>

 <Value>360</Value>

 <Domain/>

 </OrderPart>

 <OrderPart>

 <ProductCode>EE002</ProductCode>

 <Edition>EE</Edition>

 <Platform>J</Platform>

 <Features>TQV</Features>

 <Quantity>2</Quantity>

 <Value>360</Value>

 <Domain/>

 </OrderPart>

</Order>

3. Application redesign

The main aim of this project is to move more
components of the License Tool's processing architecture
client-side, by using interactive XSLT 3.0. We have
achieved this by building a new interactive front end for
our tool, written in interactive XSLT 3.0. This stylesheet
is compiled using Saxon-EE to produce a stylesheet
export file (SEF) which the Saxon-JS run-time executes
in the browser.

Page 11 of 102

Distributing XSLT Processing between Client and Server

Figure 5. New License Tool architecture diagram

This redesign to the application means that the
client-side processing can now handle the initial parsing
of the license order text, and convert to the order XML
format; before the need for any server-side processing.
We have also produced a new partial prototype
implementation for XForms using interactive XSLT 3.0,
as an improvement to using XSLTForms, which is
included in the front end process. An overview of how
the main processing components and technologies are
now distributed, client and server side, is shown in the
architecture diagram for the new License Tool in
[Figure 5].
The redesign has also introduced some changes to the
tool's processing pipeline. The flow diagram in [Figure 6]
illustrates the design for the new tool. It shows the steps
of the process - user interactions with the application, the
processing actions client and server side - and the flow
between all of these steps. As can be seen, we have indeed
moved much of the processing client-side: parsing license
order text; converting to XML; validating; generating
and rendering the XForms "Edit Form"; and handling
the submit button click event. We currently still rely on
server-side processing for some final stage components of
the pipeline - namely generating the license (which
includes the encrypted key), issuing it via email, and
storing the license order.
In the following sections, we will describe in more detail
the three main areas of development in the License Tool's
redesign:

1. Client-side XSLT processing, to replace the use of Java
extension functions.

2. A prototype for a new XForms implementation using
XSLT 3.0 and interactive XSLT, to run client-side.

3. Handling HTTP communication between client and
server.

4. Client-side XSLT processing

There is great potential to simplify the tool's architecture
by using XML end-to-end. Throughout the pipeline, the
main object we are dealing with is an "order" - which
contains information about the customer, the products
ordered, the date of the order, etc. Ideally we would be
handling this order in our custom XML format
throughout the processing pipeline. So the order
information is captured directly into XML format, which
can be modified, passed between client and server, and
stored server-side, without the need to be converted to
any other different formats along the way.

The original legacy version of the License Tool was a
Java application. The current tool makes much use of
Java extension functions in the webapp's XSLT
stylesheets in order to reuse the original code. For
instance, the process of parsing the license order text and
converting it into XML format is done by a Java
extension function. So there is a Java class with methods
to parse the input license order text, and produce a Java
Order object. This Order object is then converted into
XML using Java methods. In fact, many such Java
components of the webapp could be rewritten in XSLT,

Page 12 of 102

Distributing XSLT Processing between Client and Server

Figure 6. New License Tool flow diagram

and this is clearly more straightforward, since we then
avoid converting between XML and Java objects and
back. Making the change to do such processing directly
in XSLT could have been done already within the current
server-side webapp, but there was perhaps little incentive
- "if it ain't broke, don't fix it". However, now we are
looking to bring the processing client-side, it does make
sense to write XSLT solutions to replace the Java code. As
well as being able to move such components to the
client-side, the tool's architecture is generally simplified
by replacing the Java code.

So, in the new tool, the first step of parsing the
license order text, and converting to the custom order
XML format, is done directly in XSLT. In fact, rather
than parsing the structured text and creating the order
XML directly, as an intermediate stage it is convenient to
use a representation of the order as an XPath 3.0 map
item. Having split the input license order text by line, if a
line looks like an order category/value pair, then it is
added to the order map as a key/value pair. This order

map is then used to add text content to an order XML
skeleton. For example,

<First>

 <xsl:value-of select="$orderMap?first"/>

</First>

There may be other stages where it is more convenient to
use the XPath map representation for a license order,
rather than the XML format. It actually makes a lot of
sense to handle the order as an XPath map item, which is
easier to modify, and use XSLT functions to convert
these to the custom XML format and back. However
currently we generally stick to the order XML format.

There may still be times when we need to serialize to
a string, and reparse to XML. Infact also, in the new
tool, at certain stages we convert to JSON and back, as
well as to XPath map and back. But at least these can all
now be handled directly within XSLT 3.0, and there is
no need to use other objects outside of the XDM model.

Page 13 of 102

Distributing XSLT Processing between Client and Server

5. XForms implementation in
interactive XSLT 3.0

XSLTForms is based on XSLT 1.0 to compile XForms to
(X)HTML and JavaScript in the browser. As previously
discussed, support for XSLT in browsers is limited to
XSLT 1.0, and vendors are not inclined to move this
forward. Saxon-JS now provides us with XSLT 3.0
processing in the browser, and so we can write a new
XForms implementation using XSLT 3.0 and interactive
XSLT, to replace the use of XSLTForms. We now
describe our proof-of-concept XForms implementation
exploring the possibilities in (interactive) XSLT 3.0.

The XForms model, instance data and form controls
which provide the user interactions are written as XML
in accordance with the XForms specification. The
XForms processor is entirely written using interactive
XSLT 3.0 using the XSLTForms implementation as a
starting point. In the main entry template rule we use
xsl:params to supply the XForms form (as an XML
document), and optionally corresponding XML instance
data, to the stylesheet. The main process of the
implementation stylesheet is to convert the XForms form
controls elements into equivalent (X)HTML form
controls elements (inputs, drop-down lists, textareas,
etc.). At the same time the forms controls are populated
with any bound data from the XML instance data.

For the XForms controls we specify the binding
references to the XML instance data as an XPath
expression. For example

<xforms:input incremental="true"

 ref="Shipment/Order/DatePlaced" />

In the template rule which matches the xforms:input
control we get the string value from the ref attribute,
and use this XPath in two ways. Firstly, we call the XSLT
3.0 instruction <xsl:evaluate> to dynamically evaluate
the XPath expression, which obtains the relevant data
value from the XML instance data [10b]. This will be
used to populate the HTML form input element which
we convert to. Secondly, the XPath from the ref attribute
is copied into the id attribute of the input element, to
preserve the binding to the XML instance data (so that
upon form submission, we will be able to copy the
changes made within the HTML form back into the
instance data, as described later). The result in this
example is the following:

<input type="text" id="Shipment/Order/First/text()"

 value="Tom">

The conversion, and binding preservation, of other
XForms controls elements are achieved in a similar way.
The full code example is shown in [Figure 7].

Figure 7. Example template from the new XForms
implementation, for converting an xforms:input

element

<xsl:template match="xforms:input">

 <xsl:param name="instance1" as="node()?"

 select="()"/>

 <xsl:param name="bindings"

 as="map(xs:string, xs:QName)"

 select="map{}"/>

 <xsl:variable name="in-node" as="node()?">

 <xsl:evaluate xpath="@ref"

 context-item="$instance1/*:document"/>

 </xsl:variable>

 <input>

 <xsl:choose>

 <xsl:when test="

 map:get($bindings, generate-id($in-node)) =

 xs:QName('xs:date')">

 <xsl:attribute name="type"

 select="'date'"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:attribute name="type"

 select="'text'"/>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:attribute name="id" select="@ref"/>

 <xsl:attribute name="value">

 <xsl:if test="exists($instance1) and

 exists(@ref)">

 <xsl:evaluate xpath="@ref"

 context-item="$instance1/*:document"/>

 </xsl:if>

 </xsl:attribute>

 </input>

</xsl:template>

As well as the conversion from XForms form elements to
HTML form elements, the second main purpose of the
XForms implementation stylesheet is to handle form
interaction. We now describe the process of capturing
HTML form data, updating the data in the XForms
instance data, and making a form submit.

In order to ensure that the complete XML instance
data structure is sent when a user submits a form, we

Page 14 of 102

Distributing XSLT Processing between Client and Server

hold the XML instance data as a JSON object on the
page. We use JSON rather than XML for two reasons:

1. Browser inconsistencies and complications in
embedding XML islands within HTML, see section
2.4 of [11].

2. The XSLT representation of maps and arrays allows
for efficient modifications of immutable data
structures (typically map:put() does not require the
whole tree to be physically copied; the Saxon
implementation uses an immutable trie structure to
achieve this). It is much harder to achieve efficient
small local changes to an XML tree, because an XML
tree has node identity and parent pointers which a
JSON data structure typically doesn't. Making a small
change to an XML document typically involves
copying the whole tree. (See [12].)

The purpose of holding the instance data is to ensure that
its structure is maintained, so that when a user submits a
form, the complete XML representation of the instance
data is sent. When the form is submitted (e.g by HTTP
post request), the JSON instance data is converted back
to its XML format, and then updated with any changes
that have been made in the HTML form, before being
sent. (Note that it is not necessarily possible to rebuild
the XML instance data from the HTML form from
scratch - for example, using the XPath paths in the id
attributes - since the HTML form may of course not be a
direct mapping to the instance data. So we need to hold
the instance data structure somewhere in the page.) This
is achieved by a number of steps.

Firstly, the JSON object is created using the XPath
3.1 function xml-to-json() and added to the page in a
script element. The code below shows how this is done,
to add to the script element with id="{$xforms-

instance-id}" on the HTML page. Since there is no
direct mapping of the XML instance data format to
JSON we first have to convert the instance data to an
intermediate form - i.e. the XML representation of
JSON which is accepted by the xml-to-json() function
[13] - using our stylesheet function convert-xml-to-
intermediate().

<xsl:result-document href="{$xforms-instance-id}"

 method="ixsl:replace-content">

 <xsl:value-of select="xml-to-json(

 local:convert-xml-to-intermediate(

 $instance-doc

))"/>

</xsl:result-document>

Secondly, the submission process is implemented using
an interactive XSLT event handling template. The submit

control element has been converted to an HTML button
which includes generated data-* attributes which match
the XForms submission specific attributes, such as
action. The click event is handled by an event handling
template for a button with a data-action attribute. At
the current stage of development of the license tool, we
actually override this event handling template with one
which is specific to our tool (as will be described in
Section 6).

Within the event handling template rule we convert
the instance data held as JSON back to the XML format
(going via the intermediate XML format using the XPath
3.1 function json-to-xml()), and from this build new
updated XML instance data. As we build the new XML
instance data we update with any new data from the
form, by using the id attributes with the XPath paths.
This is achieved by using an XSLT apply-templates (with
mode="form-check") on the XML instance data. The
matching template rules keep track of the path to the
matched node within the XML instance data. The
template which matches text nodes then uses its path to
look within the HTML form for an element whose id
attribute value is this path. If such an element is found,
and a change has been made to the form data, then the
new XML instance data is updated correspondingly. See
below for the full template:

<xsl:template match="text()" mode="form-check">

 <xsl:param name="curPath" select="''"/>

 <xsl:variable name="updatedPath"

 select="concat($curPath,

 local-name(parent::node()),

 '/text()')"/>

 <xsl:variable name="control">

 <xsl:apply-templates

 select="ixsl:page()//*[@id=$updatedPath]"

 mode="get-control"/>

 </xsl:variable>

 <xsl:choose>

 <xsl:when test="$control=.">

 <xsl:copy-of select="."/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:copy-of select="$control"/>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

Some basic validation is included in our partial XForms
implementation (for instance, at the loading of the page,

Page 15 of 102

Distributing XSLT Processing between Client and Server

and the submission of the form). There is much more
that needs to be implemented for full validation.

As an exploration exercise, we have certainly shown
the capabilities of an XForms implementation in
interactive XSLT 3.0.

6. HTTP client-server
communication

Within the License Tool application, communications
between client and server are made using HTTP
methods. As well as when the application is initially
opened in a browser, the other main point of
communication (in both the old and new versions of the
tool), is when a user clicks the "submit order" button in
the "Edit Form" page. Clicking the button sends the
form data via HTTP to the server-side Servlex webapp,
and a response is then returned in the browser. However,
the details of how this works in the old and new versions
of the tool is quite different.

1. In the old version of the License Tool, the form is an
XForms form in an (X)HTML page. This (X)HTML
page is itself the response from a previous HTTP
request. The (X)HTML page calls the XSLTForms
implementation for XForms (which uses XSLT 1.0
and JavaScript in the browser) to render the form, and
handle form interaction - e.g. making changes to the
form entries, and the submit click. As defined in the
XForms form controls (using an xforms:submission
element), clicking the submit button sends the form
data (held in the xforms:instance, in the custom
XML order format) to the URI specified (in the
action attribute) using an HTTP post request. We
use the attribute method="xml-urlencoding-post", an
XSLTForms-specific method attribute option, which
means that the HTTP post request contains the form
data XML serialized as a string in a parameter called
"postdata".

The server-side webapp receives this request, and
the relevant XSLT component picks up the value of
the postdata parameter, parses it back into XML, and
processes it. If the processing is successful (i.e. the
order is allowed and a license is issued), then the
HTTP response sent back is a newly generated
HTML page (in fact, a new "Main Form" page)
which contains some "success" paragraph saying that
the license has been sent.

2. In the redesigned tool, the form is again an XForms
form in an (X)HTML page. This time, the content of
this (X)HTML page has been generated using an

interactive XSLT stylesheet processed by Saxon-JS in
JavaScript in the browser. The stylesheet includes
interactive XSLT to dynamically insert generated
fragments of HTML into the page. The XForms form
is one of these generated (X)HTML fragments. The
form was generated in XSLT using the prototype
implementation of XForms discussed in the previous
section (this implementation is an XSLT 3.0
stylesheet using interactive XSLT, which is imported
into the main client-side XSLT stylesheet).

Again, clicking the submit button sends the form
data using an HTTP post request. However, this time
the click event is handled by Saxon-JS. The interactive
XSLT stylesheet contains an event handling template
rule, which is called on click events for the submit
button. The template's action is to call a user-defined
JavaScript function, using the instruction

<xsl:sequence select="js:makeHTTPrequest(

 serialize($orderXML))"/>

This JavaScript function creates an asynchronous
HTTP request (using an XMLHttpRequest object), with
the desired URI destination, and with the data
(serialized order XML) sent as content of the request,
in plain text type (rather than as a parameter which
would force URL encoding). (It may seem preferable
to send the order XML in the request directly using
the content type "application/xml". However, more
work is required to find the best way to do this in
JavaScript.)

The redesigned server-side webapp receives this
request, picks up the body of the request, parses it
back into XML, and processes it. If the processing is
successful (i.e. the order is allowed and a license is
issued), then the HTTP response sent back is a piece
of XML which contains some "success" data. Having
used an asynchronous HTTP request, it is not
possible to return the response XML directly from the
makeHTTPrequest JavaScript function to the XSLT
stylesheet; but we may produce some output in the
HTML page in another way. As defined in the
makeHTTPrequest JavaScript function, when the
response XML is received by the client, it is supplied
to a new call on SaxonJS.transform as the source
XML, using a different initial template. This named
template generates a fragment of HTML, containing
a "success" paragraph, which is inserted into the
original HTML page.

On the surface, it may not be apparent that our new
version is actually an improvement. It certainly didn't
seem any less complicated to explain; previously we were
just using XForms, but now we're using XSLT and

Page 16 of 102

Distributing XSLT Processing between Client and Server

JavaScript as well as XForms. One main benefit is that we
now have much more freedom to define the HTTP
request ourselves. Previously, because we were using
XSLTForms, we were very constrained by having to send
the data with a post request using the "postdata"
parameter. Using this method, the content is restricted to
being URL encoded, and we have not controlled the
encoding used. This is one place where potentially our
encoding issue arises. Parameter values are URL encoded
in the browser before being sent, and we may not be
dealing with this correctly on the server-side. We have
now eliminated the issue at this point by controlling the
HTTP request, and specifically the content (and its
type), ourselves.

Actually, our new solution is only a step towards what
we would really like to do, so this is one reason why it is
still quite complicated. As discussed in the next
paragraph, we would like to produce a solution without
the need to use a locally defined JavaScript function, by
providing this functionality in interactive XSLT
implemented in Saxon-JS. Such a solution which only
uses XForms and interactive XSLT would clearly be
simpler.

Rather than using a locally defined JavaScript
function to create the HTTP request (as we have done
currently), it would be nice to implement this
functionality directly in Saxon-JS. For instance, we could
implement the HTTP Client Module [14], which
provides a specification for the http:send-request()

function. This function allows the details of the request
to be specified using a custom XML format: the
<http:request> element defined in the specification.
However, the function is defined to return the content of
the HTTP response. In order to return the HTTP
response, we would need to use a synchronous request;
but it is considered better practice and preferable to use
asynchronous requests. So we would rather be able to
define an extension which takes as input the request
information, as well as information specifying what to do
when the response is returned. Compare this proposal to
the existing ixsl:schedule-action instruction, which
makes an asynchronous call to a named template, either
after waiting a specified time, or after fetching a specified
document. We could add a new version which makes the
call to the named template once a response from a
specified HTTP request has returned. We could use the
HTTP Client Module XML format for defining an
HTTP request using a http:request element, though it
may be more natural (and convenient) to use an XPath
3.0 map. The details of how best to do this are still being
developed; but working on this License Tool project has

been very useful as an exercise to get started, learn about
the relevant technologies, and begin getting ideas to work
towards a solution.

7. Conclusion

In this paper we have presented a redesign of our License
Tool Web application which utilises interactive XSLT 3.0
to allow more of the processing to be done client-side,
with minimum server-side processing. The interactive
XSLT extensions broaden the benefits of using XSLT in
the browser. To use these technologies we use the XSLT
run-time engine Saxon-JS. This processor also provides
the capability to call global JavaScript functions, which
makes it possible to define HTTP requests and handle
the responses in the browser.

The main interface of the License Tool is XForms
driven. We have implemented a new XForms prototype
implementation using interactive XSLT 3.0 for use in the
browser. This proof-of-concept shows that it would be
possible to implement the full XForms specification
using interactive XSLT 3.0. We are no longer reliant on
the XSLTForms implementation, which was limiting
because it is an XSLT 1.0 implementation. Unfortunately
even XSLT 1.0 is not well supported by all browsers - in
particular many mobile browsers simply not do
implement XSLT. We get around this by using the
Saxon-JS XSLT processor that runs within a browser's
JavaScript engine.

Can we eradicate the use of XSLT or other processing
on the server-side? Possibly not as we still use Servlex to
do some XSLT processing on the server. And would it be
desirable? No, because for such an application it is
paramount to maintain the security of sensitive data and
keep data centralised. But we have certainly achieved our
aim of improving our tool, so that it now processes and
moves around XML data from end-to-end, and does this
processing mostly on the client-side, having moved most
of the processsing from the server-side environment.
Removing the need for translations between so many
different third-party tools and languages outside of the
XDM model minimises possible failures and
incompatibilies, such as encoding issues, which can only
be good in the long run.

With the increase of XML data on the web, and
continual demands for speed improvements, the option
of using client-server distributed XSLT processing is
surely attractive, though of course there may be trade-
offs. While it may not become a phenomena, certainly
we have showcased the innovative possibilities.

Page 17 of 102

Distributing XSLT Processing between Client and Server

Bibliography

[1] Servlex. Florent Georges.
http://servlex.net

[2] CXAN: a case-study for Servlex, an XML web framework. Florent Georges. XML Prague. March, 2011. Prague,
Czech Republic. .
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf#page=49

[3] XSLTForms. Alain Couthures.
http://www.agencexml.com/xsltform

[4] Interactive XSLT in the browser. O'Neil Delpratt and Michael Kay. Balisage. 2013.
doi:10.4242/BalisageVol10.Delpratt01

[5] Interactive XSLT extensions specification. Saxonica.
http://www.saxonica.com/saxon-js/documentation/index.html#!ixsl-extension

[6] Saxon-JS: XSLT 3.0 in the Browser. Debbie Lockett and Michael Kay. Balisage. 2016.
doi:10.4242/BalisageVol17.Lockett01

[7] XSL Transformations (XSLT) Version 3.0. Michael Kay. W3C. 7 February 2017.
https://www.w3.org/TR/xslt-30

[8] Experiences with XSLTForms and Servlex. O'Neil Delpratt. 8 March 2013.
http://dev.saxonica.com/blog/oneil/2013/03/experiences-with-client-side-xsltforms-and-server-side-
servlex.html

[9] Web Applications. EXPath Candidate Module. Florent Georges. W3C. 1 April 2013.
http://expath.org/spec/webapp

[10] Packaging System. EXPath Candidate Module. Florent Georges. W3C. 9 May 2012.
http://expath.org/spec/pkg

[10b] XPath 3.1 in the Browser. John Lumley, Debbie Lockett and Michael Kay. XML Prague. February, 2017.
Prague, Czech Republic.
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=13

[11] HTML/XML Task Force Report. W3C Working Group Note. Norman Walsh. W3C. 9 February 2012.
https://www.w3.org/TR/html-xml-tf-report/

[12] Transforming JSON using XSLT 3.0. Michael Kay. XML Prague. February, 2016. Prague, Czech Republic.
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=179

[13] XML Representation of JSON. XSL Transformations (XSLT) Version 3.0, W3C Recommendation. Michael
Kay. W3C. 7 February 2017.
https://www.w3.org/TR/xslt-30/#json-to-xml-mapping

[14] HTTP Client Module. EXPath Candidate Module. Florent Georges. EXPath. 9 January 2010.
http://expath.org/spec/http-client

Page 18 of 102

Distributing XSLT Processing between Client and Server

http://servlex.net
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf#page=49
http://www.agencexml.com/xsltform
http://dx.doi.org/10.4242/BalisageVol10.Delpratt01
http://www.saxonica.com/saxon-js/documentation/index.html#!ixsl-extension
http://dx.doi.org/10.4242/BalisageVol17.Lockett01
https://www.w3.org/TR/xslt-30
http://dev.saxonica.com/blog/oneil/2013/03/experiences-with-client-side-xsltforms-and-server-side-servlex.html
http://dev.saxonica.com/blog/oneil/2013/03/experiences-with-client-side-xsltforms-and-server-side-servlex.html
http://expath.org/spec/webapp
http://expath.org/spec/pkg
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=13
https://www.w3.org/TR/html-xml-tf-report/
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=179
https://www.w3.org/TR/xslt-30/#json-to-xml-mapping
http://expath.org/spec/http-client

Location trees enable XSD based tool
development

Hans-Jürgen Rennau

Traveltainment GmbH
<hrennau@yahoo.de>

Abstract

Conventional use of XSD documents is mostly limited to
validation, documentation and the generation of data
bindings. The possibility of additional uses is little
considered. This is probably due to the difficulty of processing
XSD, caused by its arcane graph structure. An effective
solution might be a generic transformation of XSD
documents into a tree-structured representation, capturing
the model contents in a transformation-friendly way. Such a
tree-structured schema derivative is offered by location trees,
a format defined in this paper and generated by an open-
source tool. The intended use of location trees is an
intermediate to be transformed into interesting artifacts.
Using a chemical image, location trees can play the role of a
catalyst, dramatically lowering the activation energy
required to transform XSD into valuable substances. Apart
from this capability, location trees are composed of a novel
kind of model components inviting the attachment of
metadata. The resulting metadata trees enable innovative
tools, including source code generators. A few examples
illustrate the new possibilities, tentatively summarized as
XSD based tool development.

Keywords: XML Schema, XML tool chain

1. Introduction

Well-written XML schema documents (XSD) contain a
wealth of information. Its potential value is by no means
exhausted by conventional schema uses, which are
validation, documentation and data binding (e.g. [3]).
Why are there hardly any tools available for unlocking
the treasure? A major reason is probably the sheer
difficulty to write code which evaluates XSD documents
reliably - coping with the complete range of the XSD
language, rather than being limited to XSD documents
written in a particular style.

The difficulty of processing XSD has a key reason: the
semantics of XSD are graph-structured, not tree-

structured like the instance documents which XSD
describes. To realize this, think of the many relationships
between schema components, like uses-type, extends-
type, restricts-type, uses-group, uses-attributegroup,
memberof-substitutiongroup. A clear perception of the
problem suggests a straightforward solution: we need a
generic and freely accessible transformation of XSD into
a tree-structured equivalent. This can be used as a
processing-friendly intermediate which is readily
transformed into useful artifacts. The new intermediate
should play a role similar to a catalyst in chemical
processes: it is neither input nor output, but it reduces
the energy required to turn input into output.
Availability of this catalyst might turn the development
of XSD processing tools into a fascinating and rewarding
challenge.

Departing from an analysis of the main problems
besetting XSD processing, this paper proposes a solution
based on a tree-structured representation of XSD
contents. The new format is explained in detail, and the
new possibilities of XSD processing are illustrated by
several examples.

2. Problem definition

XSDs describe the structure and constrain the contents
of XML documents ([5], [6], [7], [8]). These documents
are tree-structured. The schema itself, however, is a
peculiar mixture of tree and graph structure. It is a graph
whose nodes are trees (e.g. type definitions) as well as
nodes within trees (e.g. element declarations within type
definitions). The edges of this graph connect trees (e.g. a
type references its base type) as well as tree nodes and
trees (e.g. an element references its type definition). The
data model of XSD is justified by the conflicting needs to
describe tree structure and to support reusable
components. (If not for the second, XSD would
probably consist of straightforward representations of the
desired tree structures!) Nevertheless, the model as it is
creates several problems which deserve attention.

doi:10.14337/XMLLondon17.Rennau01Page 20 of 102

mailto:hrennau@yahoo.de

Ignoring the problems, we would limit ourselves to the
services of mature and completed tools. Thus we would
miss the chance to discover innovative uses of the
precious information content locked up in XSD
documents.

2.1. The problem of understanding

To understand a schema means, in the first place, to
understand the tree structure of its instance documents.
However, this is often difficult - or even virtually
impossible - when studying the schema contents in their
raw form.

Fortunately, several commercial IDEs offer graphical
representation of schemas. At first sight, they give us
everything we need in order to understand the schema:
the graphical representation is very clear and intuitive.
But when working with large schemas, a serious
shortcoming becomes obvious. The graphical
representation is very space consuming, rendering fast
browsing of larger chunks of the schema impossible. The
screen is completely filled by a small number of tree
nodes; a sliding glance at more than a small piece of a
large whole requires a "bumpy" navigation involving
much scrolling mixed with a series of clicks for
alternately collapsing and expanding nodes.

2.2. The query problem

A second problem is closely related to the problem of
understanding. Managing a large schema requires more
than clear pictures of pieces of tree structure: it requires
querying the schema. Example questions: Which data
paths will be affected if I change this element
declaration? (There may be hundreds of them, but also
none at all!) Do all <Foo> elements have the same type?
What are the elements on which a @Bar attribute may
appear? Compared to the previous schema version, what
data paths have been added or removed? If the schema is
large, the number of tree nodes is too large for finding
the answers by visual inspection. The IDEs give us icon
trees, but no data trees, no data sets for queries which
give us the answers.

2.3. The transformation problem

Schemas describe the tree structure of instance
documents, and in doing so they define crucial
information about relevant domain entities. Questions
arise: What are the key entities, what are their properties,
what are the data types of those properties, what are their
cardinalities? We should have tools to reorganize such

information into comprehensive and intuitively
structured representations. But the required schema
transformation is too difficult for a developer who is not
a schema specialist.

2.4. The metadata problem

XML schema components can be associated with
annotations. Special schema elements are available for
this purpose (xs:annotation, xs:documentation,
xs:appinfo). The schema author may also enhance any
schema component with attributes which are not defined
by the schema language. The names of these additional
attributes are only limited to belong to a non-XSD
namespace. This possibility to add arbitrary name/value
pairs means language support for the addition of
metadata.

When dealing with data-oriented XML, elements and
attributes describe real-world entities and metadata can
extend these descriptions, e.g. adding processing hints.
Metadata of an element declaration might, for instance,
specify the data source from where to retrieve the value
of the element, as well as the data target where to store it:

<xs:element name="loyaltyNumber" type="xs:string"

x:dataSource="msgs.travelInfo#//Passenger/@loyalty"

x:dataTarget="dbs.someDb.someTab.someCol"/>

Such metadata could be put to many uses, including
code generation and system consistency checks (are the
schema types of data source and data target compatible?).
But the possibilites are much more limited than they
appear at first sight, due to the reuse of schema
components (like type definitions) in different contexts:
such metadata would typically apply in one context, but
not in the other. We come to realize that many kinds of
interesting metadata cannot be attached to the schema
components themselves: they should be attached to a
novel kind of entity representing the use of a particular
element or attribute declaration at a particular place
within a particular document type. Such component use is
an abstraction lying midway between a schema
component and the items of an instance document. This
paper attempts to capture component use conceptually,
proposing the notion of an info location. It introduces the
means to materialize component uses, turning them into
the elements of a new kind of resource called a location
tree.

Page 21 of 102

Location trees enable XSD based tool development

3. Location trees

An info location tree (location tree, for short) is an XML
document which represents the tree structure of
documents described by an XML schema. More
precisely, a location tree captures the tree structure
implied by a complex type definition or a group
definition. As a rough approximation, think of location
trees as XML documents capturing the information
visualized by the familiar graphical views of schema
documents.

3.1. A simple example

Let us look at a simple example. The following schema
defines documents rooted in a <Travellers> element:

<xs:schema xmlns="http://example.com/ns"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://example.com/ns"

 elementFormDefault="qualified">

 <xs:element name="Travellers"

 type="TravellersType"/>

 <xs:complexType name="TravellersType">

 <xs:sequence>

 <xs:element name="Traveller"

 type="TravellerType"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="BasicTravellerType">

 <xs:sequence>

 <xs:element name="Name"

 type="xs:string"/>

 <xs:element name="Age"

 type="xs:nonNegativeInteger"

 minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="TravellerType">

 <xs:complexContent>

 <xs:extension base="BasicTravellerType">

 <xs:choice>

 <xs:element name="PassportNumber"

 type="xs:string"/>

 <xs:element name="LoyaltyNumber"

 type="LoyaltyNumberType"/>

 <xs:element name="CustomerID"

 type="xs:integer"/>

 </xs:choice>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="LoyaltyNumberType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="Airline"

 type="xs:string"

 use="required"/>

 <xs:attribute name="CheckStatus"

 type="CheckStatusEnum"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:simpleType name="CheckStatusEnum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="NoCheck"/>

 <xs:enumeration value="Ok"/>

 <xs:enumeration value="NotOk"/>

 <xs:enumeration value="Unknown"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

Though this is a very small and simple schema, the tree
structure of a Travellers document is not immediately
obvious. Figure 1 offers a graphical representation of this
tree structure, created using the XML IDE Oxygen 18.1.

Page 22 of 102

Location trees enable XSD based tool development

Figure 1. Graphical XSD representation (Oxygen 18.1)

Graphical representation of the Travellers schema, created by Oxygen 18.1

Such a representation is tremendously helpful, but its use
is restricted to human inspection, as it cannot be used as
processing input. A processing-friendly alternative is
offered by a location tree. The following listing shows a
pruned version, leaving out items (including type
information) for the sake of readibility:

<a:Travellers xmlns:a="http://example.com/ns">

 <a:Traveller z:occ="+">

 <a:Name/>

 <a:Age z:occ="?"/>

 <z:_choice_>

 <a:PassportNumber/>

 <a:LoyaltyNumber>

 <z:_attributes_>

 <Airline/>

 <CheckStatus occ="?">

 </z:_attributes_>

 </a:LoyaltyNumber>

 <a:CustomerID/>

 </z:_choice_>

 </a:Traveller>

</a:Travellers>

The meaning of this representation is easy to grasp
intuitively. Instance documents have a <Travellers> root

element which contains one or more <Traveller>

elements. Note the @z:occ attribute on <Traveller>

which indicates that the <Traveller> element of the
location tree represents a sequence of one or more
elements in the instance document. We understand that
the first child of <Traveller> is a <Name> element, which
is followed by an optional <Age> element. The last
element in <Traveller> is one of three possibilities: either
a <PassportNumber> element, or a <LoyaltyNumber>

element, or a <CustomerID> element. Note that the
<z:_choice_> element does not represent any node in an
instance document; rather, it is an auxilliary element
indicating that at this point of the structure the contents
of instance documents is given by exactly one of several
possibilities. Finally we note that <LoyaltyNumber>

elements have a couple of attributes, @Airline (required)
and @CheckStatus (optional).

Roughly speaking, each location tree element which
is not in the z-namespace represents a set of XML
elements or attributes - a set comprising all items found
within instance documents "at the same location". How
to define the location? All items found at a particular
location have the same data path (e.g. /Travellers/
Traveller/Age). Note that the inverse is not always true
(though it is always true in the example): two elements

Page 23 of 102

Location trees enable XSD based tool development

may have the same data path but occupy different
locations. This would for example be the case if an
element’s content model were the sequence of child
elements <a>, , <c>, <a>. All <a> elements would have
the same datapath, but the first and last siblings among
them would occupy two distinct locations. This matches
the intuitive expectation of a location tree or a graphical
schema view: the siblings <a>, , <c>, <a> should
certainly be represented by four location nodes or graph
icons, rather than three.

3.2. Info locations

In spite of the obvious intuitive meaning of location tree
nodes, a formal definition of their semantics is not trivial.
The key abstraction is an info location, which is akin to
an RDF class whose members are XML nodes. An info
location is a class of XML nodes belonging to a
document type’s instance documents, where class
membership depends on the node’s validation path. The
validation path is the sequence of schema components
used to validate the item itself, its ancestors and their
preceding siblings, when validated in document order.
Two items are said to occupy the same location if their
validation paths are equal according to an algorithm of
comparison. (Note. The comparison of validation paths
must be performed according to an algorithm, rather
than as a straightforward comparison, in order to ignore
the irrelevant variability introduced by optional and
multiple occurrences.)

The following listing shows the complete location
tree of <Travellers> elements. Element locations are
represented by elements not in the z-namespace,
excluding child elements of <z:_attributes_> elements.
Attribute locations are represented by child elements of
<z:_attributes_> elements. The properties of the info
locations are exposed by attributes.

<?xml version="1.0" encoding="UTF-8"?>

<z:locationTrees xmlns:a="http://example.com/ns"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:z="http://www.xsdplus.org/ns/structure"

 count="1">

 <z:locationTree compKind="elem"

 z:name="a:Travellers"

 z:loc="element(a:Travellers)"

 z:type="a:TravellersType"

 z:typeLoc="complexType(a:TravellersType)">

 <z:nsMap>

 <z:ns prefix="a"

 uri="http://example.com/ns"/>

 <z:ns prefix="xs"

 uri="http://www.w3.org/2001/XMLSchema"/>

 <z:ns prefix="z"

 uri="http://www.xsdplus.org/ns/structure"/>

 </z:nsMap>

 <a:Travellers

 z:name="a:Travellers"

 z:type="a:TravellersType"

 z:typeVariant="cc"

 z:typeLoc="complexType(a:TravellersType)">

 <a:Traveller

 z:name="a:Traveller"

 z:occ="+"

 z:type="a:TravellerType"

 z:typeVariant="cc"

 z:baseType="a:BasicTravellerType"

 z:derivationKind="extension"

 z:typeLoc="complexType(a:TravellerType)"

 z:loc="complexType(a:TravellersType)/

 xs:sequence/a:Traveller"

 name="Traveller"

 type="TravellerType"

 maxOccurs="unbounded">

 <a:Name

 z:name="a:Name"

 z:type="xs:string"

 z:typeVariant="sb"

 z:typeDef="string"

 z:loc="complexType(a:BasicTravellerType)/

 xs:sequence/a:Name"

 name="Name"

 type="xs:string"/>

 <a:Age z:name="a:Age"

 z:occ="?"

 z:type="xs:nonNegativeInteger"

 z:typeVariant="sb"

 z:typeDef="nonNegativeInteger"

 z:loc="complexType(a:BasicTravellerType)/

 xs:sequence/a:Age"

 name="Age"

 type="xs:nonNegativeInteger"

 minOccurs="0"/>

 <z:_choice_>

 <a:PassportNumber

 z:name="a:PassportNumber"

 z:type="xs:string"

 z:typeVariant="sb"

 z:typeDef="string"

 z:loc="complexType(a:TravellerType)/

 xs:choice/a:PassportNumber"

 name="PassportNumber"

 type="xs:string"/>

 <a:LoyaltyNumber

Page 24 of 102

Location trees enable XSD based tool development

 z:name="a:LoyaltyNumber"

 z:type="a:LoyaltyNumberType"

 z:typeVariant="cs"

 z:baseType="xs:string"

 z:derivationKind="extension"

 z:builtinBaseType="xs:string"

 z:contentType="xs:string"

 z:contentTypeVariant="sb"

 z:contentTypeDef="string"

 z:typeLoc="

 complexType(a:LoyaltyNumberType)"

 z:loc="complexType(a:TravellerType)/

 xs:choice/a:LoyaltyNumber"

 name="LoyaltyNumber"

 type="LoyaltyNumberType">

 <z:_attributes_>

 <Airline

 z:name="Airline"

 z:type="xs:string"

 z:typeVariant="sb"

 z:typeDef="string"

 z:loc="

 complexType(a:LoyaltyNumberType)/

 @Airline"

 name="Airline"

 type="xs:string"

 use="required"/>

 <CheckStatus

 z:name="CheckStatus"

 z:occ="?"

 z:type="a:CheckStatusEnum"

 z:typeVariant="sa"

 z:typeDef="string:

 enum=(NoCheck|NotOk|Ok|Unknown)"

 z:baseType="xs:string"

 z:derivationKind="restriction"

 z:builtinBaseType="xs:string"

 z:typeLoc="

 simpleType(a:CheckStatusEnum)"

 z:loc="

 complexType(a:LoyaltyNumberType)/

 @CheckStatus"

 name="CheckStatus"

 type="CheckStatusEnum">

 <z:_stypeTree_

 z:name="a:CheckStatusEnum">

 <z:_builtinType_

 z:name="xs:string"/>

 <z:_restriction_

 z:name="a:CheckStatusEnum">

 <z:_enumeration_

 value="NoCheck"/>

 <z:_enumeration_

 value="Ok"/>

 <z:_enumeration_

 value="NotOk"/>

 <z:_enumeration_

 value="Unknown"/>

 </z:_restriction_>

 </z:_stypeTree_>

 </CheckStatus>

 </z:_attributes_>

 </a:LoyaltyNumber>

 <a:CustomerID

 z:name="a:CustomerID"

 z:type="xs:integer"

 z:typeVariant="sb"

 z:loc="complexType(a:TravellerType)/

 xs:choice/a:CustomerID"

 name="CustomerID"

 type="xs:integer"/>

 </z:_choice_>

 </a:Traveller>

 </a:Travellers>

 </z:locationTree>

</z:locationTrees>

The next two sections give an overview of the elements
and attributes used by location trees.

3.3. Location tree structure

Now we take a closer look at the structure of location
trees. The following table summarizes the elements of
which a location tree is composed. (Descendants of
<z:_stypeTree_> elements are omitted.)

Page 25 of 102

Location trees enable XSD based tool development

Table 1. Location tree elements

Location tree element Meaning XSD element

Any element not in the z-
namespace Represents an element or attribute location xs:element, xs:attribute

z:_attributes_ Wraps the representations of all attribute locations
belonging to an element location -

z:_sequence_ Represents a sequence compositor xs:sequence

z:_choice_ Represents a choice compositor xs:choice

z:_all_ Represents an all compositor xs:all

z:_any_ Represents an element wildcard xs:any

z:_anyAttribute_ Represents an attribute wildcard xs:anyAttribute

z:_sgroup_ Contains the element locations corresponding to a
substitution group -

z:_groupContent_

Signals a group reference which remains unresolved as it
constitutes a cyclic definition (the reference occurs in the
content of a member of the referenced group or in its
descendant)

xs:group (with a @ref
attribute)

z:_stypeTree_ Structured representation of a simple type definition xs:simpleType

z:_annotation_ Reports a schema annotation xs:annotation

z:_documentation_ Reports a schema documentation xs:documentation

z:_appinfo_ Reports a schema appinfo xs:appinfo

Note that group definitions (<xs:group>) are not
represented by distinct location tree elements, as a group
reference is represented by the content of the referenced
group. Similarly, attribute group references are always
resolved and attribute group definitions
(<xs:attributeGroup> do not appear as distinct entities.

An important aspect of location tree structure is the
representation of element composition (sequence, choice
and all group). Representation rules aim at
simplification: the number of group compositor elements
is reduced, nested grouping is replaced by flattened
grouping if possible, and irrelevant variability of XSD
content is removed by normalized representation.
Simplification is achieved by the definition of default
composition and rules of group normalization.

Sequence is the default composition: any sequence
of items (element locations and or compositors) which
are children of an element location represents a sequence
of child elements. The location tree uses only such
<z:_sequence_> elements as cannot be left out without
loss of information. This is the case when the sequence

has a minimum or maximum occurrence unequal 1, or
when the sequence is child of a choice. Group
normalization is achieved by content rewriting. It
replaces the use of compositors as found in the XSDs by
a simpler model which is equivalent with respect to the
instance documents described. Normalization rules effect
the removal of "pseudo groups" containing a single item,
the flattening of nested choices and the flattening of
nested sequences. Note that the removal of a compositor
element may change the occurrence constraints of its
child elements. As an example, consider a pseudo group
occurring one or more times and containing an optional
element (occurrence "zero or one"). After unwrapping
this element, its occurrence will be "zero or more".

It is important to understand the handling of type
derivation. Remember the general goal to capture the
structure of instance documents by a model structure
which is as similar and straightforward as possible.
Element content defined by a derived complex type is
always represented in resolved form, expressing the
integration of base type content and derived type content
as defined by the XML schema specification. Consider a

Page 26 of 102

Location trees enable XSD based tool development

type extending another type with complex content. The
derived type is treated like a non-derived type with
equivalent content: its attributes comprise all attributes
of derived type definition and the (recursively resolved)
base type definition; and its content is a sequence
containing the contents of the (recursively resolved) base
type, followed by the explicit content model of the
derived type. Subsequent group normalization ensures
that derivation does not introduce any structural
complexity.

3.4. Location tree attributes

The elements of a location tree (element and attribute
locations, group compositors, wildcards and substitution
groups) represent model components – the building
blocks of which the model is composed. The properties
of these components are represented by info attributes.
Example properties are the element or attribute name,
type name and cardinality constraints. The following
table compiles the most important attributes used to
express component properties.

Page 27 of 102

Location trees enable XSD based tool development

Table 2. Property attributes

Location tree attribute Property Remarks

z:name Element name, attribute name As normalized qualified name

z:occ Cardinality Examples: ?, *, +, 1-4, 2

z:type Type name As normalized qualified name

z:typeVariant Type variant

sb: builtin type

sa: simple type, atomic

sl: simple type, list

su: simple type, union

cs: complex type, simple content

cc: complex type, complex content

cc: complex type, empty content

z:typeDef
A human-readible string
representation of a simple type
definition

Examples: string:enum=(NotOk|Ok)
string:maxLen=64

z:baseType Base type name As normalized qualified name

z:builtinBaseType Name of the builtin base type (if
type variant = sa) As normalized qualified name

z:contentType Name of the content type (if type
variant = cs) As normalized qualified name

z:contentTypeVariant Content type variant (if type
variant = cs) See z:typeVariant; value is one of: sb, sa, sl, su

z:contentTypeDef
A human-readible string
representation of the content type
(if type variant = cs)

Examples: decimal:range=[0.901,1.101]
string:pattern=#[A-Z]{2}#

z:itemType Name of the list item type (if type
variant = sl) As normalized qualified name

z:itemTypeVariant Item type variant (if type variant =
sl) See z:typeVariant; value is one of: sb, sa, su

z:typeLoc XSD type location If item has a user-defined type: identifies the
location of the type definition within the XSDs

z:loc XSD component location Identifies the location of the component within
the XSDs

any name without
namespace

XSD component property (e.g.
{min occurs})

The attribute is a copy of the XSD attribute
found on the XSD element represented by the
location tree element (e.g. @minOccurs)

any name in a namespace
which is not the z-
namespace

XSD annotation property (e.g.
{myorg:lastUpdate})

The attribute is a copy of the annotation attribute
found on the XSD element represented by the
location tree element (e.g. @myorg:lastUpate)

Page 28 of 102

Location trees enable XSD based tool development

Table 3. Recursion point attributes

Location tree attribute Meaning Value

z:recursionType The type of the parent element location is equal to the type of
an ancestor element location

Type name, as normalized
qualified name

z:recursionGroup
Flags a group reference found within the contents of an element
which is a member of the referenced group, or is a descendant
of such a member

Group name, as
normalized qualified
name

Normalized qualified names use prefixes which are
derived from the target namespaces (and possibly also
annotation namespaces) encountered in the set of XSDs
currently considered. The mapping of namespace URI to
prefix is achieved by assigning to the sorted set of
namespace URIs the prefixes a – y, a2 – y2 etc. The prefix
z is reserved for the URI http://www.xsdplus.de/ns/
structure, and the prefix xs is used for the XSD
namespace. All URI to prefix mappings are documented
by a <z:nsMap> element which is child of the
<z:locationTree> element.

The location attributes (@z:loc, @z:typeLoc) identify
an individual XSD component and thus document the
alignment between location tree and XSD components.
The XSD component is identified by a simple path
syntax consisting of a first step identifying a top-level
component (e.g. complexType(a:TravellersType))
followed by an optional logical path (e.g. xs:choice/
a:LoyaltyNumber) drilling down into the top-level
component. The @z:loc attribute of an element location
(attribute location) identifies the element declaration
(attribute declaration) aligned with the location.
Similarly, @z:typeLoc identifies the type definition
referenced by an element or attribute location.

Two further attributes are used in order to flag an
element location or a group reference as "recursion
point" (see Table 3. Recursion point attributes).

3.5. Open source tool for creating location
trees

An open source tool for transforming arbitrary XSD into
location trees is available [10]. The tool is written in the
XQuery language [9]. It can be used as a command-line
tool, or as an XQuery library ready for import by
XQuery programs. Execution requires an XQuery
processor supporting XQuery version 3.1 or higher. See
[10] for a documentation of tool usage. Command-line
invocation requires two mandatory parameters:

• A FOXpath expression [2] selecting one or more XSD
documents

• A name pattern selecting the schema components for
which to construct the location trees; the name
pattern can alternatively be used to select element
declarations, complex type definitions or group
definitions

Tool output is an XML document with a
<z:locationTrees> root element containing
<z:locationTree> elements representing location trees
obtained for the selected schema components. Here
comes an example call, using the XQuery processor
BaseX [1]:

basex –b request=ltrees?xsd=/projects/ota//*.xsd,

 enames=*RQ xsdp.xq

It creates location trees for each element declaration
whose name ends with RQ.

4. XSD based tool development

Location trees are ordinary XML documents. The
semantic graph structure of XSD documents has been
replaced by semantic tree structure, so that processing
location trees is a straightforward operation. Initial
transformation of XSD into location trees makes valuable
information, hitherto virtually out of reach from a
developer's point of view, readily accessible. Location
trees thus encourage the development of innovative XSD
processing tools. This section illustrates the new
possibilites by several examples ranging from very simple
to fairly complex tools.

4.1. Getting your feet wet - first schema
queries

The simplest way of using location trees consists in
translating questions about a schema into queries of its
location trees. As an example, consider this question
about a schema: at which places (expressed as data paths)

Page 29 of 102

Location trees enable XSD based tool development

do instance documents with a <Travellers> root contain
elements with the name "CustomerID"?

Our starting point is the location tree obtained for
the top-level element declaration with name "Travellers".
The following XQuery query, which expects as context
node a z:locationTrees document, gives the answer:

declare namespace z =

 "http://www.xsdplus.org/ns/structure";

declare namespace f =

 "http://www.xsdplus.org/ns/xquery-functions";

declare function f:path(

 $e as element()) as xs:string {

 '/' ||

 string-join((

 $e/ancestor::*[not(self::z:*)]/local-name(),

 $e/concat(parent::z:_attributes_/'@',

 local-name())), '/')

};

//*:CustomerID/f:path(.)

Extending this adhoc query into a veritable tool is easy:
we introduce two external variable which expect name

patterns for the document root element and the items of
interest:

declare namespace z =

 "http://www.xsdplus.org/ns/structure";

declare namespace f =

 "http://www.xsdplus.org/ns/xquery-functions";

declare variable $root external := '*';

declare variable $item external := '*';

declare function f:path(

 $e as element()) as xs:string {

 '/' ||

 string-join((

 $e/ancestor::*[not(self::z:*)]/local-name(),

 $e/concat(parent::z:_attributes_/'@',

 local-name())), '/')

};

declare function f:regex(

 $name as xs:string) as xs:string {

 concat(

 '^',

 replace(replace($name, '*', '.*'), '\?', '.'),

 '$'

)

};

/*/z:locationTree/(* except z:*)[

 matches(local-name(.), f:regex($root), 'i')]

//(* except z:*)[

 matches(local-name(),

 f:regex($item), 'i')]/f:path(.)

After storing this code in a file locationPaths.xq and
writing the location trees of all top-level elements of the
Niem 3.0 XSDs (downloaded from [4]) into a file
ltrees-niem30.xml:

basex -b "request=ltree?xsd=/xsdbase/niem-3.0//

 .xsd,enames=,global"

 xsdp.xq > ltrees-niem30.xml

the following invocation

basex -i ltrees-niem30.xml -b item=*xml*

 locationPath.xq

yields this output:

/EDXLDistribution/contentObject/nonXMLContent

/EDXLDistribution/contentObject/xmlContent

/EDXLDistribution/contentObject/xmlContent/keyXMLContent

/EDXLDistribution/contentObject/xmlContent/embeddedXMLContent

Page 30 of 102

Location trees enable XSD based tool development

These four data paths leading to items with a name
containing "xml" have been selected from 90763 data
paths which can be obtained from the location trees in a
straightforward way (see function f:path above). The
example shows how simple queries applied to location
trees can give valuable insight which would be very
difficult to obtain by processing the XSD documents
themselves. The next section discusses more complex uses
of location trees.

4.2. Schema reporting - treesheets

Location trees are not meant for human inspection –
they are intermediates serving as input to the query or
transformation producing an artifact of interest. An
important category of such artifacts are various
representations of the schema-defined tree structures and
information associated with their main building blocks,
the elements and attributes.

A treesheet is a text document which combines an
indentation-based representation of the tree structure (on
the left-hand side) with information about the info
locations of which the tree is composed (on the right-
hand side). The following treesheet, for example

Element: Travellers; Type: TravellersType

==

Travellers ~ ~ ctype: a:TravellersType

. Traveller+ ~ ~ ctype: a:TravellerType

. . Name type: string

. . Age? type: nonNegativeInteger

. . choice{

. . 1 PassportNumber . type: string

. . 2 LoyaltyNumber .. type: string

. . 2 @Airline type: string

. . 2 @CheckStatus? . type: string: enum=(NoCheck|NotOk|Ok|Unknown)

. . 3 CustomerID ... type: integer

. . }

displays type information, whereas the next one

Element: Travellers; Type: TravellersType

==

Travellers ~ ~ anno: A travel party.

. Traveller+ ~ ~ anno: Represents an individual traveller.

. . Name anno: The surname, as used in the passport.

. . Age? anno: The age at checkin date.

. . choice{

. . 1 PassportNumber . anno: The passport number in latin letters.

. . 2 LoyaltyNumber .. anno: The Loyalty number, assigned by the airline.

. . 2 @Airline anno: Airline, identified by IATA code.

. . 2 @CheckStatus? . anno: Specifies if checked and the check result.

. . 3 CustomerID ... anno: The customer ID, assigned by the back office.

. . }

displays the contents of schema annotations, retrieved
from <xs:documentation> elements of the schema. These
examples align the tree items with information

originating from the XSD (type information and schema
annotation). The information might however also be
metadata externally provided, or facts based on instance

Page 31 of 102

Location trees enable XSD based tool development

document data. (See the following sections for more
about facts and metadata.) Each type of treesheet can be
viewed as a different facet of the schema-defined tree.
Opening different treesheets of the same document type
in an editor and switching between their tabs can offer an
interesting experience of contemplating complex
information trees from different sides. The open source
tool [10] provides a treesheet operation transforming
XSD components into treesheets of various kinds and
controlled by various representational options.

4.3. Fact trees

A location tree can be regarded as a model of item use:
given a document type, where (data path) to use what
(element/attribute name) and how (number of
occurrences, data type or content structure). Any set of
instance documents, on the other hand, generates facts
about how items are actually used. Example facts about
an info location are the frequency of documents
containing items in this location, as well as the value
strings used in these items. Interesting reports can be
created by merging these facts into a pruned version of
the location tree. Recipe:

• Starting point: location tree
• Remove all elements which do not represent

compositors, elements or attributes
• Remove all or a selection of attributes
• Add attributes conveying facts

A simple example uses several attributes telling us how
info locations are actually used:

• @dcount – the number of documents observed
(attribute at the root element only)

• @dfreq – the relative frequency of documents
containing an item at this location

• @ifreq – the mean/minimum/maximum number of
items at this location, ignoring documents without
items in this location (attribute omitted if the schema
does not allow for multiple items)

The resulting fact tree may reveal interesting details, like
choice branches never used, or optional elements never
or virtually always used:

<a:Travellers xmlns:a="http://example.com/ns"

 dcount="78925">

 <a:Traveller z:occ="+" dfreq="1.00"

 ifreq="3.01 (1–8)">

 <a:Name dfreq="1.00"/>

 <a:Age z:occ="?" dfreq="0.99"/>

 <z:_choice_>

 <a:PassportNumber dfreq="0.64"/>

 <a:LoyaltyNumber dfreq="0.36">

 <z:_attributes_>

 <Airline dfreq="0.35"/>

 <CheckStatus dfreq="0.09"/>

 </z:_attributes_>

 </a:LoyaltyNumber>

 <a:CustomerID dfreq="0"/>

 </z:_choice_>

 </a:Traveller>

</a:Travellers>

If the fact tree has been obtained for a set of request
messages belonging to test suites, attributes like @dfreq
can express test coverage in a meaningful way.

A fact tree can be transformed into a treesheet:

Element: Travellers; Type: TravellersType

==

Travellers ~ ~ count: 78925

. Traveller+ ~ ~ dfreq: ********** (1.00, ifreq=3.01 (1-8)

. . Name dfreq: ********** (1.00)

. . Age? dfreq: ********** (0.99)

. . choice{

. . 1 PassportNumber . dfreq: ****** (0.64)

. . 2 LoyaltyNumber .. dfreq: **** (0.36)

. . 2 @Airline dfreq: **** (0.35)

. . 2 @CheckStatus .. dfreq: * (0.09)

. . 3 CustomerID ... dfreq: (0)

. . }

Page 32 of 102

Location trees enable XSD based tool development

Note that the concept of "facts about locations" is not
limited to usage statistics. The next section discusses the
enhancement of locations by metadata. Such metadata
may imply new kinds of facts which can be represented
by specialized fact trees. Assume, for example, location
metadata which specify from where to retrieve item data.
If those "places" can also be expressed as info locations
(e.g. belonging to the location tree of some web service
message), derived facts of data consistency emerge. If the
data source of an enumerated string is an unconstrained
string, a data type inconsistency emerges as a fact.

The effort required to transform location trees into
treesheets and fact trees is moderate, although it is
substantially greater than the simple queries shown
earlier. The final section about the use of location trees
presents a complex application performing code
generation. It is based on metadata trees which are
created by a semi-automatic procedure: automated
transformation of location trees into an initial version of
a metadata tree, followed by manual editing which
replaces the generated dummy values of metadata
attributes with real values.

4.4. Metadata trees and code generation

Location trees are composed of nodes representing the
elements and attributes which can be used by instance
documents. Adding to the nodes of a location tree
metadata, we obtain a metadata tree. Recipe:

• Starting point: location tree
• Remove all elements which do not represent

compositors, elements or attributes
• Remove all or a selection of attributes
• Add attributes specifying metadata

Like a location tree, a metadata tree captures the
structure of instance documents. Unlike location tree
nodes, however, metadata tree nodes describe the items
of instance documents beyond XSD-defined information.
If metadata provide information about how to process
the items, the metadata tree may be transformed into
source code which implements the processing.

This section discusses an example of source code
generation based on metadata trees. Our goal is a
generator of program code which implements the
transformation of source documents with a particular
document type (e.g. "TravelInfo") into target documents
with a different document type (e.g. "Travellers"). The
solution involves the following main steps:

1. Design a metadata model
2. Create a metadata tree generator
3. Create a metadata tree transformator

4.4.1. Design a metadata model

Our approach is to use a metadata tree derived from the
location tree of the target document type. The metadata
model must define a set of metadata which suffices to
determine every detail of the code to be generated. Note
that the required types of metadata may be different for
different nodes of the location tree: they will depend on
node properties like the content type variant (simple
versus complex) or occurrence constraints. Each type of
metadata is represented by attributes with a particular
name. Metadata values are XPath expressions to be
evaluated in the context of source document nodes. The
following table provides an overview of the more
important metadata types and how their usage depends
on node properties.

Page 33 of 102

Location trees enable XSD based tool development

Table 4. Metadata model for doc2doc transformation

Attribute
name

Node condition Meaning Example

alt
Location of a simple content
element or attribute, which is
optional

XPath expression; evaluated if @src yields the empty
sequence; if @alt yields a non-empty value, a target
node is created and the value is used

'#UNKNOWN'

case Child of a <z:_choice_>
XPath expression; the selected choice branch is the
first child of the choice compositor whose @case
has a true effective boolean value

@Success eq

"false"

ctxt Complex element location XPath expression; its value is used as the new data
source context Services/Hotel

default
Location of a simple content
element or attribute, which is
mandatory

XPath expression; its value is used if @src yields the
empty sequence '?'

for-each
Element location (or
compositor) with maxOccurs >
1

XPath expression; for each item of the expression
value an element node is created (or compositor
contents are evaluated)

Contacts/

Contact

if Complex element location (or
compositor) which is optional

XPath expression; if its effective boolean value is
true, an element node is created (or compositor
contents are evaluated)

Hotel/

Properties

src Location of a simple content
element or attribute

XPath expression; its value is used as element
content or attribute value @Currency

4.4.2. Create a metadata tree generator

Writing the metadata tree generator is a fairly
straightforward task: the generator transforms location
trees into a modified copy in which most location tree
attributes are removed and attributes representing the
metadata are added. The values of metadata attributes are
placeholders, to be replaced by hand-editing. For each
location tree node an appropriate selection of metadata
attributes is made, according to the "Node condition"
column in table Table 4, “Metadata model for doc2doc
transformation”. Conditions are checked by evaluating
the attributes of the location tree node. The condition
"Location of a simple content element or attribute", for
instance, is true if the location tree attribute
@z:typeVariant has a value starting with "s" or equal to
"cs". If the condition also requires that the location is
optional, the @z:occ attribute is also checked – and so
forth.

Page 34 of 102

Location trees enable XSD based tool development

Applying our metadata tree generator to the
Travellers schema, we obtain this initial metadata tree:

<a:Travellers xmlns:a="http://example.com/ns"

 ctxt="###">

 <a:Traveller for-each="###">

 <a:Name src="###"

 default=""/>

 <a:Age src="###"

 alt=""/>

 <z:_choice_>

 <a:PassportNumber

 case="###"

 src="###"

 default=""/>

 <a:LoyaltyNumber case="###"

 ctxt="###"

 src="###"

 default="">

 <z:_attributes_>

 <Airline

 src="###"

 default=""/>

 <CheckStatus

 src="###"

 alt=""/>

 </z:_attributes_>

 </a:LoyaltyNumber>

 <a:CustomerID case="###"

 src="###"

 default=""/>

 </z:_choice_>

 </a:Traveller>

</a:Travellers>

4.4.3. Create a metadata tree transformator

A metadata tree transformator transforms a metadata tree
into a useful artifact. In our present context, the
metadata tree transformator is a code generator. It
transforms the metadata tree into code implementing the
transformation of a source document into a target
document. If code in several programming languages is
required, we can create several transformators, one for
each required language. Here, we limit ourselves to
writing a code generator creating XQuery code. The task
is neither trivial, nor exceedingly difficult. See [10],
module xmap2xq.xqm for a solution.

4.4.4. Using the code generator

Now we are ready to use our code generator. Let the
transformation source be documents similar to this:

<travelInfo xmlns="http://example2.com/msgs">

 <time startDate="2017-07-31"

 endDate="2017-08-08"/>

 <players>

 <passengers>

 <passenger surName="Boateng"

 firstName="Rachel"

 bookingAge="32"

 loyalty="KLM:1234567"

 loyaltyCheck="Ok"/>

 <passenger surName="Boateng"

 firstName="Belinda"

 documentNr="9293949596"/>

 </passengers>

 </players>

</travelInfo>

We edit the metadata tree appropriately:

<a:Travellers xmlns:a="http://example.com/ns"

 ctxt="/s:travelInfo/s:players/s:passengers">

 <a:Traveller for-each="s:passenger">

 <a:Name src="@surName" default=""/>

 <a:Age src="@bookingAge" alt=""/>

 <z:_choice_>

 <a:PassportNumber case="@documentNr"

 src="@documentNr"

 default=""/>

 <a:LoyaltyNumber case="@loyalty" ctxt="."

 src="@loyalty/substring-after(., ':')"

 default="'0'">

 <z:_attributes_>

 <Airline src="@loyalty/

 substring-before(., ':')"

 default="'#UNKNOWN-AIRLINE'"/>

 <CheckStatus src="@loyaltyCheck"

 alt="'Unknown'"/>

 </z:_attributes_>

 </a:LoyaltyNumber>

 <a:CustomerID case="@custId" src="@custId"

 default=""/>

 </z:_choice_>

 </a:Traveller>

</a:Travellers>

Page 35 of 102

Location trees enable XSD based tool development

Passing this metadata tree to the code generator, we
obtain the following generated XQuery program:

let $c := /s:travelInfo/s:players/s:passengers

return if (empty($c)) then () else

<a:Travellers xmlns:a="http://example.com/ns">{

 for $c in $c/s:passenger

 return

 <a:Traveller>{

 let $v := $c/@surName

 return <a:Name>{string($v)}</a:Name>,

 let $v := $c/@bookingAge

 return

 if (empty($v)) then ()

 else

 <a:Age>{string($v)}</a:Age>,

 if ($c/@documentNr) then

 let $v := $c/@documentNr

 return <a:PassportNumber>{

 string($v)

 }</a:PassportNumber>

 else if ($c/@loyalty) then

 let $contentV := $c/@loyalty/

 substring-after(., ':')

 let $contentV := if ($contentV) then

 $contentV else '0'

 return

 <a:LoyaltyNumber>{

 let $v := $c/@loyalty/

 substring-before(., ':')

 let $v := if ($v) then $v

 else '#UNKNOWN-AIRLINE'

 return

 attribute Airline {$v},

 let $v := $c/@loyaltyCheck

 let $v := if ($v) then $v

 else 'Unknown'

 return attribute CheckStatus {$v},

 $contentV

 }</a:LoyaltyNumber>

 else if ($c/@custId) then

 let $v := $c/@custId

 return

 <a:CustomerID>{

 string($v)

 }</a:CustomerID>

 else ()

 }</a:Traveller>

 }</a:Travellers>

5. Discussion

The main building block of a location tree constitutes an
interesting new concept. A location is obviously a model
entity, as it depends on schema contents, never on
instance document contents. It encapsulates model
information about a well-defined class of real world data:
the items occurring in a particular document type at a
particular place. The limitation and precision of the
modelling target make a location particularly well-suited
for novel kinds of metadata, as well as a suitable entity
for defining and collecting related facts. Locations,
formally defined and readily available in materialized
form, might influence the way how one thinks and
speaks about structured information.

Appreciation of location trees entails additional
appreciation for XSD, as location trees are derived from
XSD. Location trees unite "the best of two worlds",
XSD's advanced features of model design and
component reuse, and a clear and straightforward
relationship between model entity and real world data,
which enables intense use of the model beyond
validation and documentation.

Page 36 of 102

Location trees enable XSD based tool development

Bibliography

[1] BaseX - an open source XML database. BaseX.
http://basex.org

[2] FOXpath navigation of physical, virtual and literal file systems. Hans-Jürgen Rennau. XML Prague. 2017.
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=173

[3] Java Architecture for XML Binding (JAXB). Java Community Process.
https://jcp.org/en/jsr/detail?id=222

[4] NIEM 3.0. Georgia Tech Research Institute, Inc. (US).
https://release.niem.gov/niem/3.0/

[5] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. 5 April 2012. Shudi Gao, C. M. Sperberg-
McQueen, and Henry S Thompson. World Wide Web Consortium (W3C).
https://www.w3.org/TR/xmlschema11-1/

[6] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April 2012. World Wide Web
Consortium (W3C). David Peterson, Shudi Gao, Ashok Malhotra, C. M. Sperberg-McQueen, and Henry S
Thompson.
https://www.w3.org/TR/xmlschema11-2/

[7] XML Schema Part 1: Structures Second Edition. 28 October 2004. World Wide Web Consortium (W3C).
Henry S Thompson, David Beech, Murray Maloney, and Noah Mendelsohn.
https://www.w3.org/TR/xmlschema-1/

[8] XML Schema Part 2: Datatypes Second Edition. 28 October 2004. World Wide Web Consortium (W3C). Paul
V Biron and Ashok Malhotra.
https://www.w3.org/TR/xmlschema-2/

[9] XQuery 3.1: An XML Query Language. 21 March 2017. World Wide Web Consortium (W3C). Jonathan
Robie, Michael Dyck, and Josh Spiegel.
https://www.w3.org/TR/xquery-31/

[10] xsdplus - a toolkit for XSD based tool development. Hans-Jürgen Rennau.
https://github.com/hrennau/xsdplus

Page 37 of 102

Location trees enable XSD based tool development

http://basex.org
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=173
https://jcp.org/en/jsr/detail?id=222
https://release.niem.gov/niem/3.0/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xquery-31/
https://github.com/hrennau/xsdplus

An Architecture for Unified Access to the
Internet of Things

Jack Jansen

CWI, Amsterdam
<jack.jansen@cwi.nl>

Steven Pemberton

CWI, Amsterdam
<steven.pemberton@cwi.nl>

Abstract

The Internet of Things is driven by many tiny low-powered
processors that produce data in a variety of different formats,
and produce the data in different ways, sometimes on
demand (such as thermostats), sometimes by pushing (such as
presence detectors). Traditionally, applications have to be a
mash up of accesses to devices and formats. To use the data
in a cohesive application, the data has to be collected and
integrated; this allows very low demands to be put on the
devices themselves.

The architecture described places a thin layer around a
diverse collection of Internet of Things devices, hiding the
data-format and data-access differences, unifying the actual
data in a single XML repository, and updating the devices
automatically as needed; this then allows a REST-style
declarative interface to access and control the devices without
having to worry about the variety of device-interfaces and
formats.

Keywords: Internet of things, iot, REST, XML, Software
Architecture

1. Internet of Things

Moore's Law is about three properties of integrated
circuits: the number of components on them, the price,
and the size. Hold two of these constant, and the other
displays its full Moore's Law effect: after one cycle, you
can get the same thing for half the price, the same thing
for the same price at half the size, or the same thing at
the same size with twice the number of components.

So while computers have been getting more powerful
at one end, and people have been optimising price/size/
power in the middle, computers have been getting

smaller, and cheaper at the other end. While a dozen
years ago, you could count the number of CPUs in your
house on one hand, now they are being added to
everything, very often with networking built in.

The result is that there are now millions of cheap,
tiny devices, with low processing power, embedded in
devices everywhere.

The internet of things is not necessarily a new
concept: twenty years ago a typical petrol station would
have had embedded devices in the pumps, the storage
tanks, the tills, the vending machines, and these would
all have been centrally accessible and controllable. What
is new is the ubiquity, and the diversity.

A problem that accompanies this diversity is a lack of
standardisation. For instance, there are a number of
different access methods, such as on demand, where you
go to the device to access the data, push, where the
device sends the data out at some point, and you had
better be listening if you want to access it, and storage in
the cloud, where the device either sends the data to some
central point, or the central point polls the device for its
values. Similarly, there are various data formats used,
including XML, JSON, and a number of other text
formats.

This all means that creating applications that
combine data from different devices involves
programming and dealing with lots of fiddly detail.

2. Social Problems

Apart from the technical problems, there are also some
social problems involved, particularly since companies
producing the devices like to keep control, with the
possibility of monetising the data they have access to.

doi:10.14337/XMLLondon17.Pemberton01Page 38 of 102

mailto:jack.jansen@cwi.nl
mailto:steven.pemberton@cwi.nl

The problems include ownership: since the data may
be stored on a device in the cloud, who owns the data?
Do you as owner of the device even have unrestricted
access to your own data? There is also privacy: whether or
not the data is stored on the device itself, who can access
and see the data, and what are the access mechanisms for
ensuring the data is not publicly visible? And then you
have the issue of control: who is allowed to do anything
with the data or device?

3. An Architecture

This paper describes an architecture and system based on
it, that addresses these issues and that permits:

• retainment of ownership of the data,
• an access control mechanism to keep control over

who may see and modify the data and devices,
• hiding the data-format and data-access differences by

placing a thin layer around the diverse collection of
devices,

• integration of the data into homogeneous collections,
• keeping the data and devices updated automatically as

needed, without intervention.
The resulting architecure allows a REST-style declarative
interface to access and control the devices without having
to worry about the variety of device-interfaces and
formats.

4. Design

The central element of the design is an XML repository
that stores the incoming data. XML gives the advantage
of data homogeneity, and an advanced existing toolchain,
and the separation of elements and attributes facilitates
the separation of data from metadata.

The essence of how the system works is that this
repository is kept up-to-date with the devices bi-
directionally: if the device changes, the repository is
updated to match, and if the data in the repository is
changed, the device is updated. This has been referred to
previously, in contradistinction to WYSIWYG (What
You See Is What You Get) as TAXATA (Things Are
eXactly As They Appear) [1].

To achieve this, there is a thin functional layer
around the repository that communicates with the
devices. Plug-ins for devices and formats are responsible
for knowing how to access the data from the devices,
obtaining data from them, converting as necessary to

XML, and for sending data back to the devices in their
native format should the data change in the repository.

In support of this there are events that can be listened
for and reacted on within the repository. The
fundamental event is value changed, that signals when a
data value changes, and allows event listeners to react;
however, other events include timer events, and events
signalling changes in the structure of a sub-tree, such as
insertions and deletions.

Using the DOM model of events [2], events are
allowed to bubble up the tree, so that listeners can
respond at the value itself, or higher up the tree for a
group of values.

Finally there are constraints and relationships, that
specify how values relate to each other, and ensure that
values that depend on others are automatically updated
(in the process possibly changing the state of the related
devices).

5. Some (necessarily simple)
Examples

For instance there is a single bit: lights. When the lights
are on, that bit is 1, and when the lights are off it is 0.

However, it works both ways: to turn the lights off,
you just set the bit to 0; if anything changes the value to
1 they go on again.

There is another single bit: Is Jack home? (Which is
not two-way ;-))

There are two ways to influence a value in the
repository. One is equality "=", which ensures that the
equality is always true.

For instance, if we said

lights = jack-home

this would mean that whenever Jack is home the lights
are on, and whenever he isn't home, the lights are off.
However, this would be upsetting if he wanted to sleep.

Consequently, we use the other method of
influencing a value: "←". This only changes the value
when the value of the expression changes. So, if we say:

lights ← jack-home

this would ensure the lights are on when he arrives home
(they may have already been on), and ensures they are off
when he leaves (they may already have been off).

Since this only happens when changes happen, it
allows an override. For instance a switch on the wall also

Page 39 of 102

An Architecture for Unified Access to the Internet of Things

has a bit in the database, and this can be bound to the
value of the lights:

lights ← switch

(Note how switches are no longer hard-wired to their
function.)

You probably don't want the lights to come on when
it is already light, but you can have a sensor that detects
whether it is dark or not, with an affiliated bit in the
store:

lights ← jack-home and dark

This switches the lights on if Jack comes home in the
dark; it switches the lights on if Jack is already home and
it gets dark; and it also ensures that the lights are off
when Jack leaves (whether they were on or not already,
and whether or not it is dark). Note that this also ensures
that the lights go off when it gets light.

Note that you could combine these statements into a
single one using equality:

lights = (jack-home and dark) or switch

However, the separate statements allow a certain degree
of modularity, since, for instance, if you decide to
reassign the switch to another purpose, the other
statements continue to work.

6. Is Jack Home?

How do we know if Jack is home?
Well he carries a mobile phone, that connects to the

wifi, maybe a bluetooth watch that a sensor can pick up,
and he has a laptop that also connects. These all get
recorded in the repository (along with other details such
as IP address assigned). So we could say

jack-home = jack-phone and jack-watch

 and jack-laptop

However, sometimes he switches his laptop off. How
about:

jack-home = jack-phone or jack-watch or jack-laptop

Well, he might accidently or deliberately leave his phone
or watch at home. Then we use a heuristic:

jack-home =

 count(jack-phone, jack-watch, jack-laptop) > 1

This is not absolutely failsafe, but likely to be satisfactory.
(For the purpose of exposition, we have treated jack-

home as if it were a single standalone value, but in reality

it will be part of a structured value, such as
person[name="jack"]/present).

7. Living together

Jack doesn't live alone though. So there is a bit that
records if anyone we know is home:

anyone-home = jack-home or jill-home or jim-home

and we would use that in preference to just jack-home in
the above examples.

We can let the central heating automatically activate
depending on whether someone is home or not:

heating = anyone-home

Of course, the required temperature of the heating is also
a value in the database, as well as the actual temperature,
so unlike the lights example, we don't need an extra
override, since that is already taken care of.

8. Lock

One of the devices we have built is a door lock that is
openable with any RFID device (a phone, a bank card, a
dongle, etc) that has been registered with the lock.

Opening the lock is easy. If you swipe the RFID by
the reader, the identification gets stored in the repository
at lock/request, so the lock may be opened if that
identification is in the list of allowed values:

lock/unlocked ← lock/request in lock/allowed

However, this only opens the lock. There are two options
for relocking. One is if the lock is intended to be opened,
and left open until it is locked again. Then you swipe a
second time to lock it, and replace the above statement
with:

lock/unlocked ← lock/unlocked xor

 (lock/request in lock/allowed)

Then a swipe just toggles the locked/unlocked state.

Page 40 of 102

An Architecture for Unified Access to the Internet of Things

The other option is if the lock is opened with a swipe
and then locks itself shortly after. For this we use timer
events:

lock/unlocked ← lock/request in lock/allowed

changed(lock/unlock):

 dispatch(init, lock, 2sec)

init(lock):

 lock/request ← ""

 lock/unlock ← 0

Here we see a listener for the value-changed event on the
lock. This dispatches an init event to the lock after 2
seconds. The listener for the init event relocks the lock.

9. Mesters's Law

One principle that we have applied in the project is
Mesters's Law, named after its instigator:

 “A Smart anything must do at minimum the things
that the non-smart version does”

So, for instance, a thermostat that doesn't allow you
to change the desired temperature at the thermostat
itself, but requires you first to find the thermostat remote
control does not fulfil Mester's Law.

To this end, the individual devices must have as few
dependencies on the general infrastructure as possible.
Clearly, there is nothing much you can do if there is a
powercut and you have no backup power supply, but you
don't want to depend on the wifi to be running, or the
domain name server to be up, in order to be able to get
in to your house.

What this means is that our system runs on the local
devices as well, so that there are several copies of the
system distributed, and communicating with each other:
there is no dependency on a central version of the system
being up and running.

10. Privacy

A basic principle is that none of the data is visible outside
the system, unless explicitly revealed to someone.

This allows Jack, should he wish, to expose that he is
home, without exposing details such as his phone
identity.

For instance, he can reveal to the janitor of the
building whether he is home, or reveal whether anyone is
home to other inhabitants of the building without
revealing any other details, such as his phone MAC

address. This means the janitor can't also determine if
Jack is at the bar down the road.

Since the architecture is primarily state-based, with
events a side-effect, in effect it is the reverse of IFTTT-
style systems that are quite common nowadays for IoT
solutions [3].

The advantage of the state-based paradigm, together
with the hierarchical containment that XML gives us, is
that it supplies the scaffolding for the necessary security
and privacy mechanisms. Doing fine-grained access
control in an event-based system like IFTTT would be
more difficult, because there would basically have to be
access rules for every event/trigger, but with this system it
can be done on the basis of subtrees.

As mentioned earlier, a design decision was to store
data in XML elements and use attributes for storing
meta-data. Part of that meta data is information about
access.

While this part of the system is not yet implemented,
we are investigating two possible access mechanisms: one,
based on ACLs (access control lists) [4] mirrors the
system that is used in hierarchical filestores, such as Unix,
that are based on user-indentities. However, the one that
has our current preference is a system based on
Capabilities [5], where to access a part of the structure
you have to be in possession of a token.

11. Communication

Since the system is state-based, the ideal communication
method is REST.

REST (REpresentational State Transfer) is the
architectural basis of the web. As Wikipedia points out:

“REST's coordinated set of constraints, applied to
the design of components in a distributed hypermedia
system, can lead to a higher-performing and more
maintainable software architecture.”

In other projects we actually have proof of this claim:
we have seen it save around an order of magnitude in
time and costs.

Therefore communication with the system, and
between instances of the system is HTTP/HTTPS.

Page 41 of 102

An Architecture for Unified Access to the Internet of Things

12. User Interface

Since all actions are now controlled by changing data, all
we need is a straightforward way to access and change
data.

Luckily we have XForms [6], which has more or less
the same structure as the system: a collection of (XML)
data, events, and constraints.

On top of that, XForms has a method of binding
user interface controls to the data for displaying and
updating the data.

This has been treated in some details in an earlier
paper "XML Interfaces to the Internet of Things" [7].

13. Conclusion

We have a system that insulates us from the details of the
different devices, how to drive them and the format of
the data. It offers a powerful security mechanism, and
straightforward access protocol.

It gives us a very simple yet powerful mechanism for
reading and controlling devices.

The system is at an early stage of development at
present: we currently have a system running at two
locations.

Bibliography

[1] The ergonomics of computer interfaces. designing a system for human use. Lambert Meertens and Steven
Pemberton. 1992. Centrum Wiskunde and Informatica (CWI).
http://www.kestrel.edu/home/people/meertens/publications/papers/Ergonomics_of_computer_interfaces.pdf

[2] Document Object Model (DOM) Level 2 Events Specification. Tom Pixley. World Wide Web Consortium (W3C).
13 November 2000.
http://www.w3.org/TR/DOM-Level-2-Event

[3] IFTTT (If This Then That).
https://en.wikipedia.org/wiki/IFTTT
Wikipedia. Accessed: 13 May 2017.

[4] Access Control List. Wikipedia. Accessed :13 May 2017.
https://en.wikipedia.org/wiki/Access_control_list

[5] Capability-based Security. Wikipedia. Accessed: 13 May 2017.
https://en.wikipedia.org/wiki/Capability-based_security

[6] XForms 2.0. Erik Bruchez, Steven Pemberton, and Nick Van den Bleeken. World Wide Web Consortium
(W3C).
https://www.w3.org/community/xformsusers/wiki/XForms_2.0

[7] XML Interfaces to the Internet of Things. Steven Pemberton. XML London 2015. June 2015. 163-168.
doi:10.14337/XMLLondon15.Pemberton01

Page 42 of 102

An Architecture for Unified Access to the Internet of Things

http://www.kestrel.edu/home/people/meertens/publications/papers/Ergonomics_of_computer_interfaces.pdf
http://www.w3.org/TR/DOM-Level-2-Event
https://en.wikipedia.org/wiki/IFTTT
https://en.wikipedia.org/wiki/Access_control_list
https://en.wikipedia.org/wiki/Capability-based_security
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
http://dx.doi.org/10.14337/XMLLondon15.Pemberton01

Migrating journals content using Ant
A case study

Mark Dunn

Oxford University Press
<mark.dunn@oup.com>

Shani Chachamu

Oxford University Press
<shani.chachamu@oup.com>

Abstract

This paper is a case study of a project to migrate several
thousand problematic articles (out of a collection of over 2
million) published online in academic journals to a new
platform. The text of the articles is captured as JATS XML
[1]. Articles are loaded to the new platform in zip packages
representing journal issues. Each package consists of an XML
file for each article in the issue, together with associated
assets (images, PDF versions, etc.). Most of the 2 million
articles in our collection were migrated without a problem.
But several thousand articles were not loaded successfully on
the first pass. We describe the creation of an Ant [2] pipeline
to automatically fix the problems we found, which are
typical of large historic data sets and included missing DOIs
(Digital Object Identifiers) [3], invalid subject taxonomic
codes, badly-formatted publication dates, corrupt PDFs, and
missing images.

Keywords: Ant, JATS, oXygen XML Editor, XSLT

1. Background

In late 2015 OUP announced a partnership with
Silverchair Information Systems to host its 400 journals,
with the launch of a new Oxford Academic platform due
to take place in late 2016.

The new platform accepts journal articles in a flavour
of the industry-standard JATS (Journal Article Tag Suite)
data model [1]. This variant is referred to here as “SC
JATS” and is essentially a set of restrictions of JATS 1.1,
of the kind that could be enforced using Schematron.
For example, controlled vocabularies for certain attribute
values and element content, and making certain elements
compulsory which are optional in standard JATS. OUP's

backfile had to be converted to this format using an
XSLT transformation.

The 2 million articles in our collection were delivered
to Silverchair, who performed an analysis, identifying
every element used, in every context. This analysis was
compared to the SC JATS data model. For each structure
disallowed by SC JATS, we had to make a decision on
how to handle it. In most cases an SC JATS equivalent
was found, and code written into the XSLT
transformation to map the invalid structure to the agreed
SC JATS structure. In a few cases an SC JATS restriction
was loosened.

This process was over 99% successful, in terms of
content passing through the XSLT transformation and
loading successfully to the new platform. But several
thousand articles failed to load on the first pass, for
various reasons, described below. OUP's Content
Architects (CAs) were approached to provide a quick,
tactical, automated solution to get the remaining files
published on the new platform.

2. Problems to solve

OUP has been capturing journals content as XML (and
previously SGML) for over 20 years, to the evolving
standard now called JATS, formerly NLM. We also
regularly acquire journals from other publishers, which
means taking on their archive of content and
republishing it on our platform.

As a result, OUP's backfile contains a number of
variations of the basic JATS data model. The
transformation to SC JATS handled much of this
variation, but not all. We now had to account for the
remaining problems, for example:

doi:10.14337/XMLLondon17.Dunn01 Page 43 of 102

mailto:mark.dunn@oup.com
mailto:shani.chachamu@oup.com

• Missing DOIs (Digital Object Identifiers)
• Missing article titles
• Invalid subject taxonomic codes
• Badly formatted publication dates
• Image callouts with missing or incorrect file extension

The source material for this effort was a data export from
the legacy platform.

As well as XML errors, we also encountered non-
XML problems in this data, including:

• Corrupt PDFs
• Missing or misplaced images
• Multiple versions of images

In broad outline, our solution needed to automate the
following steps:

1. Unwrap each package of content (a zip file containing
the articles in a single journal issue along with their
assets).

2. Check for corrupt PDF files.
3. Fix image callouts in the XML and select

corresponding image assets to keep for loading.
4. Run the XSLT transformation to SC JATS over the

content XML.
5. Run additional XSLT to handle identified XML

errors.
6. Validate and QA the output XML.
7. Move and/or rename certain asset files.
8. Quarantine articles containing problems we were

unable to fix automatically.
9. Repackage successfully transformed content XML and

assets in the folder structure required by the platform
loader.

10. FTP the output packages to the loader.

3. Choosing the technology for the
solution

There are many languages that could be used to
implement a pipeline of tasks. Because of the need for a
rapid solution, we considered just a few options we were
familiar with.

We have in the past written pipelines in Perl, but this
is not a skill all OUP's Content Architects have. Because
of the tight deadline for this work, we needed to use a
technology that enabled more than one CA to work on
the script.

We have also dabbled with XProc, but found it a
language with a steep learning curve. At the time we last

tried to use it, XProc did not have an easy method of
handling some of the tasks, e.g. zip/unzip.

Most recently we have had success employing Ant [2]
[4] for pipelines. Ant was designed as a build tool for
Java programs, but it has been extended with a library
(Ant-Contrib) [5] of additional features, and hits a sweet
spot for our needs, covering all the steps that form part
of the solution. Ant pipelines are written in XML, so it is
easy to learn for people who are familiar with XML and
XSLT. Ant is also well supported in oXygen XML Editor
[6], which is a standard tool for OUP's Content
Architects, and is easy to deploy to a Jenkins continuous
integration environment [7], to enable other users to run
the pipeline.

4. Applying Ant to the solution

An Ant script is an XML file (usually called build.xml)
which consists of several tasks, or groups of tasks, called
“targets”, performed in a sequence determined by
@depends attributes on the <target> elements.

Breaking the pipeline down into discrete targets
allows an individual part of the script to be run, without
having to execute the entire pipeline. This is handy for
unit testing and debugging new code.

4.1. Unzip source files

Typically there were four source zip files per journal
issue, one each for the XML versions of the articles, the
PDF versions, the full-size image assets (figures etc.), and
“peripherals” (e.g. a cover image for the issue).

Figure 1. Source files for “Early Music” volume 34
issue 1

Page 44 of 102

Migrating journals content using Ant

Example 1. Ant target for unzipping the source files

<target name="unzipInputFiles"

 depends="untarInputFiles">

 <echo message="unzip input files"/>

 <for param="file" parallel="true"

 threadcount="${threadcount}">

 <fileset dir="${input.dir}" includes="*.zip"/>

 <sequential>

 <propertyregex

 override="yes"

 property="foldername"

 input="@{file}"

 replace="\1"

 regexp="^.+?[\\/]([^\\/]+)\.zip$" />

 <unzip src="@{file}"

 dest="${input.dir}/${foldername}"/>

 <delete file="@{file}"/>

 </sequential>

 </for>

 </target>

The Ant target follows a couple of similar targets which
handle the cases where the source files are in .tar

or .tar.gz format.
The task in this target uses the Ant-Contrib <for>

loop to iterate over each zip file. The <fileset> element
identifies the paths to each zip file (using the “*”
wildcard). The file parameter is set to each path in turn.

For each zip file (minus the peripherals, which are
not required in the output), a regular expression is used
to set a local property foldername whose value is the
name of the zip file, minus the .zip extension. The
regular expression allows for the path separator to be
either “/” or “\”, since the script was written and tested
on a Windows PC but run by users on a Linux server.

The <unzip> element extracts the files into a new
folder within the working directory, named after the
foldername property.

Figure 2. Unzipped source files for “Early Music”
volume 34 issue 1

4.2. Reorganize files and folders

The next step was to consolidate the XML, PDF, and
image assets under a single folder representing the

journal issue. This made it easier to check assets within a
single issue when running the script over dozens of issues
at a time, and also got us closer to the desired output
format for loading to the new platform.

Example 2. Ant target for moving the XML files

<target name="moveXML" depends="unzipInputFiles">

 <echo message="move XML files"/>

 <for param="file" parallel="true"

 threadcount="${threadcount}">

 <fileset dir="${input.dir}"

 includes="*.xml/*"/>

 <sequential>

 <propertyregex

 override="yes"

 property="foldername"

 input="@{file}"

 regexp="^(.+?)[\\/]([^\\/]+)\.(xml|XML)

 [\\/]([^\\/]+)\.(xml|XML)$"

 replace="\2"/>

 <move file="@{file}"

 todir="${input.dir}/${foldername}/xml/"/>

 </sequential>

 </for>

 </target>

This Ant target works in a similar way to the
unzipInputFiles target, iterating over each XML file and
using a regular expression to extract from its path the
string representing the journal issue name. The <move>
element moves the XML file to its new location.

Similar Ant targets were used for the images and
PDFs.

Figure 3. Reorganized folder structure for “Early
Music” volume 34 issue 1

4.3. Check for corrupt PDFs

There are (probably) many ways in which a PDF file can
be corrupt, but one indication we found we could check
for was a lack of an EOF (end of file) marker at the end
of the document. Investigation showed that this method
correctly identified the problem PDF files that would

Page 45 of 102

Migrating journals content using Ant

otherwise be rejected by the platform. The Ant targets
that performed this check contained a number of tasks.

First, a copy was made of each PDF in a journal issue
(represented by the folder parameter). We renamed the
copy (using the <mapper> element) to pretend it was a
text file and change the file extension:

<copy todir="@{folder}/pdftext">

 <fileset dir="@{folder}/pdf">

 <include name="*.pdf"/>

 <include name="*.PDF"/>

 </fileset>

 <mapper type="glob" from="*.(pdf|PDF)"

 to="*.txt"/>

</copy>

We tried to use the XSLT function unparsed-text() to
read this file, but it produced an error message:

build.xml:251: Fatal error during transformation

 using

 \tools\pdf-checker\checkPDF.xsl:

Failed to read input file

 /in/restud82-4/pdftext/rdv013.txt

 (java.nio.charset.MalformedInputException);

Caused by: net.sf.saxon.trans.XPathException

To get round this, we stripped out non-word characters
from the file:

<replaceregexp match="\W" replace="" flags="g"

 byline="true">

 <fileset dir="@{folder}/pdftext"

 includes="*.txt"/>

</replaceregexp>

The XSLT script read the text file using the unparsed-
text() function and produced a report (<xsl:result-

document>) in either an “OK” or a “broken” folder,
depending on whether the EOF character was found:

<xsl:variable name="pdfContent"

 select="normalize-space(

 unparsed-text(

 concat($PDFissueFolder,'/pdftext/',

 $PDFfileName)

)

)"/>

<xsl:choose>

 <xsl:when test="ends-with($pdfContent,'EOF')">

 <xsl:message>PDF file

 <xsl:value-of select="$PDFfileName"/>

 is OK </xsl:message>

 <xsl:result-document

 href="{concat($PDFissueFolder,'/pdftext/OK/',

 $PDFfileName)}">

 <pdf><xsl:value-of select="."/></pdf>

 </xsl:result-document>

 </xsl:when>

 <xsl:otherwise>

 <xsl:message>PDF file

 <xsl:value-of select="$PDFfileName"/>

 is broken</xsl:message>

 <xsl:result-document href="{

 concat($PDFissueFolder,'/pdftext/broken/',

 $PDFfileName)}">

 <pdf><xsl:value-of select="."/></pdf>

 </xsl:result-document>

 </xsl:otherwise>

</xsl:choose>

Ant has an <xslt> element to handle running this
transformation:

<xslt style="tools/pdf-checker/checkPDF.xsl"

 in="${input.dir}/${PDF.issuefolder}/

 pdftext/${PDF.fileName}in.xml"

 out="${input.dir}/${PDF.issuefolder}/

 pdftext/${PDF.fileName}out.xml"

 reloadstylesheet="true">

 <factory

 name="net.sf.saxon.TransformerFactoryImpl"/>

 <param name="PDFfileName"

 expression="${PDF.fileName}"/>

 <param name="PDFissueFolder_base"

 expression="${input.dir}/${PDF.issuefolder}"/>

</xslt>

The Ant XSLT task requires either a single input and
output file, or a specified input and output folder. We
were only interested in the report generated as a

Page 46 of 102

Migrating journals content using Ant

byproduct of reading the text, so we created dummy
input and output files, which were deleted (using Ant's
<delete> element) once they had served their purpose.

Finally, an entire journal issue was quarantined if any
corrupt PDFs were found within it. Because of the way
the platform loader works, it was simpler to quarantine
an entire issue until the problem was fixed rather than
load a partial issue to the platform and add the missing
material later on.

Example 3. Ant target for quarantining issues
containing corrupt PDFs

<target name="catchBrokenPDFs"

 depends="checkPDFText">

 <for param="folder" parallel="true"

 threadcount="${threadcount}">

 <dirset dir="${input.dir}/" includes="*" />

 <sequential>

 <var name="brokenPDFs" unset="true"/>

 <propertyregex override="yes"

 property="issuefolder"

 input="@{folder}"

 regexp="^(.+?)[\\/]([^\\/]+)$"

 replace="\2"/>

 <condition property="brokenPDFs">

 <available file="@{folder}/pdftext/broken"

 type="dir"/>

 </condition>

 <move todir="${output.dir}/errors/

 error5-brokenPDFs/${issuefolder}"

 if:set="brokenPDFs">

 <fileset dir="@{folder}"/>

 </move>

 </sequential>

 </for>

</target>

This target uses the Ant-Contrib <for> loop again to
iterate over each issue. A property brokenPDFs is set using
the <condition> element, if the PDF “broken” folder
exists within the issue (the <available> element checks
for the folder's existence).

The entire issue is quarantined to an errors folder
using <move>, if the brokenPDFs property is set (@if:set).
Users can then check the broken folder to see which
PDFs caused the problem.

4.4. Transform article XML to SC JATS

An Ant target was used to perform the XSLT
transformation to SC JATS. (The Ant features used in

this target have already been covered in this paper, so are
not repeated here.)

4.5. Handle images

A journal issue cannot be loaded to the new platform
unless all the images called out in the article XML can be
found in the package.

Example 4. Image callout in JATS XML

<graphic xmlns:xlink="http://www.w3.org/1999/xlink"

 xlink:href="cah188f1.jpg"/>

The source material exhibited a number of problems with
images:

• Callout in JATS XML is incomplete, lacking a file
extension. The incomplete callout may have multiple
possible matches in the source files (e.g. cah188f1.jpg,
cah188f1.jpeg, cah188f1.png)

• The file named in the JATS @xlink:href attribute
includes a file extension, however there is no such file
present among the source files for the issue.

• The file named in the JATS @xlink:href attribute is
empty (zero bytes).

The first step in this part of the pipeline was to run a pre-
existing script which generates a report on images in a
folder.

Page 47 of 102

Migrating journals content using Ant

Example 5. Ant code to run an external script

<if>

 <os family="windows"/>

 <then>

 <echo>Running getImageSizes.exe

 (Windows)</echo>

 <exec executable="

 tools/image-file-ext/getImageSizes.exe">

 <!-- input folder -->

 <arg value="@{folder}/jpeg"/>

 <!-- output folder (for output.xml) -->

 <arg value="@{folder}"/>

 </exec>

 </then>

 <else>

 <echo>Running getImageSizes.php</echo>

 <exec executable="php">

 <arg value="

 tools/image-file-ext/getImageSizes.php"/>

 <!-- input folder -->

 <arg value="@{folder}/jpeg"/>

 <!-- output folder (for output.xml) -->

 <arg value="@{folder}"/>

 </exec>

 </else>

</if>

We used the Ant-Contrib <if> structure to run different
versions of the script, depending on which environment
it was running in. The <os> element checks the operating
system environment. The <exec> element calls the script,
with arguments passed using the <arg> element.

Example 6. Output of getImageSizes script

<images>

 <image width="909" height="689"

 file="in/earlyj_34_1/jpeg/cah188f1.jpeg"/>

 <image width="1280" height="1173"

 file="in/earlyj_34_1/jpeg/cah188f10.jpeg"/>

 <image width="819" height="710"

 file="in/earlyj_34_1/jpeg/cah188f11.jpeg"/>

 <image width="1800" height="767"

 file="in/earlyj_34_1/jpeg/cah188f12.jpeg"/>

 ...

</images>

The next step was to run an XSLT transformation over
each content XML file to check and fix the image
callouts.

The XSLT code contains a template for the
@xlink:href attribute in the JATS XML. Its value is
compared with the @file attributes in the output of the

getImageSizes script, ignoring any <image> elements
without a @width attribute (these are the zero-byte
images). The XSLT ignores any image extension
information provided in the @xlink:href, as it is not
reliable, and also checks for case-insensitive matches.

If there is more than one match (e.g. if the same file
name is found with different image formats), then the
XSLT code chooses a file extension using a defined order
of preference (.tif, .jpg, .png, .gif).

If there is no match, the XSLT code generates a
report (<xsl:result-document>) which is used in a later
step to quarantine the journal issue.

When this is complete, all XML files (which have not
been quarantined) must contain only valid image
callouts, but the images folder may contain files which
are not called out in the XML and so cannot be loaded
to the platform.

To keep only the required images, the Ant pipeline
performs another XSLT transformation, which runs over
each content XML file and generates a <xsl:result-
document> for each image callout, in a folder called
keepimages. This <xsl:result-document> has the same
name as the valid image asset it refers to, e.g.
cah188f1.jpeg, although it is empty.

This keepimages directory is then used as a reference
list on which image assets to move into the final package,
using a <for> loop.

Page 48 of 102

Migrating journals content using Ant

Example 7. Ant target to keep only images referenced
in JATS XML

<target name="moveImageFiles">

 <!--

 for each fake image file in keepimages,

 move the equivalent real image asset

 -->

 <for param="files" parallel="true"

 threadcount="${threadcount}">

 <path>

 <fileset dir="${input.dir}/"

 includes="*/*/keepimages/*"/>

 </path>

 <sequential>

 <propertyregex

 override="yes"

 property="issuefolder"

 input="@{files}"

 regexp="^(.+?)(build[\\/]in[\\/])

 (.+?)([\\/]xml4[\\/]

 keepimages[\\/])(.+?)$"

 replace="\3"/>

 <propertyregex

 override="yes"

 property="imagefilename"

 input="@{files}"

 regexp="^(.+?)(build[\\/]in[\\/])

 (.+?)([\\/]xml4[\\/]

 keepimages[\\/])(.+?)$"

 replace="\5"/>

 <copy todir="${output.dir}/

 ${issuefolder}/Assets">

 <file file="${input.dir}/${issuefolder}/

 jpeg/${imagefilename}"/>

 </copy>

 </sequential>

 </for>

</target>

4.6. Tidy up the article XML

An Ant target was used to perform another XSLT
transformation to fix certain problems in the article
XML, any of which would prevent the issue from
loading successfully to the platform:

• Missing DOI (Digital Object Identifier).
• Missing article title.
• Invalid subject taxonomic code.
• Badly formatted publication date.

4.6.1. Insert missing DOIs

We had assigned DOIs [3] to the articles, but not (yet) in
the article XML itself. Our content holdings were
summarized in XML files which were used as lookup files
for the DOIs.

Example 8. Holdings file earlyj.xml

<journal journalCode="earlyj"

 xmlns="http://xmlns.oup.com/journals">

 <volume volumeNumber="38">

 <issue issueNumber="1">

 <article doi="10.1093/em/caq003"

 title="Editorial"/>

 <article doi="10.1093/em/cap131"

 title="Early wind music"/>

 <article doi="10.1093/em/cap128"

 title="Viva Biber!"/>

 <article doi="10.1093/em/cap133"

 title="Bach keyboard music"/>

 <article doi="10.1093/em/cap130"

 title="A century of tragédie en musique"/>

 <article doi="10.1093/em/cap132"

 title="Old friends and new discoveries"/>

 ...

 </issue>

 </volume>

 ...

</journal>

The attribute values @journalCode, @volumeNumber,
@issueNumber, and @title in this file correspond to values
held in the article XML, enabling us to identify the DOI.

Page 49 of 102

Migrating journals content using Ant

Example 9. JATS metadata elements used to look up
the article DOI

<article>

 <front>

 <journal-meta>

 <journal-id journal-id-type="publisher-id">

 earlyj

 </journal-id>

 ...

 </journal-meta>

 <article-meta>

 <title-group>

 <article-title>

 Early wind music

 </article-title>

 </title-group>

 ...

 <volume>38</volume>

 <issue>1</issue>

 ...

 </article-meta>

 </front>

 ...

</article>

The XSLT script populates a variable with the matching
<article> element, from which we obtain its DOI (@doi
attribute value) which is inserted into the XML.

<xsl:variable

 name="doi-lookup-article"

 as="element()*"

 select="

 if ($doi-lookup-document)

 then $doi-lookup-document/j:journal

 /j:volume[@volumeNumber = $vol]

 /j:issue[@issueNumber = $iss]

 /j:article[@title = $article-title]

 else () "/>

4.6.2. Insert (or report) missing article title

This problem occurred occasionally in older print
journals, when a number of separate short items in the
journal issue's front matter were captured under a single
heading, e.g. “In this issue”, “Calendar of events”. The
heading was present in the article XML but in a different
element, and it was approved by the business
stakeholders that certain heading values would simply be
copied to become the article title.

A report (<xsl:result-document>) was generated for
other missing titles, and the presence of these report files
was used to quarantine an issue which exhibited this
problem.

4.6.3. Remove invalid subject taxonomic code

Some journals use particular taxonomies to classify
articles. For example, economics journals use an industry
standard taxonomy called “JEL”, named after the Journal
of Economic Literature, for which it was developed.

Example 10. JATS structure for capturing subject
taxonomy codes

<subj-group

 subj-group-type="category-journal-collection">

 <subject>JEL/D81</subject>

 <subject>JEL/G11</subject>

</subj-group>

We hold copies of these taxonomies in the SKOS (Simple
Knowledge Organization System) RDF format [8].

Page 50 of 102

Migrating journals content using Ant

Example 11. SKOS fragment for a JEL code

<rdf:Description rdf:about="http://data.oup.com/taxonomy/JEL/D81">

 <rdf:type rdf:resource="http://www.w3.org/2004/02/skos/core#Concept"/>

 <rdfs:label xml:lang="en">D81 - Criteria for Decision-Making under

 Risk and Uncertainty</rdfs:label>

 <skos:prefLabel xml:lang="en">D81 - Criteria for Decision-Making under

 Risk and Uncertainty</skos:prefLabel>

 <skos:broader rdf:resource="http://data.oup.com/taxonomy/JEL/D8"/>

 <skos:inScheme rdf:resource="http://data.oup.com/taxonomy/JEL/ConceptScheme"/>

 <skos:definition xml:lang="en">Covers mostly theoretical studies about

 issues related to criteria for decision making under risk and uncertainty.

 Empirical studies that are of general interest are also classified

 here.</skos:definition>

 <skos:scopeNote xml:lang="en">Studies that incorporate risk or uncertainty

 in a simple or a conventional manner should not be classified here, for

 example studies simply using the well-known expected utility paradigm.

 Studies about insurance and insurance companies (which should be classified

 under G22) should be cross-classified here only if they are also of general

 relevance to the subject matter treated in this category.</skos:scopeNote>

</rdf:Description>

The XSLT code contains a template for the <subject>
element. Its value is compared with the @rdf:about

attributes in the SKOS file. A non-matching subject code
is removed from the article XML.

4.6.4. Fix publication dates

Publication dates recorded in article XML are not always
complete. For example, a date in the XML may consist of
just a month and a year, where a day is also required for a
complete and valid format.

Example 12. JATS structure for capturing the print
publication date of an article

<pub-date pub-type="ppub">

 <month>February</month>

 <year>2006</year>

</pub-date>

The XSLT code contains a template to add <day>01</
day> when the publication date was missing this element.

Example 13. JATS print publication date following
the tidying-up step

<pub-date pub-type="ppub">

 <day>01</day>

 <month>February</month>

 <year>2006</year>

</pub-date>

4.7. Validate the article XML

The JATS data model is highly flexible, and the content
XML in our collection is very varied. The transformation
to SC JATS standardized the structures, but some
unusual structures in the source XML resulted in invalid
output. An Ant target was used to validate the final XML
against the SC JATS schema.

Page 51 of 102

Migrating journals content using Ant

Example 14. Ant code for validating XML against a schema

<trycatch property="err">

 <try>

 <schemavalidate file="@{file}">

 <schema

 namespace="http://specifications.silverchair.com/xsd/article/1/0/SCJATS-journalpublishing1-0.xsd"

 file="tools/SCJATS_conversion/xmlspecs/SCJATS-journalpublishing1-0.xsd"/>

 </schemavalidate>

 </try>

 <catch>

 <echo file="@{folder}/xml5/QAerrors/${basename}-invalid.xml">

 <invalid>${err} - see console log for details</invalid>

 </echo>

 </catch>

</trycatch>

We could not find a way of adding the error messages to
a report document, but they appeared in the console log
generated when the Ant pipeline was run:

[schemavalidate] Validating cvt159.xml...

[schemavalidate] cvc-complex-type.2.4.a: Invalid

 content was found starting with

 element '{issue-title}'.

One of '{fpage, elocation-id, product,

 supplementary-material, history, permissions,

 self-uri, related-article, related-object,

 abstract, trans-abstract, kwd-group,

 funding-group, conference, counts,

 custom-meta-group}' is expected.

When it was possible to automate a fix for errors
reported by this step, we put the necessary code into the
XSLT script in the previous tidying-up step.

4.8. Create output package for loading to the
platform

A sequence of Ant targets, using elements previously
described, performed a few final steps to prepare a
package for loading to the platform. For each journal
issue that was not quarantined because of an unfixable
error:

• Create a folder for the journal issue in the output area
• Move article XML files into an XML subfolder.
• Move images and PDFs into an Assets subfolder.
• Filter out unwanted files (unreferenced images, but

also others, e.g. some source folders contained
Thumbs.db files).

• Zip up the journal issue folder.

4.9. Load the journal issues

The last step in the pipeline was to be a call to SCP to
copy the files to the Silverchair loader, where they would
be automatically ingested. We did not get this step to
work, but ultimately it was not a problem, as we
managed to load the files manually.

Example 15. Ant code for transferring files by SFTP

<scp sftp="true" trust="true"

 todir="oupuser@

 filespace.silverchair.com:ProductionFolder"

 password="****">

 <fileset dir="${output.dir}">

 <include name="*.zip"/>

 </fileset>

</scp>

This step failed to work because the password contained
an ampersand, and we could find no way of escaping the
character in the Ant script for the system to recognize it.
We raised a ticket for the password to be changed, but
were able to complete the manual load of the files before
it could be addressed.

5. Running the pipeline (Windows)

We developed the pipeline on Windows PCs running
oXygen XML Editor 18.1.

oXygen [6] includes a default transformation scenario
for running Ant pipelines. We created a duplicate of this
scenario and added Java libraries to it to support the
XSLT transformations in the pipeline (Saxon and an
XML catalog resolver) and to support the (aborted)

Page 52 of 102

Migrating journals content using Ant

Figure 4. Java libraries configured for running Ant in oXygen

loading step (Java Secure Channel [9], an
implementation of SSH2).

6. Running the pipeline (Linux)

We have access to a Linux server running an instance of
the Jenkins continuous integration environment. This is
what we wanted our end users to work in. This ensured
they were always using the current code, because it was
updated from our SVN repository each time the job was
run. It also meant that the process was not hogging
resources on their PCs, and gave us access to the output
of each job, including log files, so we could easily
troubleshoot issues and use the output to improve the
code.

We set up a project on Jenkins to run the Ant
pipeline. We have a few reservations about Jenkins: it
doesn't always connect successfully to our SVN
repository, resulting in failed builds; it uses a lot of disk
space if you want to keep multiple builds;
documentation is not comprehensive. But it met our
needs for this task.

The project configuration included:

• Settings for certain parameters in the Ant script.
• Instructions to pull in the pipeline and associated

XSLT scripts, DTD and XML Schema files, etc. from
our code repository.

• Paths to Java libraries for Saxon, the Apache catalog
resolver, and Ant-Contrib.

Page 53 of 102

Migrating journals content using Ant

Figure 5. Jenkins configuration for SVN connection

7. Dealing with “quarantined”
journal issues

We developed the pipeline to the point where it could
automatically fix most of the problems it encountered.
This required some pragmatic business decision-making,
e.g. when a taxonomic code was invalid, we could not
spend time identifying the correct code; we just deleted
the invalid code.

At certain points in the pipeline, a journal issue
would be quarantined if an automated fix could not be
made, e.g. when the output XML was invalid or an
image could not be found in the source data. The issues
which had come through the process successfully could
now be loaded to the new platform, and the quarantined
issues were dealt with manually.

In some cases where the poor structure of the source
XML meant that the output of the SC JATS
transformation was invalid, there were not enough
examples of the problem to justify writing a fix in XSLT,
so we fixed those cases manually.

Where an image could not be traced in our source
data, or a PDF was reported as corrupt, we pulled the
relevant files from the legacy platform by visiting the
article page.

But overall we were left with dozens rather than
hundreds of manual fixes, which was a manageable
amount in the time available to us.

Page 54 of 102

Migrating journals content using Ant

8. Regression testing in Ant

The development of this pipeline was iterative. When a
new loader error was seen, we built an automated fix into
the pipeline where this was possible.

Although this pipeline was a one off, unit testing and
regression testing is something we've been building into
our processes over the years.

We discovered a neat way to do this in Ant, namely
creating a “regression test” task to run the pipeline as
many times as necessary with different data and
parameters, and then compare the output with a
benchmark previous build. We used oXygen's “Compare
Directories” tool to make the comparison. On projects
where we have implemented this process, testing time has

been significantly reduced and we have caught errors that
might otherwise have been missed.

<target name="regressiontest">

 <echo message="Regression testing"/>

 <antcall target="all" inheritall="false">

 <param name="data.dir"

 location="data/regressiontest/OHO"/>

 <param name="dtd" value="OxEncyclML"/>

 <param name="pipeline" value="OHO"/>

 <param name="zip.output" value="false"/>

 <param name="DEBUG" value="true"/>

 <param name="build.dir"

 value="build_regressiontest/OHO"/>

 </antcall>

 <antcall target="all" inheritall="false">

 <param name="data.dir"

 location="data/regressiontest/OSO"/>

 <param name="dtd" value="OxChapML"/>

 <param name="pipeline" value="OSO"/>

 <param name="zip.output" value="false"/>

 <param name="DEBUG" value="true"/>

 <param name="build.dir"

 value="build_regressiontest/OSO"/>

 </antcall>

</target>

Bibliography

[1] JATS: Journal Article Tag Suite (ANSI/NISO Z39.96 Version 1.1). 06 January 2016. NISO.
http://www.niso.org/standards/z39-96-2015/

[2] The Apache Ant Project. Apache Software Foundation.
http://ant.apache.org

[3] Digital Object Identifier System (DOI). International DOI Foundation.
https://www.doi.org

[4] Ant: The Definitive Guide. 2nd edition. Steve Holzner. O'Reilly. 2005.
[5] ANT Contrib. Curt Arnold and Matt Inger.

https://sourceforge.net/projects/ant-contrib/
[6] oXygen XML Editor. SyncRO Soft SRL.

http://www.oxygenxml.com/
[7] Jenkins CI.

http://jenkins-ci.org
[8] Simple Knowledge Organization System (SKOS). World Wide Web Consortium (W3C).

https://www.w3.org/2004/02/skos/
[9] Java Secure Channel. JCraft.

http://www.jcraft.com/jsch/

Page 55 of 102

Migrating journals content using Ant

http://www.niso.org/standards/z39-96-2015/
http://ant.apache.org
https://www.doi.org
https://sourceforge.net/projects/ant-contrib/
http://www.oxygenxml.com/
http://jenkins-ci.org
https://www.w3.org/2004/02/skos/
http://www.jcraft.com/jsch/

Improving validation of structured text
Jirka Kosek

<jirka@kosek.cz>

Abstract

XML schema languages are mature and well understood tool
for validation of XML content. However the main focus of
schema languages is on validation of document structure and
values adhering to few relative simple standard data types.
Controlling order and cardinality of elements and attributes
is very easy in all of DTD, W3C XML Schema and RELAX
NG. Checking that element/attribute values is number, date
or string of particular length is also very easy in both W3C
XML Schema and RELAX NG with XSD datatypes.

However there are situations when traditional schema
languages can not offer much validation. Many vocabularies
are using structured text inside elements and attributes
because it is more practical or concise than to express the
same structure using additional elements and attributes. In
many cases structured text can be described by grammar. In
this paper/presentation I will show how to mix classical
validation against XML schema with invocation of
grammar based validation for elements/attributes containing
structured text from Schematron schema. Proposed solution
uses XSLT parsing function generated by REx from
grammars and shows how to invoke code generated by REx
from Schematron rules. Other integration techniques will be
explored as well.

Keywords: text validation, grammars, XML schema, text
parsing

1. Introduction

XML schema languages are mature and well understood
tool for validation of XML content. However the main
focus of schema languages is on validation of document
structure and values adhering to few relative simple
standard data types. Controlling order and cardinality of
elements and attributes is very easy in all of DTD, W3C
XML Schema and RELAX NG. Checking that element/
attribute values is number, date or string of particular
length is also very easy in both W3C XML Schema and
RELAX NG with XSD datatypes.

However there are situations when traditional schema
languages can not offer much validation. Many
vocabularies are using structured text inside elements and

attributes because it is more practical or concise than to
express the same structure using additional elements and
attributes. For example in SVG path to be drawn is
expressed by very concise syntax:

<path d="M100,200 C100,100 250,100

 250,200 S400,300 400,200" />

where d attribute contains string where each letter starts
command (e.g. M means “move to”, C means “draw
curve”, …) and numbers are expressing coordinates or
other measures. In traditional schema languages we can
not do much about validation of such path. We can try
to invent very convoluted regular expression checking if
path syntax is correct or not. But creating and debugging
such regular expression is a nightmare. And even if we
will succeed error reporting will not be very user-friendly
as checking value against regular expression yields only
matches/non-matches result. If the value is not matching
then there is no indication what has been wrong –
missing comma, wrong letter used, …

Microsyntaxes like above mentioned draw path are
relatively common in a real world XML documents, for
example:

• HTML derived vocabularies often support style

element and attribute containing complete cascading
stylesheet or at least declaration part of CSS rule;

• syntax of citations in many scientific and legal
documents is quite often beyond what can be
reasonably validated using regular expressions;

• some XML vocabularies are badly designed and
expect that numbers and dates are written using locale
specific syntax instead requiring lexical form of
standard types like xs:decimal or xs:date.

2. Current status of text validation
support

Idea behind XML is that complex structures are
represented by corresponding structure of elements and
attributes. Text content of elements or attribute values
should then contain only simple values like numbers,
dates or string values. However in reality the distinction
is not that sharp and many vocabularies are using strings

doi:10.14337/XMLLondon17.Kosek01Page 56 of 102

mailto:jirka@kosek.cz

for representing more or less complex structures. Lets
look how current schema languages can cope with
validation of such structured text content.

2.1. Custom data types based on regular
expressions

Regular expression is well known tool for pattern
matching on text strings. Designing and understanding
regular expressions is quite easy as long as a text structure
we want to validate is not very complex. For example if
we would like to validate VAT element containing VAT
identification number [1] we can describe this very easily
with regular expression. VAT number starts with two
letter country code and then with number which can
have 2 to 13 digits and in some countries there can be
not only digits but also letters. This is very easy to declare
in W3C XML Schema:

<xs:element name="VAT">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[A-Z]{2}[0-9A-Z]{2,13}"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

RELAX NG also supports regular expressions so we can
apply similar approach here as well:

element VAT {

 xsd:string { pattern = "[A-Z]{2}[0-9A-Z]{2,13}" }

}

This regular expression is simple and anyone with basic
knowledge of regular expressions can quickly understand
what values will be matching the regular expression. But
we might want to make regular expression more
stringent, for example by explicitly listing country codes:

(AT|BE|BG|HR|CY|CZ|DK|EE|FI|FR|DE|EL|HU|IE|IT|LV|

LT|LU|MT|NL|PL|PT|RO|SK|SI|ES|SE|GB)[0-9A-Z]{2,13}

We can be even ambitious and check for national
specifics. For example in Austria VAT number is always
ATU followed by 8 characters. In Belgium VAT number
always has 10 digits and first digit must be 0 or 1. We
can modify our regular expression accordingly:

(ATU[0-9A-Z]{8}|BE[01][0-9]{9}|(BG|HR|CY|CZ|DK|EE|

FI|FR|DE|EL|HU|IE|IT|LV|LT|LU|MT|NL|PL|PT|RO|SK|

SI|ES|SE|GB)[0-9A-Z]{2,13})

It is still possible to decipher what is the aim of such
regular expression but it takes more time. Now try to
imagine how such expression will look like if we would

use national specific patterns for each country similarly
to Austria and Belgium.

Lets try something more complex – create regular
expression for checking SVG paths. With little bit of
simplification a path consist of sequence of drawing
commands. Each command strarts with letter and then
follows different number of coordinates or other
numbers. Lets start with simple move command. It starts
with M letter (case insensitive) and it is followed by a
sequence of coordinates. Each coordinate is two numbers
usually separated by space or comma:

[Mm]\s*([+-]?([0-9]+|[0-9]*\.[0-9]+(e[+-][0-9]+)?)

(,|\s*)[+-]?([0-9]+|[0-9]*\.[0-9]+(e[+-][0-9]+)?)

\s*)+

This is of course not very readable. Main reason for bad
readability is that there is a lot of repetition. For example
regular sub-expression for number ([+-]?([0-9]+|[0-9]*
\.[0-9]+(e[+-][0-9]+)?)) is repeated twice here. And if
we would like expand this regular expression to cover all
other SVG path commands we will get unreadable
monster.

It would be possible to improve readability if we
could use something like variables in regular expression.
However this is supported neither by W3C XML
Schema nor by RELAX NG. However we can use this
approach in Schematron:

<sch:pattern>

 <sch:let name="number" value=

 "'[+-]?([0-9]+|[0-9]*\.[0-9]+(e[+-][0-9]+)?)'"/>

 <sch:rule context="svg:path">

 <sch:assert

 test="matches(@d,

 concat('[Mm]\s*(',

 $number,

 '(,|\s*)',

 $number,

 ')+'

)

)">Invalid path</sch:assert>

 </sch:rule>

</sch:pattern>

It is questionable if this is really more readable. We are
not repeating pattern for number in the regular
expression. But the regular expression itself is synthesized
from several smaller pieces using concat() function –
approach where special attention must be given to proper
escaping and quoting of all pieces.

Page 57 of 102

Improving validation of structured text

1 Source: https://www.w3.org/TR/SVG2/paths.html#PathDataBNF

2.2. ISO/IEC 19757-5

Interesting standard ISO/IEC 19757-5 (Extensible
Datatypes, formerly know also as Datatype Library
Language) has been developed couple of years ago
although never implemented to my knowledge. Work on
Extensible Datatypes has been motivated by the lack of
datatype support in RELAX NG. Unless we want stick to
datatypes from W3C XML Schema or implement new
datatypes by using validator API there are just two types
string and token available.

Extensible Datatypes allowed definition of new data
types. Lexical representation of new data type was usually
declared by using regular expression. In order to improve
readability of expression it is possible to ignore
whitespaces in expression and split it to several lines
making it more readable. Also it is possible to capture
text matching group in a regular expression into named
variable and define additional constraints on such
variable using XPath. This could help with writing more
complex expressions and also provide better error
messages [2].

We can only speculate why Extensible Datatypes has
not succeeded. But it would be nice to have some of their
flexibility around regular expressions available in W3C
XML Schema and RELAX NG.

2.3. Limitations of using regular expressions
for validation

As we have seen on previous examples regular expressions
are very powerful mechanism for creating constraints for
various microsyntaxes. However there are two big issues
with using regular expressions. First of them is
maintainability and sustainability of regular expressions.
For non-trivial tasks regular expressions are becoming
more and more complex. Some people might
characterize regular expressions as a “write-only”
language as it is quite difficult to read and understand
already existing regular expressions.

From user point of view regular expression are not
very friendly mechanism either. If value is not matching
regular expression then validation fails. Many if not all
validators will simply say that value is not valid against
regular expression. But you will not get any hint about
possible problems in your file like: is the number used on
place where there should be only letter, unknown
country has been used, etc. Outcome of checking against
regular expression is simply binary yes/no answer.

3. Describing syntax using
grammars

The question is whether we can do better than using
regular expressions. Of course we can. One of
foundations of computer science is a formal language
theory. In this theory you can use grammars to describe
valid syntax of formal language. A typical example of
formal language are programming languages. For each
programing language there is usually grammar describing
its syntax. Grammar is consisting of rules that describe
how individual characters can be combined together to
form syntactically correct source code.

There are also existing grammars for data formats like
XML or JSON. For very specific microsyntaxes we can
create our own grammar. For example VAT number
grammar can be as simple as:

VATNumber ::= country number

country ::= letter letter

number ::= (digit | letter)+

letter ::= [A-Z]

digit ::= [0-9]

First rule VATNumber says that VAT number consist from
country code followed by number. Then next rule says
that country code is two letters. Third rule says that
number is sequence of arbitrary digits and letters. Two last
lines define what is letter and digit.

For our SVG path example we don't have to create
grammars ourselves. Grammar is part of SVG
specification [3], see Example 1, “Grammar for SVG
path from SVG 2 specification”.

Example 1. Grammar for SVG path from SVG 2
specification1

svg_path::= wsp* moveto? (moveto drawto_command*)?

drawto_command::=

 moveto

 | closepath

 | lineto

 | horizontal_lineto

 | vertical_lineto

 | curveto

 | smooth_curveto

 | quadratic_bezier_curveto

 | smooth_quadratic_bezier_curveto

 | elliptical_arc

 | bearing

Page 58 of 102

Improving validation of structured text

https://www.w3.org/TR/SVG2/paths.html#PathDataBNF

moveto::=

 ("M" | "m") wsp* coordinate_pair_sequence

 wsp* closepath?

closepath::=

 ("Z" | "z")

lineto::=

 ("L"|"l") wsp* (coordinate_pair_sequence |

 closepath)

horizontal_lineto::=

 ("H"|"h") wsp* coordinate_sequence

vertical_lineto::=

 ("V"|"v") wsp* coordinate_sequence

curveto::=

 ("C"|"c") wsp* (curveto_coordinate_sequence |

 (coordinate_pair_sequence?

 closepath))

curveto_coordinate_sequence::=

 coordinate_pair_triplet

 | (coordinate_pair_triplet comma_wsp?

 curveto_coordinate_sequence)

smooth_curveto::=

 ("S"|"s") wsp*

 (smooth_curveto_coordinate_sequence

 | (coordinate_pair_sequence? closepath))

smooth_curveto_coordinate_sequence::=

 coordinate_pair_double

 | (coordinate_pair_double comma_wsp?

 smooth_curveto_coordinate_sequence)

quadratic_bezier_curveto::=

 ("Q"|"q") wsp*

 (quadratic_bezier_curveto_coordinate_sequence |

 (coordinate_pair_sequence? closepath))

quadratic_bezier_curveto_coordinate_sequence::=

 coordinate_pair_double

 | (coordinate_pair_double comma_wsp?

 quadratic_bezier_curveto_coordinate_sequence)

smooth_quadratic_bezier_curveto::=

 ("T"|"t") wsp* (coordinate_pair_sequence |

 closepath)

elliptical_arc::=

 ("A" | "a") wsp*

 (elliptical_arc_argument_sequence

 | (elliptical_arc_argument_sequence?

 elliptical_arc_closing_argument))

elliptical_arc_argument_sequence::=

 elliptical_arc_argument

 | (elliptical_arc_argument comma_wsp?

 elliptical_arc_argument_sequence)

elliptical_arc_argument::=

 number comma_wsp? number comma_wsp? number

 comma_wsp

 flag comma_wsp? flag comma_wsp? coordinate_pair

elliptical_arc_closing_argument::=

 number comma_wsp? number comma_wsp? number

 comma_wsp

 flag comma_wsp? flag comma_wsp? closepath

bearing::=

 ("B" | "b") wsp* bearing_argument_sequence

bearing_argument_sequence::=

 number | (number comma_wsp?

 bearing_argument_sequence)

coordinate_pair_double::=

 coordinate_pair comma_wsp? coordinate_pair

coordinate_pair_triplet::=

 coordinate_pair comma_wsp? coordinate_pair

 comma_wsp? coordinate_pair

coordinate_pair_sequence::=

 coordinate_pair | (coordinate_pair comma_wsp?

 coordinate_pair_sequence)

coordinate_sequence::=

 coordinate | (coordinate comma_wsp?

 coordinate_sequence)

coordinate_pair::= coordinate comma_wsp? coordinate

coordinate::= sign? number

sign::= "+"|"-"

number ::= ([0-9])+

flag::=("0"|"1")

comma_wsp::=(wsp+ ","? wsp*) | ("," wsp*)

wsp ::= (#x9 | #x20 | #xA | #xC | #xD)

Page 59 of 102

Improving validation of structured text

Several competing syntaxes are in use for writing down
grammars like BNF, ABNF, EBNF, … Also there are
several different types of grammars like context-free or
regular which affects what we can express with a
grammar.

As we can see grammar is concise and readable way
how to describe allowed syntax. Because grammar is
written in a formal way it can be processed by computer.
It is easy to take grammar and check whether some text is
adhering to grammar. Also parser can be constructed
from grammar and then used for parsing of texts
adhering to grammar. Result of parsing is usually tree
which represents input text broken into smaller pieces in
a structure corresponding to the grammar.

Because parsing tree can be easily represented as
XML there are several projects that are using grammars
to parse non-XML formats into virtul XML trees that
can be then processed using well known XML tools [4]
[5].

Problem we are trying to solve is little bit more
complex because we need to validate full XML document
which can contain complex text structures in few
elements and attributes. And only those selected values
should be validated against respective grammar. So we
need to integrate classical XML validation with grammar
based validation of selected text fragments of input XML
file.

Grammars should feel familiar to XML users because
schema languages like DTD, W3C XML Schema and
RELAX NG are also grammar based. What is different is
input on which grammar operates – XML schemas are
grammars that operate on trees while classical grammars
are operating on string sequences. But many principles
are very similar between tree (sometimes also called
hedge) grammars and classical grammars [6].

Similarity is so big that there even exists standardized
language Data Format Description Language (DFDL)
[7] which is basically W3C XML schema with embedded
annotations which define how to parse text or binary
data into XML structure corresponding to the schema.

4. Using grammars for validation of
texts inside XML documents

As we have shown grammars are effective tool how to
describe microsyntaxes appearing inside elements and
attributes. But now we need to integrate this into existing
XML validating tools. We need to generate parser from
the grammar and then invoke this parser during
validation for checking values. We can not use W3C
XML Schema or RELAX NG for such task as those

languages can not directly invoke external code during
validation. However Schematron with proper binding
can invoke code written in other languages like XPath,
XQuery or XSLT. For example we can invoke parsing
function compiled into XSLT language directly from
Schematron.

4.1. Generating parsing code from grammar

There are many tools that can use grammars and generate
parsers from them and do other fancy things as well.
However number of available tools that can generate
parser code in XSLT is much more limited. One such
popular tool is REx parser generator from Gunther
Rademacher.

REx can take EBNF grammar as an input and
generate corresponding parsing code in many languages
including XSLT and XQuery. This is reason why this tool
is so popular in XML community. We will be using it
through the rest of this paper.

We can control in what language parser will be
generated by option, in our case we will be using -xslt
option. If we will try to compile grammar taken directly
from SVG2 spec we will get error messages like:

rex -xslt svg-path-2-w3c.ebnf

svg-path-2-w3c.ebnf: syntax error: line 97,

 column 13:

 96 sign::= "+"|"-"

 97 number ::= ([0-9])+

 ---------------^

 98 flag::=("0"|"1")

 expected:

 Whitespace

 Name

 StringLiteral

 '('

 ')'

 '/'

 '<?'

 '|'

Page 60 of 102

Improving validation of structured text

http://www.bottlecaps.de/rex/

1 During work on the paper bugs has been found in grammar and reported. Unfortunately this happens if no one is using grammar for its
real purpose.

This is caused by the fact that there are small differences
in EBNF syntax supported by different tools. We need to
make few cosmetical changes in grammar. Updated
grammar is available in GitHub repository
https://github.com/kosek/xmllondon-2017.1 We can try
to generate parser from this updated grammar again:

strong-LL(3) conflict #12 in 2nd alternative of

 choice operator of production

 coordinate_pair_sequence:

 conflicting lookahead token sequences:

 sign number sign

 number sign number

 number comma_wsp number

 sign number comma_wsp

This means that there are ambiguities in grammar and it
is not possible to generate very efficient parser that will
read just few additional tokens in advance. But we can
instruct REx to overcome this limitation by using -
backtrack option. The generated code will then use
backtracking to decide which branch to use when there is
ambiguity:

rex -xslt -backtrack svg-path.ebnf

12 strong-LL(3)-conflicts handled by backtracking

This finally generates parsing code in XSLT. New file
svg-path.xslt has been generated. It contains a lot of
functions the most important is p:parse-svg-path().
This function can be called with SVG path as an input. If
it's called with path that corresponds to grammar empty
sequence is returned. ERROR element with an error
message is returned instead if function is called on an
incorrect SVG path . For example calling p:parse-svg-
path('L 100,100') would return the following value:

<ERROR b="1" e="1" s="14">lexical analysis failed

while expecting [eof, wsp, 'M', 'm']

at line 1, column 1:

...L 100,100...</ERROR>

The parser correctly refuses this string as valid SVG path
as path must start with moveto command (denoted by M
letter). Error message says that first character of SVG
path must be either end of path (ie. empty path, denoted
by eof production rule in grammar), whitespace
(denoted by wsp production rule) or M letter (in any case).
This is much better error message then simple yes/no
verdict from regular expression matching.

All functions in generated XSLT file are by default
belonging to namespace that corresponds to top-level

prouction rule name. In our case namespace binding for
prefix p would be xmlns:p="svg-path". This is not
completely correct as namespaces should be using URIs.
We can use -name parameter and instruct REx to generate
all functions in a specific namespace:

rex -xslt -backtrack -name \

http://example.com/parser/svg-path svg-path.ebnf

12 strong-LL(3)-conflicts handled by backtracking

4.2. Integration of parsing code into
Schematron

Schematron is very flexible validation language which
can use many different languages to write validation
expression in. The most common language used is XPath.
Other languages including XSLT and XQuery can be
used with right implementation that supports
queryBinding attribute. As typical Schematron
implementations are XSLT based it is very common to
use XSLT 2.0 as a language for writing all conditions
inside Schematron. By using XSLT we can use some
additional functions over plain XPath. Also XSLT
specific functionality like keys or user-defined functions
might be used.

We can use REx to generate XSLT code containing
parsing functions for our grammar. But now we need to
find way how to make these functions available inside
Schematron schema. Schematron offeres two elements
which can be used for including one schema into
another.

First and very commonly used is sch:include. This
element is very similar to XInclude – basically it will be
replaced by the content of included file. It is used for
modularizing schema into more manageable smaller files,
typically each pattern is stored as an individual file.
Unfortunately this functionality is not approapriate in
our scenario because including complete XSLT
transformation into Schematron will not produce valid
Schematron schema.

However we can use less known sch:extends

element. It includes only child elements of referenced
file. So if we will point this element to document with
XSLT transformation only top level components of
transformation like function and variable declarations
will be included. There is one small glitch – sch:extends
can reference only Schematron file not XSLT
transformation. So we need to modify generated

Page 61 of 102

Improving validation of structured text

https://github.com/kosek/xmllondon-2017

transformation little bit. We have to change root element
from

<xsl:stylesheet version="2.0"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:p="http://example.com/parser/svg-path">

to Schematron schema element and add queryBinding
attribute:

<sch:schema queryBinding="xslt2"

 xmlns:sch="http://purl.oclc.org/dsdl/schematron"

 xmlns:p="http://example.com/parser/svg-path"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

It is easy and mechanical change so we can easily
automate this step. There is also another solution. REx
supports special processing instructions that can be used
inside grammar and can be used for generating custom
root element. If we will enclose original grammar with
the following processing instructions:

<?schematron

 <sch:schema queryBinding="xslt2"

 xmlns:sch="http://purl.oclc.org/dsdl/schematron"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:p="http://example.com/parser/svg-path">

?>

... original grammar ...

<?ENCORE?>

<?schematron

 </sch:schema>

?>

then we can invoke REx with additional -a option as

rex -xslt -backtrack -a schematron svg-path.ebnf

and generated code will be enclosed in sch:schema

element instead of xsl:stylesheet element and could be
directly embeded into Schematron file by using
sch:extends element:

<sch:extends href="svg-path.sch"/>

<sch:ns uri="http://example.com/parser/svg-path"

 prefix="p"/>

In the example above we are not only including file with
parsing code but also declaring prefix that can be used for
invoking parsing function.

4.3. Invoking parsing functions from
Schematron

REx generates separate parsing function for each
production rule in a grammar. In our example complete
SVG path is described be the rule svg_path and there is
correspoding function p:parse-svg_path() with the
following signature:

<xsl:function name="p:parse-svg_path" as="item()*">

 <xsl:param name="s" as="xs:string"/>

Input to the function is SVG path and output is
normally empty sequence which means that path can be
successfully parsed and is valid according to the
grammar. If path is not matching grammar then ERROR
element is generated instead:

<ERROR b="1" e="1" s="13">lexical analysis failed

while expecting [eof, wsp, 'M', 'm']

at line 1, column 1:

...100,200 C100,100 250,100 250,200S400,300 400,200

...</ERROR>

We can use such function very easily in Schematron –
cases when function returns ERROR element will be treated
as errors. The following example shows how to invoke
checking of SVG path syntax for d attribute on each
svg:path element:

<sch:rule context="svg:path">

 <sch:report test="p:parse-svg_path(@d)/

 self::ERROR">

 SVG path is incorrect. Error found:

 <sch:value-of select="p:parse-svg_path(@d)"/>

 </sch:report>

</sch:rule>

We can use such schema for checking SVG paths in all
Schematron enabled validators that support XSLT 2.0
query binding and foreign elements. Figure 1, “Error in
path reported in oXygen XML Editor user interface”
shows how is such error reported in oXygen XML Editor.

Page 62 of 102

Improving validation of structured text

Figure 1. Error in path reported in oXygen XML Editor user interface

4.4. Deep checking

As we already mentioned grammar can be used not only
for checking syntax but it can be also used for building
tree structure that represents parsed value in accordance
with production rules. If we want to use this
functionality we must use -tree option with REx:

rex -tree -xslt -backtrack -name \

http://example.com/parser/svg-path svg-path.ebnf

12 strong-LL(3)-conflicts handled by backtracking

With this option parsing functions are now returning
trees with parsed result instead of empty sequence for
strings that are matching grammar. For example result of
calling p:parse-svg_path('M100,100 L200,200') is

<svg_path>

 <moveto>

 <TOKEN>M</TOKEN>

 <coordinate_pair_sequence>

 <coordinate_pair>

 <coordinate>

 <unsigned-coordinate>

 <number>100</number>

 </unsigned-coordinate>

 </coordinate>

 <comma_wsp>,</comma_wsp>

 <unsigned-coordinate>

 <number>100</number>

 </unsigned-coordinate>

 </coordinate_pair>

 </coordinate_pair_sequence>

 <wsp> </wsp>

 </moveto>

 <drawto_command>

 <lineto>

 <TOKEN>L</TOKEN>

 <coordinate_pair_sequence>

 <coordinate_pair>

 <coordinate>

 <unsigned-coordinate>

 <number>200</number>

 </unsigned-coordinate>

 </coordinate>

 <comma_wsp>,</comma_wsp>

 <unsigned-coordinate>

 <number>200</number>

 </unsigned-coordinate>

 </coordinate_pair>

 </coordinate_pair_sequence>

 </lineto>

 </drawto_command>

 <eof/>

</svg_path>

Page 63 of 102

Improving validation of structured text

It is quite verbose piece of XML because each production
rule matched is represented as one element. In order to
generate more modest trees grammar can be augment
with additional information defining which rules should
contribute to tree building. Reduction of generated tree
is discussed in more detail in Invisible XML [8].

We can access any information in this generated
XML tree and check it further using XPath. For example
we can easily check that all coordinates are within
specified range as shown on the following example:

<sch:rule context="svg:path">

 <sch:let name="path"

 value="p:parse-svg_path(@d)"/>

 <sch:assert

 test="every $c in $path//(signed-coordinate |

 unsigned-coordinate)/number

 satisfies abs(number) le 1000">

 All coordinates must be within [-1000, 1000]

 range.

 </sch:assert>

</sch:rule>

Accessing parsing result as XML gives us infinite
opportunities for writing more advanced checks. We can
use grammar to split complex microsyntax structure into
smaller chunks and check them individually.

4.5. Comparision with regular expressions

As we have seen parsing code generated from a grammar
offers much better diagnostic messages and allows to
easily define additional checks on individual parts of
validated values. Still the biggest advantage over regular
expressions is readability of grammar.

But we should be as well aware of grammar based
approach drawbacks. Regular expressions can be used
directly as there is no need to compile grammar and
invoke it from Schematron. In some situations it might
be little bit tricky to write a correct grammar – there
should not be ambiguities in grammar. But developers of
XML schemas usually know how to overcome this as
similar limitations exist in majority of XML schema
languages.

We could also compare approaches in terms of
performance. Proper benchmarks would be needed for
this but practical experience shown that REx generated
parser has similar speed compared to regular expression
engine and can be even significantly faster for very
complex regular expressions. Also complex regular
expressions usually have quite high memory
consumption.

5. More use cases

It is not very difficult to write grammars after learning
some basics. Also for many computer languages there are
existing grammars which can be reused. So improving
validation of structured text inside XML content is quite
straightforward. There are many use-cases for using such
improved validation as many XML vocabularies are using
various microsyntaxes. Lets briefly explore some of them.

Schematron is very powerful but assert or report is
triggered only if XPath condition is true. Schematron
validator will issue error if there is syntax error in XPath
expression. But if the element name is just misspelled
error will be silently ignored. It is not rare for complex
Schematron schemas to contain constraints that are never
triggered because there are mistyped element/attribute
names. It is very hard to spot such problems unless unit
testing with a good coverage is applied or schema-aware
XPath is being used.

But we can very easily improve situation here. We
can use grammar for XPath to parse all XPath expressions
in Schematron schema and then try to lookup all
elements/attributes used in node tests in a schema for
vocabulary that Schematron schema is checking. If
lookup fails for some name it means that we are accessing
non-existent element/attribute which usually corresponds
to typo in expression.

Another example – many computer languages are
hybrid – they can embed fragments of code in different
languages to support some special functionality. The
most typical example is probably HTML and CSS. You
can embed CSS stylesheets into HTML style element
and similarly style declarations can be directly specified
in HTML style attribute. We can integrate CSS
grammar into validation workflow to easily check that
CSS property names are not mistyped etc.

Another possible use-case is “proof reading” of
textbooks about computer languages. It is very
embarrassing to find syntactically incorrect examples of
code in books about programming. As there are already
existing grammars for many programming languages it is
not hard to integrate this into processing workflow and
run syntax checks on all embedded source code
examples. Same grammars can be used for syntax
highlighting of source code.

Page 64 of 102

Improving validation of structured text

6. Better integration of grammar-
based checking into existing schema
languages

Compiling grammar into XSLT code and then invoking
it from Schematron is workable solution for validation of
microsyntaxes but it feels little bit as a hack. If such
approach should be used more commonly then
something better and more tightly integrated into
existing schema languages will be needed.

Schematron is usually not used alone it just
complements traditional validation agains W3C XML
Schema or RELAX NG. If we want to be sure that both
checks against classical schema and Schematron doing
microsyntax checking are invoked we can use NVDL [9]
to couple both schemas together:

<rules xmlns=

 "http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0">

 <namespace ns="http://www.w3.org/2000/svg">

 <validate schema="svg.xsd"/>

 <validate schema="svg-path.sch"/>

 </namespace>

</rules>

It is even possible to integrate XML validation and
microsyntax grammars directly into RELAX NG. This
language already supports datatype libraries – user can
supply implementation of few methods that are required
for validation and then new datatype can be used in a
schema in the same way as other normal datatypes. It
would be possible to create preprocessor that would take
grammar and transform it into the code that implements
validation interfaces. Then we will be able to use this
custom datatype library directly inside code, something
like this:

<element name="path">

 <attribute name="d">

 <data datatypeLibrary=

 "http://example.com/SVG-datatypes"

 type="path"/>

 </attribute>

 ...

</element>

This is workable solution but it requires preprocessing
step which will update configuration of validator. So in
practice it would be more complex then previously
mentioned Schematron based solution.

We can improve this solution and create grammar
based datatype library which will compile grammars into

parsing code on-the-fly. We can use datatype parameters
to specify location of grammar:

<element name="path">

 <attribute name="d">

 <data datatypeLibrary=

 "http://example.com/grammar-based-validation"

 type="string">

 <param name="grammar">

 http://..../location/of/grammar.ebnf

 </param>

 <param name="start-rule">svg_path</rule>

 </data>

 </attribute>

 ...

</element>

Advantage of this solution is that once validator is
extended by datatype library that understands arbitrary
grammar we can reference any grammar from a schema
and use it easily for validation.

Because of a high entry barrier of implementing
validation interface RELAX NG datatype libraries are
not as widely used as one would wish. But famous
validator.nu validator which is used for validation of
HTML5 content is using such custom datatype library.
However definition of individual datatypes is not
generated from grammars but it is written directly in
Java. There is even implementation of SVG path
checking code but reading it is not big fun compared to
reading corresponding grammar.

Another integration option is again NVDL. Schemas
referenced from NVDL can be of any type and it is
implementation dependant whether some technology is
supported or not. For example JNVDL validator can
invoke XSLT transformation directly from NVDL to
perform more algorithmically difficult checks. If we
would implement direct grammar validation support in
NVDL validator we could directly reference grammar
from the schema. We will need to use context element to

Page 65 of 102

Improving validation of structured text

https://github.com/validator/validator/blob/master/src/nu/validator/datatype/SvgPathData.java
https://github.com/validator/validator/blob/master/src/nu/validator/datatype/SvgPathData.java
http://jnvdl.sourceforge.net/

specify content of which element should be validated
against supplied schema.

<rules startMode="root" xmlns=

 "http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"

 >

 <mode name="root">

 <namespace ns="http://example.com/invoice">

 <validate schema="invoice.rng">

 <context path="VAT"

 useMode="VATNumber"/>

 </validate>

 </namespace>

 </mode>

 <mode name="VATNumber">

 <namespace ns="http://example.com/invoice">

 <validate schema="vat-number.ebnf"/>

 </namespace>

 </mode>

</rules>

We are using context element here to isolate one element
and validate it not against classical XML schema but
against grammar. Unfortunately NVDL does not provide
similar functionality for single attribute.

7. Conclusions

We have shown that XSLT parsing code generated from a
grammar can be invoked from Schematron to perform
better checks and provide more useful error messages
than regular expressions on a structured text content.
With little bit of tooling Schematron proved itself again
as a very flexible validation framework. There are several
possible ways how to integrate grammar based checks
more tightly into existing XML schema languages but
this area needs more exploration.

Source code of examples used in this article are
available at https://github.com/kosek/xmllondon-2017.

I would like to thank to Gunther Rademacher for
creating REx parser generator and for helping me to
discover some of its less known features.

Page 66 of 102

Improving validation of structured text

https://github.com/kosek/xmllondon-2017

1 FCD version of draft standard is available at
http://web.archive.org/web/20110515005051/http://www.itscj.ipsj.or.jp/sc34/open/1130.pdf

Bibliography

[1] VAT identification number. Wikipedia. Accessed: 20 May 2017.
https://en.wikipedia.org/wiki/VAT_identification_number

[2] ISO/IEC 19757-5:2011 – Information technology – Document Schema Definition Languages (DSDL) – Part 5:
Extensible Datatypes. 1
https://www.iso.org/obp/ui/#iso:std:52118:en

[3] Scalable Vector Graphics (SVG) 2. World Wide Web Consortium (W3C). 15 September 2016. Nikos
Andronikos, Rossen Atanassov, Tavmjong Bah, Amelia Bellamy-Royds, Brian Birtles, Bogdan Brinza, Cyril
Concolato, Erik Dahlström, Chris Lilley, Cameron McCormack, Doug Schepers, Dirk Schulze, Richard
Schwerdtfeger, Satoru Takagi, and Jonathan Watt.
https://www.w3.org/TR/SVG2/

[4] Invisible XML. Steven Pemberton. Montréal, Canada. Balisage. August 2013.
doi:10.4242/BalisageVol10.Pemberton01

[5] Automated Tree Drawing: XSLT and SVG. Jirka Kosek. O'Reilly Media. 8 September 2004.
http://www.xml.com/pub/a/2004/09/08/tree.html

[6] Hedge automata: a formal model for XML schemata. Murata Makoto. 1999.
http://www.horobi.com/Projects/RELAX/Archive/hedge_nice.html

[7] Data Format Description Language (DFDL) v1.0 Specification. Michael J Beckerle and Stephen M Hanson.
September 2014. OGF 2014.
https://www.ogf.org/documents/GFD.207.pdf

[8] On the Descriptions of Data The Usability of Notations. Steven Pemberton. XML Prague. 2017.
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=155

[9] ISO/IEC 19757-4:2006 – Information technology – Document Schema Definition Languages (DSDL) – Part 4:
Namespace-based Validation Dispatching Language (NVDL). 1 June 2006.
http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip

Page 67 of 102

Improving validation of structured text

http://web.archive.org/web/20110515005051/http://www.itscj.ipsj.or.jp/sc34/open/1130.pdf
https://en.wikipedia.org/wiki/VAT_identification_number
https://www.iso.org/obp/ui/#iso:std:52118:en
https://www.w3.org/TR/SVG2/
http://dx.doi.org/10.4242/BalisageVol10.Pemberton01
http://www.xml.com/pub/a/2004/09/08/tree.html
http://www.horobi.com/Projects/RELAX/Archive/hedge_nice.html
https://www.ogf.org/documents/GFD.207.pdf
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=155
http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip

XSpec v0.5.0
Sandro Cirulli

XSpec and Oxford University Press
<sandro.cirulli@oup.com>

Abstract

XSpec is an open source unit test and behaviour driven
development framework for XSLT and XQuery. XSpec
v0.5.0 was released in January 2017 and included new
features such as XSLT 3.0 support and JUnit report for
integration with continuous integration tools. The new
release also fixed long standing bugs, provided feature parity
between the Windows and MacOS/Linux scripts, integrated
an automated test suite, and updated the documentation.
XSpec v0.5.0 is currently included in oXygen 19.0.

This paper highlights the importance of testing, provides
a brief history of the XSpec project, describes the new features
available in XSpec v0.5.0 and the work currently under
development for future releases, and reports the effort of the
XML community to revive this open source project.

Keywords: XSpec, Unit Testing, Behaviour Driven
Development, Continuous Integration

1. The Importance of Testing

Testing is a fundamental part of writing software that
aims to be robust, reliable, and maintainable. In fact,
testing can be considered as a promise made to customers
and users that the code behaves as intended. Writing tests
regularly also improves the code base as it forces
developers to write smaller units of code that can be
more easily tested, debugged, and maintained. Finally,
testing acts as self-documentation and can help other
developers to understand and modify existing code.

Testing plays a central role in software development
practices such as extreme programming (XP) and test-
driven development (TDD) as well as in agile
methodologies like Scrum and Kanban. For example, in
test-driven development, unit tests (i.e. tests for
individual units of code such as a function or a method)
are usually written by developers as they write their code
in order to make sure that new features work according
to specifications and bug fixes do not break other parts of
the code base. Unit tests increase the overall quality and
maintainability of the code and it has been estimated

that unit tests alone contribute to removing an average of
30% of defects present in software [1].

Although testing is important for any serious
software developer, there aren't many testing tools for
XSLT and XQuery when compared to other
programming languages. Furthermore, their use is not
yet very widespread. Back in 2009 Tony Graham [2]
made an inventory of all the available testing frameworks
available for XML technologies - most of which are
unfortunately not actively developed any more. XSpec
aims to fill this gap by offering a testing framework and
raising awareness about testing in the XML community.

While any piece of XSLT and XQuery code can be
tested using XSpec, the greatest return on investment
occurs when testing code that gets called and reused
frequently. Functions and named scenarios are perfect fits
for unit testing as they are self-contained pieces of code
upon which other parts of the code base may rely.

Integration with other testing and automation tools is
also a key part of testing frameworks as unit tests are
typically triggered automatically on events such as
commits to the code base or software builds. Software
development practices such as continuous integration
(CI) popularized the importance of integrating
development work into the code base on a daily basis,
running test suites automatically, and providing
developers with fast feedback when new code breaks tests
or software builds. As a result, debugging and fixing bugs
at the early stages of development improves the
productivity of software developers and reduces the
overall risk and cost of code releases and software
maintenance.

2. A Brief History of XSpec

XSpec was created by Jeni Tennison in 2008 and is
inspired by the RSpec testing framework for Ruby. Jeni
Tennison presented XSpec at XML Prague 2009 [3] and
released it as open source under the MIT license on
Google Code. XSpec v0.3.0 was integrated in oXygen
14.0 in 2012 and this helped to spread its use and raise
awareness about testing among XSLT developers.

doi:10.14337/XMLLondon17.Cirulli01Page 68 of 102

mailto:sandro.cirulli@oup.com

The project was maintained and expanded by Florent
Georges who released v0.4.0-RC in 2012. Unfortunately
active development stagnated between 2012 and 2015
with no further releases. The code base was moved from
Google Code (now defunct) to GitHub in 2015.

I started contributing actively to XSpec in 2016 in
order to fix an old bug and add a new feature I
implemented at work. I forked the project and after few
months I transferred my fork to the XSpec organisation
repository under https://github.com/xspec/xspec. To my
surprise, several people started contributing by raising
issues and sending pull requests. This recreated an XSpec
community that will hopefully sustain the project in the
long term. This process culminated in release v0.5.0 in
January 2017.

XSpec is under active development and new features
and bug fixes are regularly merged into the master branch
as soon as they are available and pass the test suite. For
those who prefer a more stable version, the latest release
is available as a zip file and can be retrieved from the
official release page on GitHub [4].

3. New Features

A selection of the new features released in XSpec v0.5.0
is presented here. The full list of new features is available
in the official release notes [4]. New features come with a
test that makes sure that the feature behaves according to
the specifications. Tests also act as documentation to
show how the feature is implemented and are often used
as examples in the documentation available on the
official wiki [5].

3.1. XSLT 3.0 Support

XSpec now supports XSLT 3.0 [6]. This patch was
provided by oXygen which first integrated it in its XML
editor.

To illustrate XSLT 3.0 support, Example 1, “XSLT
3.0 Example” shows an example of XSLT that makes use
of the inline function expression available in XPath 3.0
[7]:

Example 1. XSLT 3.0 Example

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-result-prefixes="xs" version="3.0">

 <xsl:template name="supportXPath3">

 <root>

 <question>

 <xsl:text>Does XSpec

 support XPath 3.0?</xsl:text>

 </question>

 <answer>

 <xsl:value-of select="

 let $answer := 'Yes it does'

 return $answer"/>

 </answer>

 </root>

 </xsl:template>

</xsl:stylesheet>

The template can be tested using the XSpec test in
Example 2, “XSpec Test for XSLT 3.0”. Note the use of
@xslt-version specifying the version of XSLT (when
@xslt-version is not provided, XSpec uses XSLT 2.0 by
default).

Example 2. XSpec Test for XSLT 3.0

<x:description

 xmlns:x="http://www.jenitennison.com/xslt/xspec"

 stylesheet="xspec-xslt3.xsl" xslt-version="3.0">

 <x:scenario label="When testing the inline

 function expression in XPath 3">

 <x:call template="supportXPath3"/>

 <x:expect label="it returns the expected answer">

 <root>

 <question>Does XSpec

 support XPath 3.0?</question>

 <answer>Yes it does</answer>

 </root>

 </x:expect>

 </x:scenario>

</x:description>

Page 69 of 102

XSpec v0.5.0

https://github.com/xspec/xspec

3.2. JUnit Support

JUnit [8] is a popular unit testing framework for Java.
JUnit reports are XML-based and are understood
natively by popular continuous integration servers such
as Jenkins.

In the past XSpec reports where only available in
XML and HTML. XSpec v0.5.0 introduced JUnit
reports which can be easily generated with the -j option
from the command line as illustrated in Example 3,
“Run XSpec with JUnit Option” (the sample file escape-
for-regex.xspec is available in the tutorial folder on
GitHub):

Example 3. Run XSpec with JUnit Option

/bin/xspec.sh -j tutorial/escape-for-regex.xspec

Example 4, “JUnit Report” shows an example of the
generated JUnit report with a successful and a failing
test:

Example 4. JUnit Report

<testsuites>

 <testsuite name="When processing a list of phrases" tests="2" failures="1">

 <testcase name="All phrase elements should remain" status="passed"/>

 <testcase name="Strings should be escaped and status attributes should

 be added" status="failed">

 <failure message="expect assertion failed"><x:expect

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:test="http://www.jenitennison.com/xslt/unit-test"

 xmlns:x="http://www.jenitennison.com/xslt/xspec"

 xmlns:functx="http://www.functx.com">

 <phrases>

 <phrase status="same">Hello!</phrase>

 <phrase status="same">Goodbye!</phrase>

 <phrase status="changed">\(So long!\)</phrase>

 </phrases>

 </x:expect>

 </failure>

 </testcase>

 </testsuite>

</testsuites>

Page 70 of 102

XSpec v0.5.0

Figure 1. Test Result Trend in Jenkins

Figure 2. Test Result in Jenkins

Note that the generation of JUnit reports requires Saxon
9 EE or Saxon 9 PE as the implementation makes use of
Saxon extension functions.

JUnit reports can be easily plugged into continuous
integration tools that understand JUnit natively such as
Jenkins. The XSpec documentation describes how to
configure Jenkins to run XSpec tests and generate JUnit
reports [9]. Figure 1, “Test Result Trend in Jenkins” and
Figure 2, “Test Result in Jenkins” show a test result trend
and details of a failing test auto-generated by Jenkins
from JUnit reports.

3.3. Testing XSpec

XSpec itself is tested using a mix of XSpec tests and shell
and batch scripts. The test suite is executed automatically
on online continuous integration servers (Travis for
Linux and AppVeyor for Windows) every time a pull
request or a code merge are initiated. This allows to spot
regression bugs as soon as they appear and makes code
reviews and approval of pull requests quicker and safer.
In addition, testing XSpec with continuous integration
tools such as Travis and AppVeyor provides example
configuration and documentation for other projects that

Page 71 of 102

XSpec v0.5.0

wish to use XSpec to run tests in continuous integration
workflows.

3.4. Feature Parity between Windows and
MacOS/Linux

XSpec can be executed from the command line using a
batch script in Windows or a shell script in MacOS/
Linux. Historically, the batch script lagged behind and
did not provide all the options available in the shell
script. XSpec 0.5.0 ships with a brand new version of the
batch script that fully supports existing and new
command line options available in the shell script. In
addition, a test suite for the batch script is now executed
on every new commit thus providing the same level of
testing available for the shell script.

4. Bug Fixes

The full list of bug fixes is available in the official release
notes [4]. Most bug fixes come with a test that makes
sure that future code changes do not introduce regression
bugs.

As example of defects fixed in this release, it is worth
mentioning the code coverage bug. XSpec relies on
Saxon extension functions for the implementation of the
code coverage option that allows to check which parts of
the XSLT code are covered by XSpec tests. This
functionality was broken for several years due to a change
in the implementation of the TraceListener interface
between Saxon 9.2 and 9.3 and the bug was flagged by
several users [10] [11].

This long standing issue has been fixed in v0.5.0 and
the code coverage now works with the recent versions of
Saxon EE and PE (extension functions are only available
with these two versions of Saxon). Documentation on
how to use the code coverage functionality is now
available on the official wiki page [12].

5. Future Work

XSpec users can raise issues and feature requests on the
official issue tracker on GitHub and contribute with pull
requests. Some of the work that is currently under
development or scheduled for the future releases of
XSpec includes:

• Schematron support: A feature request was raised in
order to have Schematron support in XSpec. This
included use cases such as writing XSpec tests for

Schematron rules and schemas. Vincent Lizzi
provided a pull request for Schematron support in
XSpec and demoed it during an open session at JATS-
Con in April 2017. As I write these lines, the pull
request has just been merged into the main XSpec
code base and documentation will soon be available
on the wiki. Schematron users are invited to test this
new functionality and provide feedback.

• Full XQuery support: although XSpec allows to test
both XSLT and XQuery, XQuery support is often
lagging behind or untested. This work aims to bring
full feature parity between XSLT and XQuery and to
provide tests and documentation covering XQuery. A
tutorial on how to write XSpec tests for XQuery is in
the process of being written and will soon be available
in the official documentation.

• Harmonisation with oXygen: XSpec is integrated by
default in oXygen but some features such as the
output report and the ant configuration are
implemented differently. This work aims to
harmonize XSpec so that the version provided in
XSpec is the same version available on GitHub.

6. Conclusion

Testing is a crucial part of software development and
XSpec aims to provide XSLT, XQuery, and Schematron
developers with a testing framework for making their
code more robust, reliable, and maintainable. After few
years of stagnation, active development of XSpec
restarted and culminated in the release of v0.5.0 in
January 2017. This new release included several new
features and fixed long standing bugs. Being an open
source project, XSpec is developed and maintained by an
active community gathering around the GitHub
repository at https://github.com/xspec/xspec and
welcomes new and existing users to contribute with
issues, questions, and pull requests.

7. Acknowledgements

I would like to thank Jeni Tennison for creating XSpec
back in 2008 and releasing it under an open source
licence. I'm also deeply indebted to Florent Georges for
maintaining the project in the past years and to Tony
Graham for his support during the migration to GitHub.
I own my deepest gratitude to the XSpec community
who contributed to this release and provided me with
encouragement and support, their GitHub user names
are listed in the official release notes. A special thank you

Page 72 of 102

XSpec v0.5.0

https://github.com/xspec/xspec

to AirQuick - I ignore his real name - whose many pull
requests, comments, and code reviews have been
extremely valuable for the development of XSpec.

Bibliography

[1] Steve McConnell. 2006. Software Estimation: Demystifying the Black Art. Microsoft Press. Redmond,
Washington.
ISBN 978-0735605350.

[2] Tony Graham. Testing XSLT. In Conference Proceedings of XML Prague 2009. March 21-22, 2009.
http://archive.xmlprague.cz/2009/presentations/XMLPrague_2009_proceedings.pdf#page=83

[3] Jeni Tennison. Testing XSLT with XSpec. In Conference Proceedings of XML Prague 2009. March 21-22,
2009.
http://archive.xmlprague.cz/2009/presentations/XMLPrague_2009_proceedings.pdf#page=105

[4] XSpec. XSpec v0.5.0.
https://github.com/xspec/xspec/releases/tag/v0.5.0
Accessed: 5 May 2017.

[5] XSpec. XSpec Documentation Wiki.
https://github.com/xspec/xspec/wiki
Accessed: 5 May 2017.

[6] World Wide Web Consortium (W3C). XSL Transformations (XSLT) Version 3.0. Michael Kay.
http://www.w3.org/TR/xslt-30/

[7] World Wide Web Consortium (W3C). XML Path Language (XPath) 3.0. Jonathan Robie, Don Chamberlin,
Michael Dyck, and John Snelson. 8 April 2014.
http://www.w3.org/TR/xpath-30/

[8] JUnit. JUnit.
http://junit.org
Accessed: 5 May 2017.

[9] XSpec. Integration with Jenkins.
https://github.com/xspec/xspec/wiki/Integration-with-Jenkins
Accessed: 5 May 2017.

[10] XSpec Users Google Group. XSpec 0.3.0.
https://groups.google.com/forum/#!topic/xspec-users/0BIzNfFv4-Y
Accessed: 5 May 2017.

[11] Sandro Cirulli. Continuous Integration for XML and RDF Data. In Conference Proceedings of XML London
2015. June 6-7, 2015.
doi:10.14337/XMLLondon15.Cirulli01

[12] XSpec. XSpec Code Coverage.
https://github.com/xspec/xspec/wiki/Code-Coverage
Accessed: 5 May 2017.

Page 73 of 102

XSpec v0.5.0

http://www.isbnsearch.org/isbn/9780735605350
http://archive.xmlprague.cz/2009/presentations/XMLPrague_2009_proceedings.pdf#page=83
http://archive.xmlprague.cz/2009/presentations/XMLPrague_2009_proceedings.pdf#page=105
https://github.com/xspec/xspec/releases/tag/v0.5.0
https://github.com/xspec/xspec/wiki
http://www.w3.org/TR/xslt-30/
http://www.w3.org/TR/xpath-30/
http://junit.org
https://github.com/xspec/xspec/wiki/Integration-with-Jenkins
https://groups.google.com/forum/#!topic/xspec-users/0BIzNfFv4-Y
http://dx.doi.org/10.14337/XMLLondon15.Cirulli01
https://github.com/xspec/xspec/wiki/Code-Coverage

Bridging the gap between knowledge
modelling and technical documentation
Engage subject-matter experts to contribute to knowledge

management and help them write accurate & correct
documentation.

Bert Willems

FontoXML
<bert.willems@fontoxml.com>

Abstract

This paper describes an architecture which allows subject-
matter experts and the systems to co-create both structured
content and knowledge models. The proposed architecture
creates a knowledge model from structured content which, in
turn, is queried to validate and improve the accuracy and
correctness of structured content leveraging the expertise of
the subject-matter expert. The proposed architecture
effectively describes a feedback loop.

1. Introduction

Writing content is hard. One has to understand the
subject and the intended target audience and one must
be able to express oneself in written word.

Fortunately, one does not usually stand alone. There
is software to support one’s writing endeavors. A well-
known piece of software integrated into virtually any text
editor out there is the spell checker. A spell checker
typically works on individual words without looking at
the meaning: as long as the word is spelled correctly, it is
happy. More advanced are grammar checkers, which
typically work by looking at sentences as a whole. They
help authors write sentences that are correct from a
grammatical perspective as prescribed by a particular
language.

Readability checkers help authors write sentences that
are easy to read. You don’t want to squander your
exquisite phrasing if your target audience is 6 years old.
Several industries have defined a standardized subset of
languages in order to improve readability, like ASD
STE-100 Simplified Technical English.

However, none of the above prevents authors from
writing complete and utter nonsense as long as it is

spelled well, grammatically correct, and easy to read.
Although this may seem like a benefit in some cases, in
technical documentation it is not. An important use of
documentation, whether online or printed, is to help
users to do their work as efficiently as possible.

This paper proposes a solution to help authors to
write accurate and correct documentation by bridging the
gap between knowledge modelling and technical
documentation. The first part of this paper describes a
general architecture. In the second part a practical
implementation is explored to prove the prosoed
architecture can be built. The final part holds the
conclusions and future work.

2. Structured Content feedback
loop architecture

Technical documentation, or more generally speaking
body of knowledge, contains valuable information from
which knowledge models can be build. There is a lot of
research in the area of automated extraction of facts to
build knowledge models. Most of them rely on training
sets put together by domain experts.

Structured content is usually written by subject-
matter experts, who are domain experts themselves or act
as proxies to experts and therefore are qualified to
contribute to those knowledge models. This means that
structured content is an excellent source of knowledge to
build knowledge models from. Extracting facts from
content, structured or not, is a well studied field.

There are numerous papers published which describe
how information can be mined from content and how
that information can be queried. However, none of those
approaches are a 100% accurate, just like humans.

doi:10.14337/XMLLondon17.Willems01Page 74 of 102

mailto:bert.willems@fontoxml.com
http://www.asd-ste100.org/
http://www.asd-ste100.org/

Figure 1. Loop overview

Although the lines are blurring, in general computers
are better at repetitive tasks while humans are better at
unstructured problem-solving and empathy. This creates
an interesting opportunity: allow the subject-matter expert
and the system to co-create both structured content and the
knowledge model at the same time.

Figure 1, “Loop overview” illustrates how ideas and
knowledge are exchanged between subject-matter experts
and systems:
We propose an architecture where the system ingests
structured content in the form of XML from which a
knowledge model is created. From this created

knowledge model the system starts to suggest
improvements to the subject-matter expert. The subject-
matter expert evaluates the provided suggestions and,
once accepted, improves the structured content. The
improved structured content will in turn improve the
created knowledge model, effectively closing a feedback
loop.

The type of suggestions given by the system,
dependents on the structure of the knowledge model and
the algorithms used. In the problem space of technical
documentation suggestions may include missing

Page 75 of 102

Bridging the gap between knowledge modelling and technical documentation

prerequisites, opportunities for reuse and of course
missing markup.

Even if the subject-matter expert decides to reject a
suggestion, it is valuable. Consider the subject-matter
expert rejecting a suggestion for a spelling correction: it
might be the case that the word is missing from the
dictionary or it should’ve been in the taxonomy. Some
algorithms take counter examples as input to optimize
their output. This means it is worthwhile to ask the
subject-matter expert to provide feedback and update the
knowledge graph accordingly, hence a secondary
feedback loop.

3. Example implementation

This section describes an example implementation of the
feedback architecture proposed in the previous section.
The implementation is intentionally simple and straight-
forward but proves the loop can be built.

3.1. Problem example

Have a look at the following abbreviated example, taken
from a procedure in a manual of our fictional ACME
router:

Procedure: List all the files in the current

 working directory

Step 1: Execute the command ‘dir’.

Result: An enumeration of all the files in the

 current directory.

An IT professional can, even without intimate
knowledge of the ACME router, name at least a few
(potential) errors in the seemingly simple snippet:

1. The procedure requires a terminal to be opened,
which should have been encoded as the first step or as
prerequisite.

2. It is unlikely the command is called ‘dir’ since that is
Windows specific, it is more likely to be called ‘ls’
since it is more likely that the router is based on
Linux.

In order to reason in the same way an IT pro can, the
system requires the following knowledge to be available:

1. The `dir` command requires a terminal to be opened.
2. The `dir’ and `ls` commands are directory listing

commands.
3. The `dir` command is Windows specific.
4. The `ls` command is Linux specific.

5. The ACME routers run Linux.

3.2. Implementation

In order to create the feedback loop, the implementation
works in two stages. The first stage creates the knowledge
model from reference content. The second stage validates
task-based content against the reference content. Where
XML is given it is based on OASIS DITA (Oasis DITA
1.3).

3.2.1. Input reference documents

The following documents are used as reference
documents from which the knowledge graph will be
created. The areas that are relevant for creating the
domain model are italicized.

<reference id="router">

 <title>ACME Router</title>

 <prolog>

 <prodinfo>

 <emphasis><prodname>ACME Router</prodname>

 <platform>Linux</platform></emphasis>

 </prodinfo>

 </prolog>

</reference>

<reference id="ls">

 <title>

 <emphasis><cmdname>ls</cmdname></emphasis>

 </title>

 <prolog>

 <prodinfo>

 <emphasis><prodname>ACME Router</prodname>

 <platform>Linux</platform></emphasis>

 </prodinfo>

 </prolog>

 <refbody>

 <p>The

 <emphasis><cmdname>ls</cmdname></emphasis>

 is a command used for <emphasis>

 <systemoutput>directory

 listing</systemoutput></emphasis>.

 It must run in the <emphasis>

 <uicontrol>terminal</uicontrol>

 </emphasis>.</p>

 </refbody>

</reference>

<reference id="dir">

 <title>

Page 76 of 102

Bridging the gap between knowledge modelling and technical documentation

http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html

 <emphasis><cmdname>dir</cmdname></emphasis>

 </title>

 <prolog>

 <prodinfo>

 <emphasis><prodname>ACME Router</prodname>

 <platform>Windows</platform></emphasis>

 </prodinfo>

 </prolog>

 <refbody>

 <p>The

 <emphasis>

 <cmdname>dir</cmdname>

 </emphasis> is a command used

 for

 <emphasis>

 <systemoutput>directory

 listing</systemoutput>

 </emphasis>.

 It must run in the

 <emphasis>

 <uicontrol>terminal</uicontrol>

 </emphasis>.

 </p>

 </refbody>

</reference>

Note

Some elements were removed from the documents for
brevity.

Note

The examples given do not explicitly encode the “must
run in a terminal” relation. This cannot be expressed
well using standard DITA. Either specialization is
needed or advanced text analysis software.

3.2.2. Knowledge graph

In order to validate the correctness according to the case
described in the example section, the following
knowledge must be captured by the model:

1. product to platform (used to determine the platform)
2. command to platform (used to determine whether a

command is available)
3. command to result (used to infer the correct

command based on platform)

4. command to required uicontrol (used to infer that a
terminal is needed in order to perform the command)

The knowledge model is defined as an RDF graph. The
graph is stored in a triple store, which allows semantic
queries.

Constructing the knowledge graph

Using a simple extraction method the following triples
can be extracted:

<#acme-router>

 runs <#linux> .

<#linux>

 a <#operating-system> .

<#windows>

 a <#operating-system> .

<#ls>

 a <#command> ;

 runsOn <#linux> ;

 requiresUI <#terminal> ;

 outputs <#directory-listing> .

<#dir>

 a <#command> ;

 runsOn <#windows> ;

 requiresUI <#terminal> ;

 outputs <#directory-listing> .

3.2.3. Task document

The following document is validated against the
constructed knowledge graph:

<task>

<title>List all files and folder.</title>

 <prolog>

 <prodinfo>

 <prodname>ACME Router</prodname>

 </prodinfo>

 </prolog>

 <taskBody>

 <steps>

 <step>

 <cmd>Execute <cmdname>dir</cmdname>.</cmd>

 </step>

 </steps>

 <result>An enumeration of all the files

 in the current directory.</result>

 </taskBody>

</task>

Page 77 of 102

Bridging the gap between knowledge modelling and technical documentation

3.2.4. Validating the task

Based on the given knowledge model and the task
document, the system is able to find two inaccuracies:

1. The ‘ls’ command should’ve been used instead of the
‘dir’ command.

2. A terminal is required in order to execute the
command.

Finding the correct command name

In order to find the correct command name the
following traversals need to be made in the knowledge
graph:

Input:

1. Product ‘ACME Router’.
2. Command ‘dir’.

Traversals:

1. Infer the ‘ACME Router’ runs on ‘Linux’.
2. Infer the ‘dir’ command ‘is available on’ ‘Windows’.
3. Infer the ‘dir’ command ‘outputs’ a ‘directory listing’.
4. Infer the ‘ls’ command also ‘outputs’ a ‘directory

listing’ AND ‘is available on’ ‘Linux’.
Based on the inputs and travels of the knowledge graph
the system can return two facts to the user:

1. The command ‘dir’ is not available on ‘Linux’ and
therefore cannot be correct.

2. The command ‘ls’ is a substitute of ‘dir’ and is available
on ‘Linux’ and therefore is a suitable alternative.

Based on the inputs and traversal of the knowledge
graph, the system can return the fact that the `dir`
command should have been `ls` command. See Figure 2,
“Replace command suggestions” for the suggestion.
Approving the suggestion will change the XML into:

<cmd>Execute <cmdname>ls</cmdname>.</cmd>

Figure 2. Replace command suggestions

In order to find the missing prerequisite of the ‘ls’
command, the presence of a ‘terminal’, the following
traversals need to be made in the knowledge graph:

Input:

1. Command ‘ls’.

Traversals:

1. Infer the ‘ls’ requires a ‘terminal’.

Check:

1. Check whether ‘terminal’ is referenced as a uicontrol.

Based on the inputs and traversal of the knowledge
graph, the system can return the fact that a terminal is
required. See Figure 3, “Replace command suggestions”
for the suggestion. Approving the suggestion will insert
the following XML snippet:

<prereq>Open a

 <uicontrol>terminal</uicontrol>.

</prereq>

Figure 3. Replace command suggestions

Page 78 of 102

Bridging the gap between knowledge modelling and technical documentation

Resulting task

Now the resulting task is correct according to the
available knowledge in the graph:

<task>

 <title>List all files and folder.</title>

 <prolog>

 <prodinfo>

 <prodname>ACME Router</prodname>

 </prodinfo>

 </prolog>

 <taskBody>

 <emphasis><prereq>Open a

 <uicontrol>terminal</uicontrol>.</prereq>

 </emphasis>

 <steps>

 <step>

 <cmd>Execute

 <emphasis>

 <cmdname>ls</cmdname>

 </emphasis>.</cmd>

 </step>

 </steps>

 <result>An enumeration of all the files

 in the current directory.</result>

 </taskBody>

</task>

Adding validation to the <result> of the task is left as an
exercise to the reader of this paper.

4. Conclusions & Observations

As shown by the simple implementation presented in the
previous section it is straightforward to derive a
knowledge model based on reference content. Equally
straightforward is the use of that knowledge model to
validate task-based content for accurateness and
completeness. This proves that the structured content
feedback loop can be created.

However the implementation does not scale well:
both the mapping to the knowledge model and the
definition of the queries are done by hand. It is
essentially an hard-coded rule engine.

The XML vocabulary used in the implementation
example, does not support encoding all the relations out
of the box. The DITA vocabulary does have a formal
extension mechanism but, extending the vocabulary to
support an evolving knowledge model does not scale
either.

5. Future work

There is quite some work to be done in all the parts
which make up the proposed system.

The first step is to remove the need for hard-coded
rules by leveraging Information Extraction, a field of
study which includes Part-of-speech (POS) tagging,
phrase identification and word classification [1] and
PATTY as described in Nakashole's 2012 PhD thesis
[2] . Furthermore the mapping can be enhanced with the
knowledge that can be mined from the XML schema as
described in "Semi-Automatic Ontology Development"
[3] and GRDDL [4].

The second step is to use Relational Machine
Learning to query the knowledge model and provide
useful suggestions and corrections to the subject-matter
expert. The paper "A Review of Relational Machine
Learning for Knowledge Graphs" [5] provides an
excellent overview of that field of study.

Another step is to develop the software architecture
based on OASIS Unstructured Information Management
Architecture. This allows us to leverage and integrate
existing components that are developed by third parties
rather than developing everything ourselves.

The last, and perhaps the most important, step is to
design and build an easy-to-use user interface. The
suggestions must be easily understood and displayed in a
relevant context to allow subject-matter experts to make
quick and accurate decisions.

Page 79 of 102

Bridging the gap between knowledge modelling and technical documentation

http://docs.oasis-open.org/uima/v1.0/os/uima-spec-os.html
http://docs.oasis-open.org/uima/v1.0/os/uima-spec-os.html

Bibliography

[1] Information Extraction and Named Entity Recognition. Christopher Manning. Stanford University.
https://web.stanford.edu/class/cs124/lec/Information_Extraction_and_Named_Entity_Recognition.pdf

[2] Automatic Extraction of Facts, Relations, and Entities for Web-Scale Knowledge Base Population. Ndapandula T
Nakashole.
http://nakashole.com/papers/2012-phd-thesis.pdf

[3] Semi-Automatic Ontology Development. Processes and Resources. Maria Teresa Pazienza and Armando Stellato.
doi:10.4018/978-1-46660-188-8

[4] Gleaning Resource Descriptions from Dialects of Languages (GRDDL). Dan Connolly. 11 September 2007. World
Wide Web Consortium (W3C).
http://www.w3.org/TR/grddl/

[5] A Review of Relational Machine Learning for Knowledge Graphs. Maximilian Nickel, Kevin Murphy, Volker Tresp,
and Evgeniy Gabrilovich. 25 September 2015.
https://arxiv.org/pdf/1503.00759.pdf

Page 80 of 102

Bridging the gap between knowledge modelling and technical documentation

https://web.stanford.edu/class/cs124/lec/Information_Extraction_and_Named_Entity_Recognition.pdf
http://nakashole.com/papers/2012-phd-thesis.pdf
http://dx.doi.org/10.4018/978-1-46660-188-8
http://www.w3.org/TR/grddl/
https://arxiv.org/pdf/1503.00759.pdf

DataDock
Using GitHub to Publish Linked Open Data

Khalil Ahmed

Networked Planet Limited
<kal@networkedplanet.com>

Abstract

DataDock (http://datadock.io/) is a new service that
aims to make it easy for anyone to publish Linked Open
Data. It consists of two main parts, a data conversion service
that turns CSV into RDF and creates a GitHub pages site
from the data; and a gateway that performs the necessary
redirects to make the published data work as Linked Data.

Although a number of other projects already use GitHub
and GitHub Pages as a way to manage and publish
(Linked) Open Data, DataDock has a unique way of
managing the raw RDF data that makes it possible to use
Git commands to determine the change history of a dataset.

This paper will describe the technical implementation of
the DataDock service and our approach to storing RDF data
in Git. It also proposes a method for making use of our
storage approach to support distributed SPARQL querying of
DataDock repositories.

Keywords: Git, RDF, LinkedData

1. Introducing DataDock

DataDock is a free data publishing service that enables
anyone with data in CSV format to easily step up to
publishing 5-star Linked Open Data. DataDock
connects to a user's GitHub account and uses a public
repository under their account to store the static pages
for their Linked Data site. The pages themselves are
served from GitHub Pages via a DataDock proxy that
performs the necessary redirects to make the static pages
work as linked data for both human beings and
machines.

1.1. Background for DataDock

We built DataDock to address a perceived need for an
easy way for small organisations and individuals to move
from publishing open data as CSV to publishing open
data as Linked Data. Our targets are charities and
voluntary sector organisations; as well as data-for-good

projects and "citizen data" projects. The goal of
DataDock is to not only provide a simple CSV to RDF
conversion service but to also provide the basic web
server infrastructure required to serve Linked Data.

In our experience most organisations are relatively
comfortable with working with data in tabular format -
sometimes in relational databases, but more frequently in
the form of spreadsheets. As a result, once the decision to
publish open data has been taken the natural next step is
to convert the data to CSV and publish a collection of
CSV files. This makes the data available, but it is not as
discoverable, or easily reusable in CSV form as it would
be in Linked Data form. This is especially the case with
data from smaller organisations as such data tends to be
tightly focussed on one specific theme and geographical
area and by itself may lack the scope for real insights to
be derived from the standalone dataset. We believe that
there is huge potential in supporting the many thousands
of small organisations that are working across the UK to
publish Linked Open Data that can be automatically
located and integrated into other datasets from other
organisations. However, it has to be recognised that two
big barriers remain in the jump from CSV Open Data to
5-star Linked Open Data

The first barrier is in understanding and managing
the mapping between the CSV data that the organisation
wants to publish and useful Linked Data. A number of
tools for transforming CSV to RDF already exist and
although any of these could have been used in DataDock
we took the decision to implement the recent W3C
Recommendation on CSV to RDF conversion [1]. This
decision was taken for two reasons. Firstly, the work done
in the W3C has produced a specification that provides a
great deal of scope for a flexible data mapping; and
secondly from a technical perspective we wanted a
native .NET solution that would enable us to use
Microsoft Azure to host our conversion service. However,
it is not just the technical issue of how the mapping is
performed that is a problem, there is also a problem of
choosing the ontology to map to. At this stage in the
development of DataDock this remains an open issue
which we think can really best be addressed by working

doi:10.14337/XMLLondon17.Ahmed01 Page 81 of 102

mailto:kal@networkedplanet.com

closely with organisations to create recommendations on
suitable ontologies to use for different types of data. We
plan in future to use analysis of column names and
datatypes as a way to drive intelligent suggestions for
possible ontologies.

The second barrier for small organisations and for
individuals is that hosting Linked Open Data requires a
technical infrastructure and configuration that can be
hard for non-technical (and even for many technical)
users to set up. DataDock leverages GitHub Pages that
provides a scalable, static web publishing infrastructure
with our own proxy service that implements the
additional functionality required of a Linked Open Data
server (such as content negotiation for RDF data). The
DataDock proxy also provides very basic directory
services that enables search-based discovery of published
data sets.

1.2. Architecture

The diagram below shows the high-level architecture of
the solution:

manage.datadock.io

datadock.io

DataDock
Metadata

Store

DataDock
Conversion

Service

GitHub
Repository

GitHub
Pages

Orange boxes represent the DataDock services. Blue
boxes represent the services provided by GitHub. Arrows
represent service dependencies rather than data flow.

The solution consists of two principle sites, a
management portal (manage.datadock.io) and a proxy
service (datadock.io).

The management portal allows users to sign in with
their GitHub account, register a GitHub repository with
DataDock, and to upload CSV data that is then
converted into RDF and stored in their repository. The
data conversion process converts the uploaded CSV to
RDF and merges that RDF into the repository; it then
generates a set of static HTML and RDF (NQuads) [2]
files that will be served up via GitHub Pages. The RDF
data is managed in such a way that a single GitHub
repository can contain any number of separate datasets,
but the RDF data in those datasets can be navigated and
viewed as a single merged dataset. In addition to
generating RDF data from the uploaded CSV, DataDock
also generates VoID metadata for each of the datasets and
for the repository as a whole. Finally at the end of the
conversion process, the Git repository is tagged and a
release is added which has the RDF data for the
uploaded dataset attached to it as gzipped n-quads,
providing a data download link that will be stable across
time even as the dataset is modified in future updates.

The proxy service is a simple web proxy that is
currently implemented using nginx. The proxy
implements redirect rules that enable an identifier of the
form
http://datadock.io/{user}/{repo}/id/ to be redirected
to a GitHub pages address of the form
http://{user}.github.io/{repo}/. The redirect rules
take into account the Accept header of the request,
redirecting the request either to the static HTML page
generated for a resource, or to the static RDF file
generated for that resource. These static files are
generated from the merged RDF data in the repository
and so render all of the data about a given resource that
is contained across all of the datasets in that repository.

The DataDock metadata store is a NoSQL document
database (Azure DocumentDB) that keeps a record of the
VoID metadata and the conversion parameters for each
dataset that a user uploads. This store is used to provide
simple search facilities enabling users of either site to find
relevant datasets by metadata such as title, description
and keywords. In future iterations we plan to also use
this store to enable sharing of vocabularies and social
aspects of data publishing such as followers, likes and
comments on datasets and repositories.

1.3. DataDock CSV Conversion

The CSV conversion process used by DataDock
implements a subset of the conversion process described

Page 82 of 102

DataDock

in [1]. The goal of DataDock is to make the whole
process of going from open CSV to Linked Open Data
as straightforward as possible and it is our experience that
one of the main intellectual stumbling blocks for users is
the concept of ontology and ontology management. For
this reason the first iteration of the conversion tool makes
most of the decisions about the mapping to RDF for the
user. The column names are used to generate predicate
identifiers, and a single resource is generated per row
using a combination of the source file name and the row
number as the resource identifier. As the generated
predicate identifiers are not scoped to the source file, by
using consistent column names across their CSV files
users can benefit from common predicate identifiers
across all of their datasets. As an option, the user can
select a column from their CSV to be used as the basis
for generating an identifier for the row resource, in this
case the generated identifier is also not scoped by the
source CSV file, enabling resource identifiers to also be
reused across multiple datasets. For other columns, the
upload tool attempts to detect the column datatype, but
the user is free to override the datatype as necessary. All
configuration options selected by the user, plus any
metadata that they provide such as dataset title,
description and keywords are managed as a JSON object
conforming to the Metadata Vocabulary for Tabular Data
specification [3].

Conversion takes place as a batch process. The
conversion service receives the source CSV file and a
CSV Metadata JSON file that contains the conversion
settings specified by the user. The result of the conversion
process is a pair of RDF graphs, one graph contains the
VoID metadata for the dataset and the other contains the
RDF triples extracted from the CSV. Both graphs have a
graph identifier that is based on the source CSV file

name, so uploading a file with the same name as a
previously uploaded file will replace the existing data in
that graph - giving users a simple mechanism for
continually updating their data.

1.4. Ontology Mapping

By default the column names in the uploaded CSV file
are used to generate RDF property IRIs. The generated
IRI uses the form
http://datadock.io/{user}/{repo}/id/definition/

{column_name}. This simplistic approach ensures that by
default an ontology resource is created under the
repository's datadock.io namespace for each column. It
also means that when uploading more CSV data to the
same repository with consistently named columns the
ontology is automatically shared for each uploaded
dataset.

The upload script also makes an attempt to determine
the data-type for each column, but the user is also
allowed to override the detected data-type and to
suppress columns from the conversion process entirely.

For more advanced users the upload process offers the
ability to manually modify the assigned property IRIs.
This enables the use of external ontologies and we plan to
extend this feature to provide suggestions from common
ontologies. The column to IRI mapping is stored as part
of the CSV Metadata JSON file in the GitHub
repository, and is automatically reloaded when the user
uploads a new version of the same CSV file to their
repository.

The listings below show a sample CSV file and its
associated CSV metadata. In this case the only change
that the user made was to identify the "library" column
as providing a value suitable for use as a resource
identifier.

Library,Type,Computer Provision,No of PCs,Wi-Fi Provision,Latitude,Longitude

Blakelaw,Library,Public Computer Access,8,Public Wi-Fi,54.994164,-1.673143

{

 "@context": "http://www.w3.org/ns/csvw",

 "url": "http://datadock.io/kal/data_dev/id/dataset/Newcastle%20Libraries%20List.csv",

 "dc:title": "Newcastle Libraries List.csv",

 "dc:description": "",

 "dcat:keyword": "",

 "dc:license": "https://creativecommons.org/publicdomain/zero/1.0/",

 "tableSchema": {"columns": [

 {

 "name": "library",

 "titles": ["Library"],

Page 83 of 102

DataDock

 "propertyUrl": "http://datadock.io/kal/data_dev/id/definition/library",

 "required": true,

 "datatype": "string"

 },

 {

 "name": "type",

 "titles": ["Type"],

 "propertyUrl": "http://datadock.io/kal/data_dev/id/definition/type",

 "required": true,

 "datatype": "string"

 },

 {

 "name": "computer_provision",

 "titles": ["Computer Provision"],

 "propertyUrl": "http://datadock.io/kal/data_dev/id/definition/computer_provision",

 "required": true,

 "datatype": "string"

 },

 {

 "name": "no_of_pcs",

 "titles": ["No of PCs"],

 "propertyUrl": "http://datadock.io/kal/data_dev/id/definition/no_of_pcs",

 "required": true,

 "datatype": "integer"

 },

 {

 "name": "wi-fi_provision",

 "titles": ["Wi-Fi Provision"],

 "propertyUrl": "http://datadock.io/kal/data_dev/id/definition/wi-fi_provision",

 "required": true,

 "datatype": "string"

 },

 {

 "name": "latitude",

 "titles": ["Latitude"],

 "propertyUrl": "http://datadock.io/kal/data_dev/id/definition/latitude",

 "required": true,

 "datatype": "decimal"

 },

 {

 "name": "longitude",

 "titles": ["Longitude"],

 "propertyUrl": "http://datadock.io/kal/data_dev/id/definition/longitude",

 "required": true,

 "datatype": "decimal"

 }

]},

 "aboutUrl": "http://datadock.io/kal/data_dev/id/resource/library/{library}"

}

Page 84 of 102

DataDock

This CSV input and mapping results in the following
quads being generated (for clarity line-breaks and
additional whitespace has been inserted into the
generated NQuads output):

<http://datadock.io/kal/data_dev/id/resource/library/Blakelaw>

 <http://datadock.io/kal/data_dev/id/definition/computer_provision>

 "Public Computer Access"^^<http://www.w3.org/2001/XMLSchema#string>

 <http://datadock.io/kal/data_dev/id/dataset/libraries_ncc-libraries-current_csv.csv>.

<http://datadock.io/kal/data_dev/id/resource/library/Blakelaw>

 <http://datadock.io/kal/data_dev/id/definition/latitude>

 "54.994164"^^<http://www.w3.org/2001/XMLSchema#decimal>

 <http://datadock.io/kal/data_dev/id/dataset/libraries_ncc-libraries-current_csv.csv>.

<http://datadock.io/kal/data_dev/id/resource/library/Blakelaw>

 <http://datadock.io/kal/data_dev/id/definition/library>

 "Blakelaw"^^<http://www.w3.org/2001/XMLSchema#string>

 <http://datadock.io/kal/data_dev/id/dataset/libraries_ncc-libraries-current_csv.csv>.

<http://datadock.io/kal/data_dev/id/resource/library/Blakelaw>

 <http://datadock.io/kal/data_dev/id/definition/longitude>

 "-1.673143"^^<http://www.w3.org/2001/XMLSchema#decimal>

 <http://datadock.io/kal/data_dev/id/dataset/libraries_ncc-libraries-current_csv.csv>.

<http://datadock.io/kal/data_dev/id/resource/library/Blakelaw>

 <http://datadock.io/kal/data_dev/id/definition/no_of_pcs>

 "8"^^<http://www.w3.org/2001/XMLSchema#integer>

 <http://datadock.io/kal/data_dev/id/dataset/libraries_ncc-libraries-current_csv.csv>.

<http://datadock.io/kal/data_dev/id/resource/library/Blakelaw>

 <http://datadock.io/kal/data_dev/id/definition/type>

 "Library"^^<http://www.w3.org/2001/XMLSchema#string>

 <http://datadock.io/kal/data_dev/id/dataset/libraries_ncc-libraries-current_csv.csv>.

<http://datadock.io/kal/data_dev/id/resource/library/Blakelaw>

 <http://datadock.io/kal/data_dev/id/definition/wi-fi_provision>

 "Public Wi-Fi"^^<http://www.w3.org/2001/XMLSchema#string>

 <http://datadock.io/kal/data_dev/id/dataset/libraries_ncc-libraries-current_csv.csv>.

Currently the mapping process is limited to defining a
single level of properties for a row-based entity. It is
possible to choose which column provides the entity
identifier and to map the IRI for that identifier; but it is
not currently possible to define a nested structure for the
properties of that entity. We plan to extend the mapping
functionality in future releases to support mapping
common CSV structures such as time-series data with
minimal effort as well as providing a more complex UI to
enable arbitrary nesting of generated entity properties to
the extent supported by [1].

Page 85 of 102

DataDock

2. DataDock Repository Internals

Each DataDock GitHub repository has a four top-level
folders.

• csv – contains the most recently uploaded CSV for
each dataset along with a CSV metadata JSON file
that uses the structure defined by [3].

• data - contains the generated static RDF files for each
linkable resource in the repository's RDF graph. A
linkable resource is one that is contained in the id
namespace of the repository - i.e. one whose IRI is
under
http://datadock.io/{user}/{repo}/id/

• page - contains the generated static HTML files for
each linkable resource in the repository’s RDF graph.

• quince - contains the Quince repository that stores
the complete RDF graphs for each dataset in a
merged, searchable and diff-able format.

2.1. CSV

The csv directory in the repository contains the uploaded
CSV files that have been converted to produce the data
served by the repository. As these files are part of the
public GitHub repository, this means that the source
CSV files are always available for download, and that
changes to the files over time are tracked by Git.
Alongside each CSV file is a JSON file that contains the
Tabular Metadata (as described in [3]) that describes how
the CSV is mapped to RDF as well as the additional
dataset metadata provided by the user on upload.

Each CSV file uploaded to a DataDock repository
maps to its own named graph using the name of the
CSV file to generate the graph IRI (as
http://datadock.io/{user}/{repo}/id/dataset/

{filename}). Keeping the RDF statements generated by
each CSV file in a separate named graph makes later
update of that data much easier to manage.

We take a very simple approach to managing updates
to CSV files - when a file is uploaded with the same
name as an existing file in the repository, the new file is
treated as a new version of the existing file and replaces it
in the repository. As a result, the named graph for that
CSV file is simply dropped and replaced with the RDF
generated from the new file.

2.2. Data

The data directory contains the static RDF files which are
generated only for those RDF resources which can be
accessed under the datadock.io namespace for the

repository (i.e. those with identifiers that start
http://datadock.io/{user}/{repo}/id/). Each resource
contains all of the quads where the resource with that
identifier is the subject of the quad.

Presently only NQuads format is supported to keep
the file generation process lean.

2.3. Page

The page directory contains the static HTML files for the
Linked Data site. As with the RDF, files are generated
only for those resources accessible under the datadock.io
namespace for the repository. Files are simple HTML5
with RDFa.

Currently these pages follow a fixed internal page
template using the Liquid templating language with
some extensions to more easily handle sorting and
filtering collections of RDF quads. This opens up the
scope for a future update allowing users to build their
own page templates and have some level of control over
the way that these HTML pages present their data.

2.4. Quince

Quince (QUads IN Calculable Storage) stores RDF data
as NQuads files. NQuads is great because it is a line-
oriented format and because Git reports diffs at a line
level, we can directly use Git diff reports as a quad-level
diff report. To do this effectively however we need to
address the following issues:

• Very large files are not efficiently handled in Git so we
need some means to split the RDF data across
multiple files.

• On the other hand lots of very small files causes IO
problems even when using solid-state storage so a
balance needs to be struck somewhere between the
naive options of using one NQuads file for all data at
one end of the scale versus using a separate file for
each distinct subject at the other.

• When a quad is inserted into the store, it should not
duplicate an existing quad - so we need an efficient
way to check for duplicates.

• We need some sort of consistent ordering for quads so
that Git's diff reports don't (too often) get thrown out
by a reordering of the lines in a file.

• We need to be able to support efficient lookup both
by subject IRI and by object IRI/Literal. Object-to-
subject traversal will be particularly important for
doing user-friendly diff and for rendering incoming
links on the static HTML pages.

Page 86 of 102

DataDock

2.4.1. Quince Algortihms

To address these issues we follow this algorithm for
performing an insert:

1. Insert the quad into two separate files, one file has a
file name generated from the subject of the quad, the
other has a name generated from the object of the
quad.

2. Generate a node ID using the SHA1 hash of the
NQuads string representation of the subject/object
(with the hash value formatted as a hex string),
prefixed with "_s" if the ID is generated from the
subject and "_o" if the ID is generated from the
object.

3. The target file to be updated is determined by taking
pairs of characters from the ID starting with the first
pair (which will be "_s" or "_o"). If a directory is
found matching that name, enter that directory and
look for a subdirectory that matches the next pair of
characters in the ID and so on until no matching
directory is found. At that point the last (non-
matching) pair of characters is used to instead
generate a file name (simply the two characters of the
pair with the file extension .nq added). If that file is
not found it is created, otherwise the file is read in.
These NQuads files are kept in neutral (code-point
based) string sort order. The lines of the file are search
for the quad and if the quad is found then no update
is performed; if the quad is not found then it is
inserted into the correct point of the file to maintain
its sort order.

4. When the file update is ready to be written to disk,
check the output file size (currently using a simple
count of the number of lines in the file as a
threshold). If the file size exceeds the threshold size,
create a new directory using the file name (without
the extension); re-insert each of the quads in the file
(they will now go into files inside the newly created
sub-directory); and then delete the file. In this way a
file gradually grows until it reaches a target size and at
that point it spawns another 256 (two hex chars)
smaller files in a sub-directory.

Deletion of a single quad follows a similar algorithm for
locating the quad in both the _s and _o sub-trees.
Similarly lookup by subject or object IRI is trivially
handled by using the same file location algorithm.

Exporting an entire named graph is handled by the
traversal of the entire subtree rooted at _s. Deletion of an
entire named graph requires a traversal and update of
both the _s and _o subtrees.

2.4.2. Reporting Diffs

Git's default line-based differencing engine enables us to
quickly generate a report of which files in a Quince
repository have been modified. NQuads is a line-oriented
format, so this report effectively gives us a list of quads
added and deleted.

However when a file is split (and sometimes even
when files have not split) Git will report some lines as
being both inserted and deleted. The solution to this
over-reporting of changes is to simply treat the lines
inserted and the lines deleted as sets (I and D) and then
report the effective insertions as the set difference I\D
and the effective deletions as the set difference D\I.

It should be noted that this report deliberately does
not specify which file(s) in the quince repository were
modified as this information is irrelevant to applications
which treat the repository as an RDF data-store.
Applications which require file-level diff information can
simply use the default Git diff reports.

2.4.3. Merging

For DataDock, merging is generally not an issue as we
process the updates on a repository in sequence rather
than in parallel. However in the more general case
Quince needs a way to handle merge and merge
conflicts.

With fixed file paths, merge conflicts would be
simple to handle by accepting both sets of changes and
then re-sorting the lines in each modified file and
removing any duplicate rows that occurred due to both
sides adding the same quad. However, the dynamic
approach to the file store prevents this approach from
working effectively as we must now handle the possibility
that we are merging a change that has split a file with a
change that modified the file without splitting it. As a
result we cannot rely on Git's default conflict resolution.

When a conflict occurs as the result of a merge we
instead take the effective diffs of each branch from their
common ancestor commit (as described in the section
above), union the insert and difference sets and apply the
same set algebra to determine the overall effective inserts
and deletions and apply those changes to the store state
at the ancestor commit. This has the effect of preserving
meaningful merge semantics but the down-side is that
the Git repository does not accurately reflect the merge
state of individual branches. Future work will look at
combining this approach with Git's default merge
operation so that merges can be effectively tracked.

Page 87 of 102

DataDock

2.4.4. Future Work: Quince and Triple Pattern
Fragments

The current layout of a Quince repository is particularly
suited to serving Linked Data Fragments [4] using the
Triple Pattern Fragments interface. The two top-level
directories (_s and _o) provide effective indexes for
matching triple pattern fragment queries where either the
subject or the object (or both) are bound. The current
layout does not provide efficient support for handling the
case where only the predicate is bound. We are currently
considering what form of on-disk file-based index would
be suitable to support this use case. One simple approach
would be to add a parallel _p directory where the file
path is generated from a hash of the predicate node, but
this must then take account of the likelihood that for any
given predicate there could be a very large number of
quads requiring an extension to our file splitting
algorithm that allows such large sets to be split over
multiple files even though they all share the same
predicate value.

However, with this one problem solved the potential
is then opened up for building a Linked Data Fragments
server over a Quince store, and from there leveraging the
existing SPARQL [5] implementations that use the Triple
Pattern Fragment interface (such as https://github.com/
LinkedDataFragments/Client.js).

3. Conclusion

In this paper we presented DataDock, a service aimed at
helping organisations and individuals publish their CSV
data as Linked Open Data. This service builds on top of
the static web publishing features of GitHub Pages with
the addition of a proxy service that provides the necessary
HTTP redirects to enable GitHub Pages sites to serve
Linked Data under the http://datadock.io/ domain. The
service also partially implements the W3C TR for
generating RDF from CSV.

Each user has their own separate Git data repository
that contains the source CSV data, the CSV Metadata
file that specifies the mapping to RDF and the RDF
resource pages in both HTML and NQuads formats.

This paper also introduces Quince, a file-based RDF
data repository specifically built to enable the use of Git
for version tracking. Quince uses sorted NQuads files to
store teh raw RDF data, with a dynamic file system that
avoids both very large files and large numbers of very
small files by iteratively splitting files as they exceed a
specified file size threshold.

We have also presented a number of areas for future
work including the possibility of adding a Triple Pattern
Fragments interface to the DataDock repositories which
would then enable distributed queries against the
DataDock repositories.

Bibliography

[1] Generating RDF from Tabular Data on the Web. Jeremy Tandy, Ivan Herman, and Greg Kellog. World Wide
Web Consortium (W3C). 17 December 2015.
https://www.w3.org/TR/csv2rdf/

[2] RDF 1.1 N-Quads. A line-based syntax for RDF datasets. Gavin Carothers. World Wide Web Consortium
(W3C). 25 February 2014.
https://www.w3.org/TR/n-quads/

[3] Metadata Vocabulary for Tabular Data. Rufus Pollock, Jeni Tennison, Ivan Herman, and Greg Kellog. World
Wide Web Consortium (W3C). 17 December 2015.
https://www.w3.org/TR/tabular-metadata/

[4] Linked Data Fragments. Ruben Verborgh.
http://linkeddatafragments.org/

[5] SPARQL 1.1 Query Language. Steve Harris and Andy Seaborne. World Wide Web Consortium (W3C). 21
March 2013.
https://www.w3.org/TR/sparql11-query/

Page 88 of 102

DataDock

https://github.com/LinkedDataFragments/Client.js
https://github.com/LinkedDataFragments/Client.js
http://datadock.io/
https://www.w3.org/TR/csv2rdf/
https://www.w3.org/TR/n-quads/
https://www.w3.org/TR/tabular-metadata/
http://linkeddatafragments.org/
https://www.w3.org/TR/sparql11-query/

1 https://stackoverflow.com/questions/42023432/extract-unique-elements-from-the-input-xslt

Urban Legend or Best Practice
Teaching XSLT in The Age of Stack Overflow

Nic Gibson
<nicg@corb.as>

1. Background

Traditional approaches to teaching XSLT and other
development technologies are undergoing rapid change.
The rise of online training platforms and peer to peer
environments such as stackoverflow.com have changed
the way that developers learn technologies. In the XSLT
world we are extremely lucky to have some amazing
people answering questions on the Mulberry mailing list
and Stack Overflow. However, when a developer asks a
question on Stack Overflow or uses Google to find an
existing answer, the why behind any particular answer is
often lost.

A recent exchange on Stack Overflow (SO) led me to
wonder how much of our best practice might be urban
legend and to consider how XSLT and other technologies
could be taught well in this online environment.

This paper investigates one of these questions and
answers and considers whether ten year old questions and
answers are the wisdom of the ages or myths and legends.
I will consider whether answering questions online
should be part of a teaching or training experience or
whether it is simply outsourced problem solving. Which
of these approaches leads to higher quality XSLT
development (and developers)?

2. Investigation

Let us look at the following question asked on SO earlier
this year1:

Extract unique elements from the input
XSLT

For example the input is this:

<root>

 <command name="comm1">aa</command>

 <command name="comm2">bb</command>

 <command name="comm3">cc</command>

 <command name="comm3">dd</command>

 <command name="comm2">ee</command>

 <command name="comm1">ff</command>

 <command name="comm5">gg</command>

</root>

The desired output is this:

<root>

 <command name="comm1">aa</command>

 <command name="comm2">bb</command>

 <command name="comm3">cc</command>

 <command name="comm5">gg</command>

</root>

You can see that at the output, we don't
have repeating tags, the text values are not
important here.

I answered this question in the way that many people
seem to do on SO. That is, I dashed off a quick answer
without thinking clearly about the answer. I chose an
answer that was the simple possible in terms of XSLT
because I hoped to provide something that didn't need
explanation:

<xsl:template match="command">

 <xsl:if test="not(preceding-sibling::command

 [@name = current()/@name])">

 <xsl:copy-of select="."/>

 </xsl:if>

</xsl:template>

I gave an XSLT 2.0 solution as well:

<xsl:template match="command[

 preceding-sibling::command[

 @name = current()/@name]]"/>

doi:10.14337/XMLLondon17.Gibson01 Page 89 of 102

https://stackoverflow.com/questions/42023432/extract-unique-elements-from-the-input-xslt
mailto:nicg@corb.as

Martin Honnen pointed out that this was not a good
answer and referred to Jeni Tennison's explanation of
Muenchian grouping. We disagreed because I felt that a
simple solution was better than a complex one in this
circumstance.

In order to determine how much better the efficient
approach is compared to the simple approach, I have
used a dataset the matches the one given in the question
above but varies from ten distinct elements to five
hundred distinct elements with from 0% to 50%
duplication (so a five hundred distinct value set will
include randomised sets of values containing a total of
five hundred to seven hundred and fifty elements). Five
variants were created at each level of duplication to
increase confidence that the data was actually
randomised. Given a maximum number of twenty
different duplications and using a step of ten unique
elements, this led to around two thousand documents.

Each document was processed using xsltproc, Saxon
9.7 and MSXSL 4.0. The data suggests that, whilst
different approaches obviously give differing results, they
are not as significant as one might hope. Three different
XSLT variants are used although xsltproc and MSXSL
cannot be used with and XSLT 2.0 or 3.0 solution.

3. Testing The Concept

Given the conversation on SO, testing the hypothesis
that the simpler answer is often as good as the most
effective answer, it seemed appropriate to generate some
experimental data. Given that different users will be
working in different environments, it seemed wise to
generate data using different tools. There are a limited
number of easily available XSLT processors so I used the
following processors:

• Saxon 9.7 EE (Java)
• Microsoft MSXSL 4
• XSLTproc 20904

I ran all tests using an Apple iMac with a quad core
2.9Ghz i7 processor and 32 GB RAM. XSLTproc and
Saxon were tested under MacOS whilst Microsoft
MSXSL 4 was tested on a virtual machine running
Windows 7.

3.1. Test Data

In order to test the various approaches to resolving this
problem, I generated a set of data (using XSLT 3 running
under Saxon EE). All of the elements were variants on

<root>

 <command name="command1"/>

 <command name="command2"/>

</root>

The data was generated by generating one thousand
variants on <command/> as above. From that set of data
between ten and one thousand elements were selected
with an interval of ten

For each set of unique elements, random duplicates
were added (using fn:random-number-generator()). A
range of random elements representing between one and
fifty percent of the total was generated. In order to keep
the number of documents to a reasonable size no more
than 20 sets of duplicates spread evenly between one and
fifty percent were generated:

Uniques Duplicates Step

10 1 to 5 1

100 2 to 50 2 or 3

1000 25 to 500 50

Each combination of unique and duplicate elements was
generated five times and the elements were ordered
randomly before being output to documents. The
generating script is in Appendix A, generator.xsl.

For the purpose of analysis the mean of each of the
five sets for each unique/duplicate pair was used.

3.2. Test Scripts

I used eight different test scripts. Each of these is very
simple and tries to resolve the problem in a different way.
Each script was run against the full output set of 16,980
files (five variants of each unique/duplicate pair). There
are only three fundamental approaches:

• Predicates
• Grouping
• Distinct Values

3.2.1. xsl-1-predicate.xsl

This was the approach I suggested on SO. There are three
variants of this scripte using XSLT 1.0, 2.0, and 3.0.
Unfortunately, only the first could be tested using

Page 90 of 102

Urban Legend or Best Practice

multiple processors. It is not intended to be efficient just
simple.

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="@*|node()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

 <xsl:template match="command">

 <xsl:if test="not(preceding-sibling::*

 [@name = current()/@name])">

 <xsl:copy-of select="."/>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

3.2.2. xsl-1-group.xsl

This is a more efficient stylesheet using Muenchian
Grouping. This is the stylesheet that would probably
have been the best solution in XSLT 1.0

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:key name="element-key" match="command"

 use="@name"/>

 <xsl:template match="root">

 <root>

 <xsl:for-each select="*[count(

 . | key('element-key', @name)[1]) = 1]">

 <xsl:copy-of select="."/>

 </xsl:for-each>

 </root>

 </xsl:template>

</xsl:stylesheet>

3.2.3. xsl-2-predicate.xsl

This stylesheet simply moves the predicate into the match
attribute of the template.

<xsl:stylesheet version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="@*|node()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

 <xsl:template match="command[preceding-sibling::

 command[@name = current()/@name]]"/>

</xsl:stylesheet>

3.3. xsl-2-group-by.xsl

This stylesheet uses xsl-for-each-group to generate the
same result. A useful additional test would have been to
use xsl:sequence instead of xsl:copy-of but that was
simply another variant on the same theme.

<xsl:stylesheet version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="root">

 <root>

 <xsl:for-each-group select="command"

 group-by="@name">

 <xsl:copy-of select="."/>

 </xsl:for-each-group>

 </root>

 </xsl:template>

</xsl:stylesheet>

3.3.1. xsl-2-distinct-values.xsl

This stylesheet uses the distinct-values() function from
XPath 2.0 to resolve the issue in a different way. The
preceding stylesheets all retain the elements in some way
whilst this one completely rewrites them and would not

Page 91 of 102

Urban Legend or Best Practice

be suitable for use in any more complex 'real-world'
situation.

<xsl:stylesheet version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="root">

 <root>

 <xsl:for-each

 select="distinct-values(command/@name)">

 <command name="{.}"/>

 </xsl:for-each>

 </root>

 </xsl:template>

</xsl:stylesheet>

3.3.2. XSLT 3.0 variants

The remaining two stylesheets were simply minor
modifications to stylesheets 1 and 3. The identity
transformation was replaced by:

<xsl:mode on-no-match="shallow-copy"/>

3.4. Process

Each of the XSLT engines has a command line interface
and each is able to report on processing times. For each
of these the time to process the input documents was
ignored and only the time taken to execute the stylesheet
was used.

3.5. Results

The most obvious result was that Microsoft's MSXSL
processor is dramatically faster at XSLT 1.0 than the
other processors. However, MSXSL is old and has not
been updated in ten years. We can see from the initial
results mentioned above that an optimised solution does
increase performance, but that the performance benefits
are not as significant as one might hope given that the
maximum processing time was still under two seconds,
see Figure 1, “XSLT 1.0 Predicates”.

Figure 1. XSLT 1.0 Predicates

0 100 200 300 400 500 600 700 800 900 10000
50

100
150

200
250

300
350

400
450

500

0
200
400
600
800

1000
1200
1400
1600

XSLTProc

MSXSL

Saxon

Unique Elements

Duplicates

M
ill

is
ec

on
ds

The approach suggested by Martin Honnen provides
better results by a factor of up to one thousand. The
performance of MSXSL at both tests is similar and leads
to suspicions about the validity of the data provided by
the tool, see Figure 2, “XSLT 1.0 Groups”.

Figure 2. XSLT 1.0 Groups

0 100 200 300 400 500 600 700 800 900 10000
50

100
150

200
250

300
350

400
450

500

0
2
4
6
8

10
12
14
16

XSLTProc

MSXSL

Saxon

Unique Elements

Duplicates

M
ill

is
ec

on
ds

The overall flatness of the graphs suggests that adding
random repetitions to the groups does not have a
significant effect on the results. If we graph the scripts
against time using only the total number of elements to
be tested we see the graph in Figure 3, “XSLT 1.0
Approaches”. The other approaches tried have been
added in Figure 4, “XSLT 2.0 Approaches”.

Page 92 of 102

Urban Legend or Best Practice

Figure 3. XSLT 1.0 Approaches

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

M
ill

is
ec

on
ds

Elements

XSLT 1 Approaches

XSLTProc Predicates

XSLTProc Grouping

MSXSL Predicates

MSXSL Grouping

Saxon Predicates

Saxon Grouping

Figure 4. XSLT 2.0 Approaches

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600

M
ill

is
ec

on
ds

Elements

XSLT 2 and 3 Approaches

for-each-group

XSLT 2 Predicate in match

distinct-values()

Predicate with xsl:mode

Predicate with xsl:mode

We can see that approach that uses the distinct-

values() function is effectively as fast as the approach
that uses the xsl:for-each-group statement and that
those are both as fast as the Muenchian Grouping based
approach.

We have multiple approaches to solving this problem
that work as well as each other and are all considerably
superior to the accepted answer.

4. Learning and Training

The amount of XSLT training on offer via training
providers has diminished dramatically over the last few
years. In the UK the vast majority of training providers

list schedules for XSLT courses but will even attempt to
identify a trainer to run those courses unless enough
people request the course. Experience suggests that this
no longer happens. The largest training providers in the
UK have reduced their schedules for their XSLT training
to a minimum (QA training run a course once a year,
Learning Tree have removed it from their schedule).
Custom training for corporate customers has also seen
reduced activity (Learning Tree running two on-site
courses over the last two years)

Activity on mailing lists and SO shows a reduction
over time. The graph in Figure 5, “Activity over time”
shows the posts to the Mulberry Technologies XSLT
mailing list over time.

Figure 5. Activity over time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1998-01 2000-01 2002-01 2004-01 2006-01 2008-01 2010-01 2012-01 2014-01 2016-01 2018-01

M
es

sa
ge

s

Date

Mulberry

Stack Overflow

However, the amount of XSLT development taking place
has not diminished in the same way (although
conversation suggests some decrease). New developers are
being hired but most of those do not go through
traditional training and, in fact, seem most likely to use
SO for their information. Whilst the XML (and XSLT)
and the Web have no provided as much work for XSLT
developers as could have been the case, publishing and
banking have taken up much of the slack (although
banking focusses more and more an XQuery and
MarkLogic).

Considering the average reputation of those asking
and answering messages on SO, we can see that the mean
(see Figure 6, “Mean Reputation on Stack Overflow” has
consistently dropped over the nine years of data available
after an initial peak. This suggest that (bar a few
honourable exceptions) those answering questions about
XSLT are becoming less skilled (if one assumes that

Page 93 of 102

Urban Legend or Best Practice

reputation can translate to 'skill') over time as are those
asking the questions.

Figure 6. Mean Reputation on Stack Overflow

0

5000

10000

15000

20000

25000

30000

35000

40000

2008-01 2009-01 2010-01 2011-01 2012-01 2013-01 2014-01 2015-01 2016-01 2017-01 2018-01

M
ea

n
R

ep
ut

at
io

n

Date

Asker Reputation

Answer Reputation

This situation has implications for those of us who either
answer questions on forums or mailing lists and for those
of us with a background in traditional training (or both).

4.1. Survey

In order to find out more about the way that developers
and XML developers in particular go about learning and
studying we ran a small survey using Survey Monkey.
There were a total of forty four responses to this survey.
Of those who responded the majority were aged over
thirty suggesting that they are unlikely to be at the start
of their careers.

We asked how they approached learning a new skill.
We allowed users to answer multiple times on this
question. Only 10.5% of the 38 respondents who
answered this question would approach this task by
attending traditional formal training. There are many
reasons why this may be the case but the important idea
is that formal training is no longer the primary approach
to skills learning. This may have been the case for many
people at any time. However, corporate training
programmes used to assume that formal training was the
primary approach and this is no longer the case.

Figure 7. If you need to learn a new development skill,
what would be your main approach?

We also asked how respondents would go about solving a
specific development problem, again allowing them to
respond multiple times. Over three quarters of those
responding identified online resources such as SO as part
of their approach.

Figure 8. If you have a specific development problem,
how would you approach solving it?

We asked how many respondents used sites such as SO:

Page 94 of 102

Urban Legend or Best Practice

Figure 9. Do you use sites such as stackoverflow.com?

Given that formal training is not a priority (or
possibility) for survey respondents and SO (and similar
sites) appear to be extremely important, it seems that
those people answering questions need to be aware that
they are taking the role of trainer to some extent.

However, the survey responses seem to indicate that
the identity and reliability of the individual answering
the question may not be particularly important to those
asking questions as more respondents felt that this was
not important than did:

Figure 10. When you ask a question, does the rank of
the person answering affect your view of the answer?

The same appears to be true for searches for answers to
existing questions:

Figure 11. When you search existing answers, does the
rank of person answering affect your view of the
answer?

Finally, we asked how respondents judged the quality of
answers:

Figure 12. How do you decide on the validity of
answers to your questions?

This gave an interesting range of answers as awareness of
an answerer's experience and reputation were ranked
highly. The 'other' answers where given related to how
well answers could be evaluated based on the questioner's
own experience.

Page 95 of 102

Urban Legend or Best Practice

1 https://www.tiobe.com/tiobe-index/
2 http://perlmonks.org

4.2. A Crisis of Authority

The training industry and the way that developer's learn
have been impacted by the internet in a very similar way
to the effect it has had on the traditional news media.
One of the criteria for news media is credibility.
Historically, credibility has been mostly defined by the
authority of the media. The traditional news media has
lost authority due to the easer of publishing on the
internet via the web and social media (hence 'fake news').

The ease with which developers can find information
on the internet has lead to a similar crisis of authority in
the training industry. Credible information can be found
online much more easily and (importantly) at a much
lower (if not zero) cost compared to traditional
technology training. The ability of an organisation to
optimise their website for Google has more impact on
training than the the credibility of the content on that
website. This leads to sites such as W3Schools having a
depressingly high level of impact.

SO (and other similar sites such as application
specific forums) attempt to create a new measure of
credibility based on reliability. SO implements this
measure of reliability. using the reputation measure. The
survey results above suggest (given the small number of
respondents, it can only be a suggestion) that the
ubiquity of SO is as significant as the measure of
reliability.

One drawback of the reputation measure is that it
does not give an indication of whether or not the person
answering the question has specialist knowledge or a
large degree of general knowledge (or good search engine
skills).

Again, the change in the way that developers study
and learn over the last ten years or so has significant
implications for the way that questions should be
approached.

4.3. Training in the Age of SO

If we look back to the question on SO the led to this
investigation, we can see that the accepted answer (mine)
was inadequate in many ways. It was not the best answer
— it is inefficient at best. Additionally, I gave no
explanation at all to the person asking the question.

One of the benefits of traditional training approaches
over video based online training and Q&A sites is
context. Give a three day period and a reasonable number
of students, it is possible to apply training to their

context. The ongoing communication means trainers can
offer a contextual explanation of concepts and ensure
that general concepts are understood. Q&A sites such as
SO provide a simple way to provide specifci answers to
specific questions and the general problem that would
benefit the questioner's understanding is lost.

It is simple to find many questions on SO that
demonstrate this situation including the one I give above.
The drawback to this approach is that answering a
specific question without contextual and conceptual
information does not improve the knowledge of the
person asking the question, it simply solves their
immediate problem. There is an increased chance that
they will ask a similar question again (or another user
will) because the general problem and solution were not
addressed.

XSLT is a niche programming language. If we take
training and activity on mailing lists and websites as one
indication of the health of a programming language's
ecosystem and community, then XSLT is not thriving.
According to the latest Tiobe language ranking1, we can
see that XSLT is not in the top 100 development
languages. Tiobe still track it which does mean that it is
in the top 150.

Many of the more popular languages are there due to
trend and fashion. However, many of those languages
have vibrant user communities helping to drive them
forwards. The XML and XSLT community appears to be
insular and hermetic to those outside it to some extent
(although not to the extent of the Perl community with
PerlMonks2). Given the popularity of SO, it can be seen
by many as an indicator of the health of a language.

4.4. Applying That to the Question

Looking back at the original question on SO, we can see
that my answer failed to provide any explanation of how
it worked. The current() function is useful and often
confuses neophytes. I could have used this question as a
quick introduction to that concept and to the preceding-
sibling axis but I failed to.

Martin Honnen chastised me for not mentioning
Muenchian Grouping. This was deliberate because I felt
that anyone asking such a simple question probably had
very little XSLT knowledge. I was wary of referring to
Muenchian Grouping. However, I did not explain the
solution I provided in any way and this was a failure.

The fact that Jeni's blog on Muenchian Grouping is
used as the prime reference is also a failing. As a

Page 96 of 102

Urban Legend or Best Practice

https://www.tiobe.com/tiobe-index/
http://perlmonks.org

community we have not created the infrastructure that
younger developers expect (xslt.com is registered to a
domain squatter) and are referring novice developers to
personal blogs for information. In fact, the blog is clear
that Jeni was referring to large datasets so this may not
have been appropriate for the user's situation. This is
where SO fails compared to the Mulberry mailing list —
mailing lists provide an environment where asking for
additional information works well. The SO comments
concept does not achieve that.

The analysis of approaches to solving the user's
problem indicates clearly that Muenchian Grouping is
the ideal solution to the problem. It also shows that the
dataset must be fairly large (we tested a preceding-
sibling axis up to 1600 elements long) before the
approach to the problem even starts to have a significant
impact on the speed (if not efficiency) of the solution.
Whilst the suggestion that Muenchian Grouping would
be the best is clearly not an urban legend, it isn't a
panacea either and simpler solutions would have worked.

If a novice asks a question, good teaching practice
suggests that a simple solution is often the best first
solution to give. More effective solutions can and often
should be given but automatically reaching for complex
solutions does not necessarily help the questioner.
Answers which provide complex solutions without
explanation enhance the reputation of the language for
being impenetrable and complex. It is not unusual to
encounter developers who still feel that writing an
application in Java or C# that uses the DOM to
manipulation content is simpler than writing an little
XSLT.

The best answers on SO provide explanation along
with answers. Too often, we fail to do that. When
answering this question on SO, I omitted everything that
makes it a good answer.

5. Summary

A short answer to a question on SO has led to a lot of
thought and experiment. I believe that SO and its peers
are valuable opportunities for the XML and XSLT
community to provide ad hoc training to novice
developers. Novice developers with good experience of
XSLT may become journeymen and valued members. of
the community.

This suggests that those members of the community
who answer questions on SO (and to a lesser extent, the
Mulberry mailing list) should consider that they are not
just answering questions but that they are also, much of
the time, teaching.

Good teachers understand the context of the
question. Most of those who answer XSLT questions on
SO ask questions in the form of comments. That is the
maximum extent that it allows but it is essential.

It is important to give context and explanation in an
answer. An answer that provides a short snippet of XPath
or XSLT with no explanation might well solve a user's
problem but it does not add to the sum of knowledge
held in SO (and thus, easily found via search engines). If
an answer has context and explanation, it becomes much
more likely that another user will be able to use that
answer for a similar problem and the issue of duplicate or
near duplicate questions is diminished.

The online experience of a language is defined to a
great extent by the infrastructure and community
provided by sites such as Stack Overflow, FAQs and
mailing lists. These must be treasured and properly
curated in an era where minimal or unchanging online
presence is interpreted as death.

A. generator.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:corbas="http://www.corbas.co.uk/ns/xsl/functions"

 xmlns:math="http://www.w3.org/2005/xpath-functions/math"

 xmlns:xd="http://www.oxygenxml.com/ns/doc/xsl"

 exclude-result-prefixes="xs math xd" expand-text="yes" version="3.0">

 <xd:doc scope="stylesheet">

 <xd:desc>

 <xd:p><xd:b>Created on:</xd:b> Apr 30, 2017</xd:p>

 <xd:p><xd:b>Author:</xd:b> nicg</xd:p>

 <xd:p>Generate randomised sets of elements for use in testing</xd:p>

Page 97 of 102

Urban Legend or Best Practice

 </xd:desc>

 </xd:doc>

 <xsl:param name="max-uniques" as="xs:integer" select="1000"/>

 <xsl:param name="min-uniques" as="xs:integer" select="5"/>

 <xsl:param name="max-dups-percentage" as="xs:integer" select="50"/>

 <xsl:param name="max-dups" as="xs:integer" select="20"/>

 <xsl:param name="variants" as="xs:integer" select="5"/>

 <xsl:variable name="uniques" as="element(*)*">

 <xsl:for-each select="1 to $max-uniques">

 <xsl:element name="command">

 <xsl:attribute name="name" select="concat('command', .)"/>

 </xsl:element>

 </xsl:for-each>

 </xsl:variable>

 <xsl:template name="main">

 <xsl:for-each select="$min-uniques to $max-uniques">

 <xsl:variable name="current-uniques" select="xs:integer(.)"

 as="xs:integer"/>

 <xsl:if test="$current-uniques lt 100 or $current-uniques mod 10 eq 0">

 <xsl:variable name="current-uniques" as="xs:integer" select="."/>

 <xsl:call-template name="unique-set">

 <xsl:with-param name="unique-count" select="$current-uniques"/>

 <xsl:with-param name="generator"

 select="random-number-generator($current-uniques)"/>

 </xsl:call-template>

 </xsl:if>

 </xsl:for-each>

 </xsl:template>

 <xsl:template name="unique-set">

 <xsl:param name="generator" as="map(xs:string, item())"/>

 <xsl:param name="unique-count" as="xs:integer"/>

 <xsl:call-template name="build-doc">

 <xsl:with-param name="generator" select="$generator?next()"/>

 <xsl:with-param name="dup-counts"

 select="corbas:dup-counts(

 $unique-count, $max-dups-percentage, $max-dups)"/>

 <xsl:with-param name="unique-count" select="$unique-count"/>

 </xsl:call-template>

 </xsl:template>

Page 98 of 102

Urban Legend or Best Practice

 <xsl:template name="build-doc">

 <xsl:param name="generator" as="map(xs:string, item())"/>

 <xsl:param name="unique-count" as="xs:integer"/>

 <xsl:param name="dup-counts" as="xs:integer*"/>

 <xsl:call-template name="build-doc-variant">

 <xsl:with-param name="unique-count" select="$unique-count"/>

 <xsl:with-param name="generator" select="$generator?next()"/>

 <xsl:with-param name="variant-count" select="$variants"/>

 <xsl:with-param name="dup-counts" select="$dup-counts"/>

 </xsl:call-template>

 </xsl:template>

 <xsl:template name="build-doc-variant">

 <xsl:param name="generator" as="map(xs:string, item())"/>

 <xsl:param name="unique-count" as="xs:integer"/>

 <xsl:param name="dup-counts" as="xs:integer*"/>

 <xsl:param name="variant-count" as="xs:integer"/>

 <xsl:if test="not(empty($dup-counts))">

 <xsl:choose>

 <xsl:when test="$variant-count = 0">

 <xsl:call-template name="build-doc-variant">

 <xsl:with-param name="unique-count" select="$unique-count"/>

 <xsl:with-param name="generator" select="$generator?next()"/>

 <xsl:with-param name="variant-count" select="$variants"/>

 <xsl:with-param name="dup-counts" select="tail($dup-counts)"/>

 </xsl:call-template>

 </xsl:when>

 <xsl:otherwise>

 <xsl:message>BUILD-DOC-VARIANT - uniques={$unique-count},

 dups={head($dup-counts)}, variant="{$variant-count}"</xsl:message>

 <xsl:variable name="to-write"

 select="corbas:random-sequence(

 $unique-count, head($dup-counts), $generator)"/>

 <xsl:call-template name="write-sequence">

 <xsl:with-param name="unique-count" select="$unique-count"/>

 <xsl:with-param name="dup-count" select="head($dup-counts)"/>

 <xsl:with-param name="output-sequence" select="$to-write"/>

Page 99 of 102

Urban Legend or Best Practice

 <xsl:with-param name="variant" select="$variant-count"/>

 </xsl:call-template>

 <xsl:call-template name="build-doc-variant">

 <xsl:with-param name="unique-count" select="$unique-count"/>

 <xsl:with-param name="generator" select="$generator?next()"/>

 <xsl:with-param name="variant-count" select="$variant-count - 1"/>

 <xsl:with-param name="dup-counts" select="$dup-counts"/>

 </xsl:call-template>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 </xsl:template>

 <xsl:template name="write-sequence">

 <xsl:param name="output-sequence" as="element(*)*"/>

 <xsl:param name="unique-count" as="xs:integer"/>

 <xsl:param name="dup-count" as="xs:integer"/>

 <xsl:param name="variant" as="xs:integer"/>

 <xsl:variable name="href"

 select="'output/' || format-number($unique-count, '0000') || '/' ||

 format-number($unique-count, '0000') || '-' ||

 format-number($dup-count, '0000') || '-' ||

 format-number($variant, '000') || '.xml'"/>

 <xsl:result-document href="{$href}">

 <root>

 <xsl:sequence select="$output-sequence"/>

 </root>

 </xsl:result-document>

 </xsl:template>

 <xsl:function name="corbas:dup-counts" as="xs:integer*">

 <xsl:param name="unique-count"/>

 <xsl:param name="max-dup-percentage"/>

 <xsl:param name="max-dups" as="xs:integer"/>

 <!-- if a simple divide up into max-dup-percentage would

 give too many values then redo -->

 <xsl:choose>

 <xsl:when

 test="$unique-count * ($max-dup-percentage div 100) gt $max-dups">

 <xsl:variable name="base"

 select="$unique-count * ($max-dup-percentage div 100)"/>

Page 100 of 102

Urban Legend or Best Practice

 <xsl:variable name="increment" select="$base div $max-dups"

 as="xs:double"/>

 <xsl:message>increment is <xsl:value-of select="$increment"/></xsl:message>

 <xsl:sequence

 select="distinct-values(for $n in (1 to $max-dups)

 return xs:integer(floor($n * $increment)))"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:sequence

 select="1 to xs:integer(floor($unique-count *

 ($max-dup-percentage div 100)))"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:function>

 <xsl:function name="corbas:dups" as="element(*)*">

 <xsl:param name="unique-count" as="xs:integer"/>

 <xsl:param name="dup-count" as="xs:integer"/>

 <xsl:param name="generator" as=" map(xs:string, item())"/>

 <xsl:sequence

 select="if ($dup-count = 0) then () else (

 subsequence($uniques, 1, $unique-count)[floor($unique-count *

 $generator?number) + 1],

 corbas:dups($unique-count,$dup-count - 1, $generator?next()))"/>

 </xsl:function>

 <xsl:function name="corbas:random-sequence" as="element(*)*">

 <xsl:param name="unique-count" as="xs:integer"/>

 <xsl:param name="dup-count" as="xs:integer"/>

 <xsl:param name="generator" as="map(xs:string, item())"/>

 <xsl:variable name="dups"

 select="corbas:dups($unique-count, $dup-count, $generator?next())"

 as="element(*)*"/>

 <xsl:variable name="current-uniques"

 select="subsequence($uniques, 1, $unique-count)"/>

 <xsl:sequence select="$generator?permute(($dups, $current-uniques))"/>

 </xsl:function>

</xsl:stylesheet>

Page 101 of 102

Urban Legend or Best Practice

Charles Foster (ed.)

XML London 2017
Conference Proceedings

Published by
XML London

103 High Street
Evesham

WR11 4DN
UK

This document was created by transforming original DocBook XML sources
into an XHTML document which was subsequently rendered into a PDF.

1st edition

London 2017

ISBN 978-0-9926471-4-8

	XML London 2017
	Table of Contents
	General Information
	Sponsors
	Preface
	Distributing XSLT Processing between Client and Server
	1. Introduction
	2. License Tool application: what it does, and how it currently works
	3. Application redesign
	4. Client-side XSLT processing
	5. XForms implementation in interactive XSLT 3.0
	6. HTTP client-server communication
	7. Conclusion
	Bibliography

	Location trees enable XSD based tool development
	1. Introduction
	2. Problem definition
	2.1. The problem of understanding
	2.2. The query problem
	2.3. The transformation problem
	2.4. The metadata problem

	3. Location trees
	3.1. A simple example
	3.2. Info locations
	3.3. Location tree structure
	3.4. Location tree attributes
	3.5. Open source tool for creating location trees

	4. XSD based tool development
	4.1. Getting your feet wet - first schema queries
	4.2. Schema reporting - treesheets
	4.3. Fact trees
	4.4. Metadata trees and code generation
	4.4.1. Design a metadata model
	4.4.2. Create a metadata tree generator
	4.4.3. Create a metadata tree transformator
	4.4.4. Using the code generator

	5. Discussion
	Bibliography

	An Architecture for Unified Access to the Internet of Things
	1. Internet of Things
	2. Social Problems
	3. An Architecture
	4. Design
	5. Some (necessarily simple) Examples
	6. Is Jack Home?
	7. Living together
	8. Lock
	9. Mesters's Law
	10. Privacy
	11. Communication
	12. User Interface
	13. Conclusion
	Bibliography

	Migrating journals content using Ant
	1. Background
	2. Problems to solve
	3. Choosing the technology for the solution
	4. Applying Ant to the solution
	4.1. Unzip source files
	4.2. Reorganize files and folders
	4.3. Check for corrupt PDFs
	4.4. Transform article XML to SC JATS
	4.5. Handle images
	4.6. Tidy up the article XML
	4.6.1. Insert missing DOIs
	4.6.2. Insert (or report) missing article title
	4.6.3. Remove invalid subject taxonomic code
	4.6.4. Fix publication dates

	4.7. Validate the article XML
	4.8. Create output package for loading to the platform
	4.9. Load the journal issues

	5. Running the pipeline (Windows)
	6. Running the pipeline (Linux)
	7. Dealing with “quarantined” journal issues
	8. Regression testing in Ant
	Bibliography

	Improving validation of structured text
	1. Introduction
	2. Current status of text validation support
	2.1. Custom data types based on regular expressions
	2.2. ISO/IEC 19757-5
	2.3. Limitations of using regular expressions for validation

	3. Describing syntax using grammars
	4. Using grammars for validation of texts inside XML documents
	4.1. Generating parsing code from grammar
	4.2. Integration of parsing code into Schematron
	4.3. Invoking parsing functions from Schematron
	4.4. Deep checking
	4.5. Comparision with regular expressions

	5. More use cases
	6. Better integration of grammar-based checking into existing schema
 languages
	7. Conclusions
	Bibliography

	XSpec v0.5.0
	1. The Importance of
 Testing
	2. A Brief History of
 XSpec
	3. New
 Features
	3.1. XSLT 3.0 Support
	3.2. JUnit
 Support
	3.3. Testing XSpec
	3.4. Feature Parity between Windows and MacOS/Linux

	4. Bug
 Fixes
	5. Future
 Work
	6. Conclusion
	7. Acknowledgements
	Bibliography

	Bridging the gap between knowledge modelling and technical
 documentation
	1. Introduction
	2. Structured Content feedback loop architecture
	3. Example implementation
	3.1. Problem example
	3.2. Implementation
	3.2.1. Input reference documents

	Note
	Note
	3.2.2. Knowledge graph
	Constructing the knowledge graph

	3.2.3. Task document
	3.2.4. Validating the task
	Finding the correct command name
	Resulting task

	4. Conclusions & Observations
	5. Future work
	Bibliography

	DataDock
	1. Introducing DataDock
	1.1. Background for DataDock
	1.2. Architecture
	1.3. DataDock CSV Conversion
	1.4. Ontology Mapping

	2. DataDock Repository Internals
	2.1. CSV
	2.2. Data
	2.3. Page
	2.4. Quince
	2.4.1. Quince Algortihms
	2.4.2. Reporting Diffs
	2.4.3. Merging
	2.4.4. Future Work: Quince and Triple Pattern Fragments

	3. Conclusion
	Bibliography

	Urban Legend or Best Practice
	1. Background
	2. Investigation
	3. Testing The Concept
	3.1. Test Data
	3.2. Test Scripts
	3.2.1. xsl-1-predicate.xsl
	3.2.2. xsl-1-group.xsl
	3.2.3. xsl-2-predicate.xsl

	3.3. xsl-2-group-by.xsl
	3.3.1. xsl-2-distinct-values.xsl
	3.3.2. XSLT 3.0 variants

	3.4. Process
	3.5. Results

	4. Learning and Training
	4.1. Survey
	4.2. A Crisis of Authority
	4.3. Training in the Age of SO
	4.4. Applying That to the Question

	5. Summary
	A. generator.xsl

