
XML LONDON 2015
CONFERENCE PROCEEDINGS

UNIVERSITY COLLEGE LONDON,
LONDON, UNITED KINGDOM

JUNE 6–7, 2015

XML London 2015 – Conference Proceedings
Published by XML London
Copyright © 2015 Charles Foster

ISBN 978-0-9926471-2-4

Table of Contents
General Information. 6

Sponsors. 7

Preface. 8

Improving Pattern Matching Performance in XSLT - John Lumley and Michael Kay. 9

It's the little things that matter - Abel Braaksma. 26

Continuous Integration for XML and RDF Data - Sandro Cirulli. 52

Vivliostyle - Web browser based CSS typesetting engine - Shinyu Murakami and Johannes Wilm. 61

Magic URLs in an XML Universe - George Bina. 63

A rendering language for RDF - Fabio Labella and Henry S. Thompson. 69

Publishing with XProc - Nic Gibson. 81

Data-Driven Programming in XQuery - Eric van der Vlist. 90

XML Processing with Scala and yaidom - Chris de Vreeze. 99

Lizard - A Linked Data Publishing Platform - Andy Seaborne. 109

Streamlining XML Authoring Workflows - Phil Fearon. 114

Implementation of Portable EXPath Extension Functions - Adam Retter. 125

Validating XSL-FO with Relax NG and Schematron - Tony Graham. 143

The application of Schematron schemas to word-processing documents - Andrew Sales. 153

XML Interfaces to the Internet of Things with XForms - Steven Pemberton. 163

Diaries of a desperate XProc Hacker - James Fuller. 169

 Hello, we’re your
 Enterprise NoSQL

 database
 solution.

Say hello to the new generation.

POWERFUL & SECURE | AGILE & FLEXIBLE | ENTERPRISE-READY | TRUSTED

www.marklogic.com . sales@marklogic.com

Are you stuck �xing

YESTERDAY
Or are you solving for

TOMORROW?
The world’s largest banks use MarkLogic to get a 360-degree view
of the enterprise, reduce risk and operational costs, and provide

better customer service. What are you waiting for?

C

M

Y

CM

MY

CY

CMY

K

MarkLogic- DataLeadershipEvent-A4-v01b.pdf 1 11/21/2013 3:29:18 PM

General Information
Date

Saturday, June 6th, 2015
Sunday, June 7th, 2015

Location
University College London, London – Roberts Engineering Building, Torrington Place, London, WC1E 7JE

Organising Committee
Kate Harris, Socionics Limited
Dr. Stephen Foster, Socionics Limited
Charles Foster, MarkLogician (Socionics Limited)

Programme Committee
Abel Braaksma, AbraSoft
Adam Retter, Freelance
Charles Foster (chair), MarkLogician
Dr. Christian Grün, BaseX
Eric van der Vlist, Dyomedea
Geert Bormans, Freelance
Jim Fuller, MarkLogic
John Snelson, MarkLogic
Lars Windauer, BetterFORM
Mohamed Zergaoui, Innovimax
Norman Walsh, MarkLogic
Philip Fennell, MarkLogic

Produced By
XML London (http://xmllondon.com)

Sponsors

Gold Sponsor

• MarkLogic - http://www.marklogic.com

Silver Sponsor

• oXygen - http://www.oxygenxml.com

Bronze Sponsor

• Saxonica - http://www.saxonica.com

http://www.marklogic.com
http://www.oxygenxml.com
http://www.saxonica.com

Preface
This publication contains the papers presented during the XML London 2015 conference.

This is the third international XML conference to be held in London for XML Developers – Worldwide, Semantic
Web and Linked Data enthusiasts, Managers / Decision Makers and Markup Enthusiasts.

This 2 day conference is covering everything XML, both academic as well as the applied use of XML in industries
such as finance and publishing.

The conference is taking place on the 6th and 7th June 2015 at the Faculty of Engineering Sciences (Roberts
Building) which is part of University College London (UCL). The conference dinner and the XML London 2015
DemoJam is being held in the UCL Marquee located on the Front Quad of UCL, London.

The conference is held annually using the same format, with XML London 2016 taking place in June next year.

— Charles Foster
Chairman, XML London

Improving Pattern Matching Performance in XSLT
John Lumley

jωL Research & Saxonica
<john@jwlresearch.com>

Michael Kay

Saxonica
<mike@saxonica.com>

Abstract

This paper discusses improving the performance of XSLT
programs that use very large numbers of similar patterns in
their push-mode templates. The experimentation focusses
around stylesheets used for processing DITA document
frameworks, where much of the document logical structure is
encoded in @class attributes. The processing stylesheets, often
defined in XSLT1.0, use string-containment tests on these
attributes to describe push-template applicability. For some
cases this can mean a few hundred string tests have to be
performed for every element node in the input document to
determine which template to evaluate, which in sometimes
means up to 30% of the entire processing time is taken up
with such pattern matching. This paper examines methods,
within XSLT implementations, to ameliorate this situation,
including using sets of pattern preconditions and pre-
tokenization of the class-describing attributes. How such
optimisation may be configured for an XSLT
implementation is discussed.

Keywords: XSLT, Pattern matching

1. Introduction

XSLT's push mode of processing [5], where templates are
invoked by matching XPath-based patterns that describe
conditions on nodes to which they are applicable, is one
of the really powerful features of that language. It allows
very precise declarative description of the cases for which
a template is considered relevant, and along with a well-
defined mechanism of priority, and precedence, permits
specialisation and overriding of 'libraries' to encourage
significant code reuse. Whilst other features of XSLT are
valuable, push-mode pattern matching is almost certainly
the most important.

Consequently much effort has been expended on
developing XSLT-based processing libraries, for many
types of XML processing, most notably in 'document

engineering', such as DocBook and DITA, which use
pattern-matching templates extensively. Typically a
processing step might involve the use of hundreds of
templates which have to be 'checked' for applicablity
against XML nodes that are being processed in a push
fashion. One of the challenges for the implementor of an
XSLT engine is to ensure that for most common cases,
this matching process is efficient.

Various aspects of overall XSLT performance have
been studied and reported [1] [3] including optimization
rewriting [2]. In this paper we will examine some cases
where, owing to the nature of the XML vocabularies
being processed and the design of the large XSLT
processing stylesheets employed, the default matching
process in one XSLT implementation (Saxon) can be
rather expensive, in some cases taking about a third of all
the transform execution time. We'll discuss possible
additions and modifications to the pattern-matching
techniques to improve performance and show their
effects. Some knowledge of XSLT/XPath is assumed.

The paper is organised as follows:
• We first describe “push-mode” processing in XSLT

and what the process for matching template patterns
is in detail.

• How this process is performed in the Saxon
implementation is presented, along with some general
remarks about the problems of many templates
matching predicated generic, as opposed to named,
elements.

• We discuss in detail measurements of the pattern
matching performance when processing a large
sample DITA document.

• Possible improvements using sets of common
preconditions to partition applicable templates are
outlined and performance measurements using a
variety of these tactics in processing the sample are
discussed.

• Some other approaches, involving more detailed
knowledge of stylesheet expectations are discussed
briefly.

doi:10.14337/XMLLondon15.Lumley01 Page 9 of 177

mailto:john@jwlresearch.com
mailto:mike@saxonica.com

1 In XSLT 3.0 this choice can be controlled via stylesheet declarations.
2 A template can be referenced from multiple lists when its match conditions contains a union of patterns.

• We speculate on methods to define and introduce
such tuning features into an XSLT implementation.

2. XSLT push mode

XSLT's push-mode of processing takes a set of items
(usually one or more nodes from the input document
such as elements, attributes or text) and for each finds a
stylesheet template declaration whose pattern matches
the item (the “context item”) in question. Assuming one
is found, the body of the template, which can contain
both result tree fragments and XSLT instructions, is
executed to generate a result which is then added to the
current result tree. This push mode is often exploited
highly recursively, descending large source input trees to
accumulate result transformations, usually as modified
trees. To understand the problems with large sets of such
templates, which is often the case in industrial-scale
document processing applications, we need to describe
more closely what this pattern matching process is.

When processing a candiate item (“context item”) in
XSLT via the xsl:apply-templates instruction the
following is the effective declarative procedure:

1. All the templates that have @match patterns and
operate in the “current” mode are considered
candidates.

2. For each template so chosen the pattern (which is
a modified form of an XPath expression) is tested
against the context item to determine a boolean
value. Only those yielding true are considered.

3. The templates with the highest import precedence
are retained. (Templates in an imported, as
opposed to included, stylesheet have precedence
lower than those in the stylesheet that declares the
importation, or any following “sibling” imported
stylesheets.)

4. From these only those with the highest explicit or
implicit priority are considered. (Patterns have an
implicit priority level calculated based on a
'specificity' formula, such that more specific cases
(e.g. piece[@class = 'my.class']) have higher
priority than less specific ones (e.g. piece), and
thus supporting a natural style for general and
specific case programming. Rules can override this
by declaring an explict priority.)

5. Members of the remaining set of templates are all
potential candidates:
• If the resulting set is empty, the result is an

empty sequence.

• If it has just a single template member, then the
result of the xsl:apply-templates is the (non-
error) result of executing the sequence
constructor of that template with the tested
item as the context item.

• If the resulting template set has more than one
member, then it is an implementation choice as
to whether a dynamic error is thrown1. If not,
then the last in “sequence” is chosen and its
body executed.

What this list doesn't prescribe is how the process is to be
implemented. Clearly there are a number of possibilities
of improving performance, by for example examining
candidate templates in a suitable order, or pre-classifying
subsets of the possible templates. In this paper we
examine some possibilities which look deeper into the
template patterns themselves.

3. Template rules in Saxon

The algorithm used for matching template patterns in
the Saxon processor has been unchanged for many years
[1], and works well in common cases. In simplified form,
it is as follows:

For template rules whose match pattern identifies the
name of the element or attribute to be matched (for
example match="para", or match="para[1]", or
match="section/para"), the template rule is placed on a
list of rules that match that specific element or attribute
primary QName . Other rules are placed on one of a set
of generic lists, arranged by type (document-node(),
text(), element(*)...) . Both the named and generic
lists are ordered by "rank", a metric that combines the
notions of import precedence, template priority, and
ordering of rules within the stylesheet.

When apply-templates is called to process a specific
element, Saxon finds the highest-ranking matching rule
on the list for that specific element name, and also the
highest-ranking matching rule on the generic list2. It
then chooses whichever of these two has higher rank. The
search of the generic list is abandoned as soon as it can be
established there will not be any matching rule with
higher rank than a rule found on the specific list. But
note that, as we'll see later in our example, once a match
has been found in either the specific or the generic list,
that list must still be searched for other matching
candidates of similar rank.

In current versions of Saxon each pattern in the rule
chain is examined in turn, to determine a boolean
matches value. Of course the boolean match processing is

Page 10 of 177

Improving Pattern Matching Performance in XSLT

http://www.saxonica.com

1 By contrast the Docbook https://github.com/docbook/docbook toolsets, of similar size, use almost entirely named element pattern
matches.

processed lazily, and in strict sequence, with falsity
propagating as quickly as possible, so for example,
ancestor patterns are only examined if the self:: pattern
proves true.

For very many stylesheets, this works well, because
most rules specify an element name, and there are
typically not many rules for each element name, so
typically each element that is processed is matched
against at most half a dozen rules on the specific list for
its element name; usually the generic list does not need
to be considered, because rules on the generic list usually
have lower rank than rules on the element-specific list.

The algorithm becomes ineffective, however, when
the stylesheet defines very few rules that match specific
element names, and many rules that are generic.
Typically such stylesheets match elements according to
predicates applied to their attributes, rather than
matching them by name. A worst-case example of such
coding can be found in the DITA-OT family of
stylesheets1. Consequently these have therefore been used
as a test case for exploring improvements to Saxon's
pattern matching algorithm. This is even more
problematic when the stylesheets use a large range of
import precedences, as is also true in the example, where
as we'll see there are some 35 different well-populated
ranks. Moreover even the named lists gain little as time is
dominated totally by checking the unnamed sets.

3.1. Generic match patterns

As hinted above, the presence of a lot of patterns of the
form *[predicate] mean that measures such as
indexing patterns on primary element name become
ineffective. Are there other indexation schemes that can
be employed? Clearly if we have many match patterns of
the form:

*[@x = 'a']
*[@x = 'b']
*[@x = 'c']

and it is possible to determine statically that these
predicates are mutually exclusive, then should be possible
to construct a hash index whereby we can lookup the
value of attribute @x, and directly determine which of the
patterns applies.

Unfortunately real life is more complicated. A
framework where almost all stylesheet template patterns
match generic rather than named elements is DITA-OT,
where the patterns take the form

*[contains(@x, 'a')]
*[contains(@x, 'b')]
*[contains(@x, 'c')]

As it happens, in DITA these patterns are designed to be
mutually exclusive, so only one of them will ever match.
But there is no way an optimizer can know that and we
cannot thus meaningfully generate indices. So if we are
going to avoid a sequential search of all the patterns, we
need a different approach. The rest of this paper
examines what this might be, after discussing a specific
DITA document processing example in detail.

4. Processing a DITA document

The DITA-OT framework is a set of mainly XSLT
(1.0/2.0) tools for processing DITA documents, used
extensively in automatic generation of technical
documentation. DITA itself describes document
components in XML trees, using the @class attribute
extensively, with class membership described through a
whitespace-separated set of class names. (For a fuller
description, see Class attribute syntax in the DITA
documentation.)

One consequence of this is that many of the
processing templates within the DITA-OT framework
describe applicability through a match “is this element in
class xxx ”. Unfortunately, within an XSLT1.0 context,
where tokenization isn't present, this is typically
described as a predicated match pattern

*[contains(@class,' classname ')]

(Additional leading and trailing spaces are added to the
class attribute value to support this generic contains()
match.) A little thought would suggest that when a large
number of such patterns all compete to examine the
@class attributes of pretty much every element in a
document then the pattern-matching process might be
very expensive. And so it turns out.

Note

This predicated match pattern appears so frequently
throughout this paper, that an abbreviation
@C{ classname } will often be used in tables and figures
to replace this construct.

While examining a (different) DITA processing
performance issue for a client, Saxonica carried out some
measurements on the size of this pattern-matching
problem. The chosen situation was one of the stages of
expansion of a DITA document into a PDF result, via an
XSL-FO route. In particular we examined the conversion
of a fully formed DITA source into XEP-specific XSL-

Page 11 of 177

Improving Pattern Matching Performance in XSLT

https://github.com/docbook/docbook
http://www.dita-ot.org/
http://docs.oasis-open.org/dita/v1.0/archspec/classattdef.html

FO source (target transform.topic2fo.main in the
DITA-OT build script architecture). Through most of
the rest of this paper, we'll study in detail the processing
of a particular source document through this XSLT
transformation.

4.1. Source document and transform

The processed document had the following
characteristics:
• An 80 page specification for a electronic component,

involving lots of tabular descriptions of bit-
significances etc.

• Source file: 2.66 MB (246kB of redundant
whitespace)

• Source XML tree: 13,066 elements, 46,831 attributes,
6,093 non-whitespace text nodes – total 65,990
significant nodes; tree depth: maximum: 13, average:
~10; sibling width: maximum: 57, average: ~2.

• Result XML tree: 19,441 elements, 91,048 attributes,
6,140 non-whitespace text nodes

• Final PDF document: ~80 pages.
• The document is very table-heavy – 262 tables with

1,309 rows and 4,863 cells, i.e. almost 50% of all the
document elements describe table components.

• All bar two elements of the source document contain
a @class attribute, and there are 43 different values

for its text value, the most frequent of which is used
3,683 times.

The processing XSLT transformation had the following
characteristics:
• 58 source files.
• 70 pattern-matching modes.
• 418 pattern-matching templates, 155 named

templates. (258 of the matching templates are in the
#default mode.)

• 5 user-defined functions.
• Of the 58 source files, only 33 contain templates.
Those that don't either act as importation expanders
or contain global parameters or attribute sets.

• All stylesheet connection is via xsl:import; there is no
use of inclusion and no multiple importation. The
importation tree is relatively shallow, at most with a
depth of 4 and looks like Figure 1. DITA-OT
stylesheet importation tree for DITA→FO.

where solid nodes indicate stylesheets that contain
templates and circles denote stylesheets that import
other stylesheets. (The two leaf nodes circled are
stylesheets containing the most frequently used
templates. The consequences of this are discussed in
Section 6.1, “ “Un-disambiguating” rules”.)

Figure 1. DITA-OT stylesheet importation tree for DITA→FO

16

16 1 1

4 4 3

4

8 61 10 140 23 9 32 20 1 7 30 11 8 35 6 6 8 43 2 6 1 10

1 3

Page 12 of 177

Improving Pattern Matching Performance in XSLT

1 A union pattern (pattern1 | pattern2) is considered to be a set of separate matches for this analysis - one for each pattern.
2 There is no use of the xsl:apply-imports instruction within the framework, implying a simple overriding model. xsl:next-match is

not used either, though that wasn't present in XSLT1.0

4.2. Processing characteristics

Using Saxon 9.6EE on a quad-core i7 1.6 GHz laptop
running 64-bit Windows7 with 4GB of RAM, the
processing took around 15 seconds. But of more interest
are some of the internal statistics. In processing this
document to completion, 75,950 template rules
'executed', i.e. their patterns matched and their sequence
constructor bodies were processed further1. (This is
comensurate with a model where most nodes are only

'touched' once during processing.) Determining which
rule to execute at each stage took approximately 4.5
seconds, i.e. ~ 30% of all processing involved template
pattern matching.

Of the 70 pattern matching modes in the source
XSLT, only 35 were active on this document and only
three have significant performance impact, accounting
for 96% of all the calls and 99.7% of all the time taken
matching template patterns.

Table 1. Significant Modes

Mode Purpose # invocations % invocations time / ms %time

#default General 13,095 17.2 4,330 97.8

toc Table of Contents 22,088 29.1 51 1.1

bookmark Bookmarks 37,752 49.7 33 0.8

Whilst the proportion of the number of invocations
depends upon characteristics of the document and the
DITA-OT framework, the performance costs per node
depend upon the complexity of the patterns involved.

Thus if we examine the patterns for the #default mode,
it immediately becomes apparent why there is such
disparity.

Table 2. Mode Patterns

Mode Purpose
template patterns in mode

#templates matched
element(*) element(named) attribute(named)

#default General 240 19 8 39

toc Table of Contents 2 4 0 3

bookmark Bookmarks 2 5 0 3

Clearly the number of the template rules that need to be
checked for unnamed elements (*) in the #default mode
dominates. How do these 240 templates differ? Firstly as
the DITA -OT framework uses a large number of files via
xsl:import inclusions, they have strongly differing
precedences 2. Template match patterns also have
differing implicit or explicit priorities. Together these
two properties constitute a rank, precedence before
priority - matching higher rank patterns are chosen over
lower. When multiple patterns match at the same rank

optionally either the last in sequence is chosen or a
dynamic error is thrown.

In this case, the 240 templates are spread across 25
different ranks, with the sequence order distribution
shown in Figure 2, “Template rule order and precedence
ranking”.

Page 13 of 177

Improving Pattern Matching Performance in XSLT

Figure 2. Template rule order and precedence ranking

2015-05-03T13:10:30.615+01:00

0

5

10

15

20

25

30

R
an

k

0 50 100 150 200 250

Rule order

Template rank distribution
mode:#default

Missing ranks involve templates matching named
elements and attributes. The overall total of 35 ranks is in
line with the approximately 33 imported stylesheets of
the framework. Within a rank rules are ordered in reverse
document order as when ambiguous rules are permitted
later rules are chosen; hence they are placed earlier within
order within a rank. Details for the most heavily used
ranks are given in the following table:

Table 3. Heavily populated pattern ranks in mode
#default

Rank 27 26 25 23 21 20 17 9 5 4 1

start 9 15 53 62 69 95 105 121 199 226 236

end 14 52 60 67 94 101 115 198 225 233 242

size 6 38 8 6 26 7 11 78 27 8 7

Rank 5 contains mostly templates associated with tables,
from the stylesheet tables.xsl and these table-matching

templates appear to be unique, i.e. no templates in other
stylesheets would be anticipated to match. Rank 26
(from pr-domain.xsl) contains templates for the
programming domain.

As already remarked, all templates of a given rank are
candidates to match in preference to those of a lower
rank. Thus for example, when processing a node whose
correctly matching template is that with order number
150 and rank 9, all the 122 templates of higher rank
must be eliminated, and all the 78 templates of equal rank
tested for possible conflict, i.e. a total of just under 200
template match conditions must be examined.

We've examined the rank ordering of all the
templates used in the #default mode, but which are
actually matched within the processing of this sample
document? Figure 3, “Rule order and precedence of
matched templates” shows the distribution of the 39
templates that were invoked.

Page 14 of 177

Improving Pattern Matching Performance in XSLT

Figure 3. Rule order and precedence of matched templates

2015-05-03T13:10:30.615+01:00

0

5

10

15

20

25

30

R
an

k

0 50 100 150 200 250

Rule order

Templates used with mode: #default

The blue dots indicate order/rank of matched templates,
the green circles surround the four most frequently
matched of these, the implications of which are discussed
below. What are the most frequently matched templates?

Figure 4, “Most frequently matched templates” shows the
percentage of all matches taken by the ten most
significant, labelled with rule order, rank and
(abbreviated) match pattern.

Figure 4. Most frequently matched templates

2015-05-03T13:10:30.615+01:00

0 5 10 15 20 25

% of calls

Most frequent templates
mode:#default

52:26: @C{ pr-d/codeph }

204:5: @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

151:9: @C{ topic/p }

199:5: @C{ topic/strow }/@C{ topic/stentry }

206:5: @C{ topic/tbody }/@C{ topic/row }

205:5: @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

210:5: @C{ topic/colspec }

201:5: @C{ topic/strow }

207:5: @C{ topic/thead }/@C{ topic/row }

209:5: @C{ topic/thead }

Page 15 of 177

Improving Pattern Matching Performance in XSLT

1 We are somewhat puzzled by the redundancy in representation present – table entries are represented both by an element entry and a
token within @class. Are there circumstances where a table cell is not represented by an element entry? If this is not the case, then why
use the *[....] pattern rather than one keyed on the element QName? We understand that support for extensibility of element-
vocabulary was one reason. Far be it for the authors to criticise the design choices of DITA in its representation of class membership, or
the DITA-OT framework for the processing architecture, but this is no way to run a railway.

For this document the most commonly matched
template in the #default mode, accounting for 28% of
unnamed element matches, has order number 52 (it
matches pr-d-codeph) but the next most called (25%,
matching topic table entries) has order number 204 and
rank 5. (Their positions are circled in green in Figure 3,
“Rule order and precedence of matched templates”.) The
next 6 most commonly matched templates account for
35% of calls collectively and are in ranks 9 and 5.

So we have the situation that whilst for 28% of the
successful element matches 50 patterns must be checked
each time (i.e. the end of rank 26), for more than 60% of
the matches, either 200 or 225 patterns must be checked.

Thus far we haven't looked at what these patterns are,
merely their required order of checking. Let's examine
the top seven unnamed element patterns in the #default
mode:

Table 4. Most frequent patterns in mode #default

Order Rank % calls in mode Pattern

52 26 28.5 @C{ pr-d/codeph }

204 5 25.0 @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

151 9 8.5 @C{ topic/p }

199 5 7.5 @C{ topic/strow }/@C{ topic/stentry }

206 5 5.3 @C{ topic/tbody }/@C{ topic/row }

205 5 5.1 @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

210 5 5.1 @C{ topic/colspec }

(@C{ xxx } is an abbreviation for *[contains(@class,'
xxx ')]) Here we can see the problem - each pattern
must perform 'free-position' string matching on an
attribute of at least the element node under test and
sometimes within one or even two ancestors. And it
turns out that of these 240 template rules, all bar one of
them have a similar form1. So for templates whose order
is 200+, more than 200 other string matches of very
similar form have been performed, on every element
processed through xsl:apply-templates

When we look at the amount of time consumed the
picture is similar.

Page 16 of 177

Improving Pattern Matching Performance in XSLT

Figure 5. Pattern matching time for the most frequently matched templates

2015-05-03T13:10:30.615+01:00

0 500

Total / ms

Longest processed templates
mode:#default

Normal

204:5 → @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

52:26 → @C{ pr-d/codeph }

151:9 → @C{ topic/p }

199:5 → @C{ topic/strow }/@C{ topic/stentry }

206:5 → @C{ topic/tbody }/@C{ topic/row }

210:5 → @C{ topic/colspec }

205:5 → @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

201:5 → @C{ topic/strow }

213:5 → @C{ topic/table }

207:5 → @C{ topic/thead }/@C{ topic/row }

Given the architecture where class membership is
described in the @class attribute, an obvious question is
whether in practice elements can be members of multiple
classes. The input clearly shows this to be so – 3,864 of
the 13,066 elements have multiple class “tokens”, the
vast majority being - topic/ph pr-d/codeph, which
according to the DITA reference, declares that the given
element is a structural element equivalent to both a
phrase in a generic topic and a code-phrase in a
programming domain.

Clearly for this type of stylesheet the issue is that very
many of the templates, being processed independently,
have to carry out the same sort of operation multiple
times on the same node. What methods might be
available to reduce the processing, preferably to a
minimum? In the rest of this paper we discuss some
possible improvements of the following general types:
• Rule preconditions: determining common boolean

preconditions that must be satisfied for a (large)
number of rules to possibly match – the results for a
specific node can be cached and rules that are bound
to fail can be excluded rapidly. These approaches have
the property that they are heuristic in performance
improvement but retain correct stylesheet behaviour.

• Other methods that require oracle guarantees about
the stylesheet behaviour, effectively allowing short-
cuts which are not generally applicable to all
stylesheets. The cases include:

• Suspending rule ambiguity checking, and potential
template/stylesheet reordering.

• Pre-tokenizing suitable properties: exploiting
higher-level knowledge in replacing patterns with
access to deeper structure.

• Using key() structures.

5. Preconditions

With long sequences of patterns, many of which have
some similarities, one possibility is to detemine a smaller
set of precondition patterns that can be tested as required
for a node before the “main” pattern is checked. The
value of such a precondition for a given node can be
computed only when required (i.e. the first time when a
pattern that uses that precondition has to be checked)
and stored to avoid subsequent recomputation. The hope
of course is to eliminate quickly higher-rank patterns that
cannot match as one or more of their preconditions has
already been determined to fail. For example if there
were a large set of templates with matches of the form
chapter/ node-condition , such as:

chapter/title[condition1],
chapter/title[condition2],
chapter/para, chapter/section ...

then they all share the requirement that
exists(parent::chapter) must be true for the pattern to
match. Thus computing whether this precondition is

Page 17 of 177

Improving Pattern Matching Performance in XSLT

satisfied for a given node once may aid performance in
several possible ways:
• If a node does not have a chapter parent, then this

need be determined only once for the node and each
of these templates can be ruled out immediately.

• The pattern might be partially-evaluated within the
context that the precondition is true, e.g.
precondition(exists(parent::chapter)) reduces the
patterns to

precondition:exists(parent::chapter) :
 title[condition1], title[condition2],
 para, section ...

In our DITA example, using exists(@class) will gain us
little – almost every element in a DITA document has a
@class attribute and 90% of all element matches
predicate upon it. We could choose to use the
contains(@class,...) as a more discriminating
condition. Of the 239 template rules that share that test
for the context item (the node under test within
xsl:apply-templates) there are 204 distinct values for
the check (the largest common set has just 7 members,
most have of course 1).

In some cases these preconditions might be common,
especially when tested on ancestor nodes. For example
rules #204 and #205 both test for topic/entry on the

element and topic/row on the parent, differing only
whether the grandparent is a table body or head. In this
case, and especially with our sample document which is
very table heavy, the precondition “pair”
contains(@class,' topic/entry ') and contains(../

@class, ' table/row ') might be beneficial (tested on
#204, but result available for #205), but it is admittedly a
very special case. What other more general preconditions
might be useful?

A necessary precondition for
contains(@class,string) is contains(@class,any-

substring-of(string)) so some expression of this form
might be useful. Choosing to use just the first character
of the comparator string, which might normally be
expected to be of some use in many cases, fails miserably
here, as due to the class representation model being used
within DITA-OT, a leading space is appended to the
class token comparand (effectively implementing an
equivalent of tokenize(@class,'\s+') = 'entity-

class') – no gain there then.
If we choose to use the first two characters, we get 12

different preconditions, three of which apply to a
parent::* context. The distribution of the use of these
preconditions across the rule order is shown in Figure 6,
“Distribution of 2 character initial substring
preconditions”:

Figure 6. Distribution of 2 character initial substring preconditions

2015-04-18T14:18:40.518+01:00

0

5

10

Pr
ec

on
di

ti
on

 #

0 50 100 150 200 250
Rule order

Precondition distribution
mode:#default
2-character initial substring

@C{ s}

@C{ b}

@C{ r}

@C{ p}

@C{ u}

@C{ t}

parent::@C{ t}

@C{ h}

@C{ x}

parent::@C{ m}

parent::@C{ p}

@C{ m}

Note that these preconditions are not mutually exclusive
– some of the compound cases involve two conditions,
one on the context element and the other on its parent.

This is the case for 43% of the element template matches
on the sample document. By changing the fixed-length

Page 18 of 177

Improving Pattern Matching Performance in XSLT

1 It denotes DITA element equivalence to a given base element within a given topic.

initial substrings used we get a variety of balances
between precondition group sizes:

Table 5. Precondition group sizes as a function of
initial substring discriminant

Substring length # preconditions Largest reference set

2 12 146

3 - 5 14 121

6 16 121

7 46 121

8 75 17

We can modify our applicable rule search such that each
rule has a set of required preconditions (described by a
list of indices into a cache of expressions and boolean
values) which are tested before the main match is then
processed. The rest of the rule list processing machinery
is unaltered. The effect on the performance is shown in
Figure 7, “Effect of differing substring preconditions”:

Figure 7. Effect of differing substring preconditions

2015-04-20T15:38:06.241+01:00

0 500
Total / ms

Longest processed templates
mode:#default

Normal
2-character initial substring
3-character initial substring
8-character initial substring
3-character terminal substring

204:5 → @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

52:26 → @C{ pr-d/codeph }

151:9 → @C{ topic/p }

199:5 → @C{ topic/strow }/@C{ topic/stentry }

206:5 → @C{ topic/tbody }/@C{ topic/row }

210:5 → @C{ topic/colspec }

205:5 → @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

201:5 → @C{ topic/strow }

213:5 → @C{ topic/table }

207:5 → @C{ topic/thead }/@C{ topic/row }

Note that when we are using these substring
preconditions, there is little we can do to “pre-evaluate”
the patterns themselves. Just because contains(.,'abc')
is a precondition for contains(.,'abcdef'), does not of
course imply contains(.,'def') is now sufficent, unlike
in other cases where a “true” condition reduces the
expression.

Now of course in this example there is some implicit
structure in the class token using the solidus (/)1.
Unfortunately this insight gains us little - using the
substring before we get 14 groups, using the substring
after we get 197! Obviously a better approach is to use a
more infomation-theoretic partitioning. For example 121

template rules match a class substring ' topic/... but
adding one more character to the discriminant for this
case replaces this group with 19 subgroups, the largest
being 12-15 in size.

There is nothing that says we are restricted to initial
substrings. Choosing the last 3 characters (which of
course end with a space) gives us 53 different
preconditions, with the largest group being 19 in size.
The effect is similar, as is shown in Figure 7, “Effect of
differing substring preconditions”.

A recursive approach (extending the length of the
substring for a particular group until subsequent
subgroups are smaller than a proportion of the size of the

Page 19 of 177

Improving Pattern Matching Performance in XSLT

1 XSLT's package delivery mechanism might be a useful aid to this.

original set or some minimum size) can give us a suitable
partitioning. Doing this for this for 5% or a minimum of
30 gives us 41 preconditions, with a largest reference
group of 26. A general rule of thumb suggests that when
the number of groups is similar to the size of each group,
the testing workload should be minimised.

On a more information-theoretic basis, we could
generate some optimal partioning tree. However we have
an issue that currently this would be done at compile-
time, when, whilst we know the frequency of pattern
components spread across the template spaces, we don't
know the relative frequencies of execution on documents
at run time. A possibility might be to collect statistics
from representative training runs, which are then used to
tune a subsequent compilation1.

The performance figures above use Saxon's default
rule list representation with precondition references
added to the rules. Another possibility is to split the rule
list into a number of separate lists where within each
sublist rules which would fail a common precondition
have been eliminated, then choose between the different
lists at search start, based on checking a small number of
those preconditions. For example, consider the two most
frequent preconditions in Figure 6, “Distribution of 2
character initial substring preconditions” – @C{ t}, which
qualifies 146 of the 240 rules and @C{ p} which qualifies
30. Satisfying the first condition does not restrict
matches to just those rules which have that precondition;
given the nature of the contains() function (and DITA's
possibility of multiple class tag values) it would be
entirely possible for one of the rules having the second
precondition to match also. Rather the failure of @C{ t}
rules out all those 146 rules, leaving a list of just 94 to be
checked.

So now we have to look at the inverse of the problem.
Table 4, “Most frequent patterns in mode #default”
shows that just six patterns, all predicated on @C{ t},

account for at least 56% of all the template matches.
Hence failure of this condition (which as we've seen
limits the rules to be checked to 94) would only be
invoked for a maximum of 45% of all calls. Failing
@C{ p} will be frequent of course (for 70% of the
elements), but it only eliminates 30 rules, albeit at high
rank order.

6. Other possibilities

Using preconditions, as described above, does not change
the correctness of the stylesheet behaviour under any
circumstances. However, if the stylesheet designer can
make certain guarantees about the overall stylesheet
operation, then there are a number of other possibilities
we might consider

6.1. “Un-disambiguating” rules

We have noticed that in the execution of this stylesheet
on the example source document, there actually is no
ambiguity in applicable rules – all template patterns for a
given precedence/priority rank have mutually exclusive
patterns on the nodes present in the example DITA
document. Hence we can assume that once a pattern for a
template matches, all others of similar rank can be
discarded. In effect we are suspending the checking of
rule ambiguity, and provided that the mutual exclusivity
is true for all practical purposes, which cannot be
determined statically, the stylesheet will still continue to
function correctly.

In our example, where there are many templates
sharing the same rank (e.g. the 78 of rank 9, or 25 of
rank 5) we can eliminate further search to “rank end”.
The effect may be slight but can be worth exploring. For
our example we get the following:

Page 20 of 177

Improving Pattern Matching Performance in XSLT

1 We would be interested in situations within DITA-OT where there might be some expectation of non-exclusive rules at the same import
precedence being written.

Figure 8. Effect of removing rule ambiguity

2015-04-20T15:28:36.076+01:00

0 500
Total / ms

Longest processed templates
mode:#default

Normal
Silent

204:5 → @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

52:26 → @C{ pr-d/codeph }

151:9 → @C{ topic/p }

199:5 → @C{ topic/strow }/@C{ topic/stentry }

206:5 → @C{ topic/tbody }/@C{ topic/row }

210:5 → @C{ topic/colspec }

205:5 → @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

201:5 → @C{ topic/strow }

213:5 → @C{ topic/table }

207:5 → @C{ topic/thead }/@C{ topic/row }

The effects are most marked on rules #151, where the
number of rank 9 rules to be tested drops from 78 to 31
(total rules checked 198 → 151) and #204, where only 5
of the rank 5 rules need checking, as against 25 (total
rules checked 225 → 204). Interestingly, as we might
expect, rule #52 (which is the most frequently called)
gains no benefit, as it is the last member of rank 26 as
shown in Figure 3, “Rule order and precedence of
matched templates”.

We might also speculate on the effect if the 38 rules
of rank 26 are re-ordered so that rule #52 is tested first
and hence the number of rules checked for such nodes
drops 52 → 16, suggesting time taken might drop to a
third of its previous level. This would of course be
predicated on user-provided guarantees of mutually
exclusive applicability of rules1. In the case of rule #52
simple movement of the template from the beginning to
the end of its source file might have similar effect!

In a similar manner for rule #204, it is imported
through the tables.xsl stylesheet, whose position is
circled in blue in Figure 1, “DITA-OT stylesheet
importation tree for DITA→FO”. If these importations
are mutually exclusive, and they may well be, moving the
importation of that file to the end of the importation list
in its parent stylesheet increases the precedence of its
templates and hence rank. The orange circled stylesheet
contains rule #52. Such rearrangement of source

declaration orders may be possible by collecting statistics
from representative training runs to detect such
conditions.

Within XSLT2.0 it is an implementation choice as to
whether conflict raises an error or the last applicable rule
in declaration order is chosen. In Saxon, when warnings
are silent, the last is always chosen regardless, other rules
not being checked. In XSLT3.0 (which this DITA
framework predates) this behaviour can be controlled by
a @on-multiple-match="use-last|fail" property on a
suitable xsl:mode declaration and issuing of warnings
(which imply other rules must be checked) similarly.

6.2. Pretokenizing

The DITA architecture is effectively embedding structure
(multiple class membership) within the @class attribute.
If we can be guaranteed that this is the case, then an
option might be to generate preconditions that operate
on those implicit tokens whilst tokenising the
appropriate accessor once for each node. So for example
*[contains(@class,' topic/entry ')] would be
considered equivalent to the pattern

Page 21 of 177

Improving Pattern Matching Performance in XSLT

http://www.w3.org/TR/xslt-30/#element-mode

1 It is only guaranteed equivalent if the @class value string starts and finishes with at least a single space.

*[tokenize(@class,'\s+') = 'topic/entry')] 1 which
can then be further converted into a pair:

$tokens.class := tokenize(@class,'\s+')
 → ('foo','topic/entry')
test:
 $tokens.class = 'topic/entry'

where the node would be tokenized exactly once for each
containment-tested attribute (when the condition is first
required) and then need only be tested for value
membership against the token set in further rules
examining the same attribute properties. In most cases
the @class attribute contains three tags (of which the first
is either '+' or '-' which is never tested by templates, at
least in the current test, so the string literal sequences to
be tested are very short.

Now we define these tests as specialist tokenisation
preconditions (they may of course be shared between
rules) and index into the collection from the rules. And
unlike with the substrings, we can project the effect of a
true precondition into the pattern viz:

R1: *[contains(@class,' topic/entry ')]
R2: *[contains(@class,' topic/row ')]
R3: *[contains(@class,' topic/row ')]/
 *[contains(@class,' topic/entry ')]
→
R1: *[tokenize(@class,'\s+') = 'topic/entry')]
R2: *[tokenize(@class,'\s+') = 'topic/row')]
R3: *[tokenize(@class,'\s+') = 'topic/row')]/
 *[tokenize(@class,'\s+') = 'topic/entry')]
→
$tokens.class :=
 tokenize(@class,'\s+')
$tokens.parent.class :=
 tokenize(parent::*/@class,'\s+')
$preconditionM := $tokens.class = 'topic/entry'
$preconditionN := $tokens.class = 'topic/row'
$preconditionP := $tokens.parent.class = 'topic/row'

R1: $preconditionM && *
R2: $preconditionN && *
R3: $preconditionP && $preconditionM && *

where the token variables and precondition references are
held within the rule-processing structure. Within Saxon
these element match rules (*) would be indexed on the
“unnamed element” list, so the last part of each of the
final rule patterns would always yield true. In this case
these rules have been reduced to just a conjunction of
their preconditions.

The preconditions only call for the appropriate
tokenisation when it is first needed (they are effectively
single-assignment local variables with a scope for the
pattern match for a single node, and evaluated lazily) –
so that other preconditions involving differing values
only need to check within their own sequence
comparison. Obviously for a predicate which already uses
explicit tokenisation mechanisms (such as processing
semicolon-separated @style descriptions on SVG and the
like) then this technique can be used similarly. For our
example document, we get the following performance
improvements:

Page 22 of 177

Improving Pattern Matching Performance in XSLT

1 A node can be a member of several subsets, as the key determination can produce several values (e.g. xsl:key match="car"
use="@year,@colour").

Figure 9. Effect of pre-tokenizing pattern test inputs

2015-04-18T14:06:32.352+01:00

0 500
Total / ms

Longest processed templates
mode:#default

Normal
Tokenized patterns

204:5 → @C{ topic/tbody }/@C{ topic/row }/@C{ topic/entry }

52:26 → @C{ pr-d/codeph }

199:5 → @C{ topic/strow }/@C{ topic/stentry }

151:9 → @C{ topic/p }

206:5 → @C{ topic/tbody }/@C{ topic/row }

210:5 → @C{ topic/colspec }

205:5 → @C{ topic/thead }/@C{ topic/row }/@C{ topic/entry }

201:5 → @C{ topic/strow }

213:5 → @C{ topic/table }

211:5 → @C{ topic/tgroup }

The number of preconditions is now large (~200,
corresponding to each possible tag value mentioned in
the stylesheet) but most are referenced only once.
However they all share a single tokenisation of the @class
attribute (or that of the parent's in some cases)

Note

A generalisation of this technique into evaluating and
then crossreferring to common subexpressions is a
possibility. In the case here the binding between
preconditions and the evaluated variable is very tight
(the variable value for a given node is merely a (small)
finite list of strings). Extension to a more generic
sequenced-value approach would probably be
considerably more complex.

6.3. Using key() mechanisms

From early on XSLT has defined a key() mechanism to
speed searching for applicable nodes within an XML tree.
Using the xsl:key declaration a set of nodes can be
classified into a number of subsets dependent upon an
expression evaluated for each node1. Usually support for
this within an XSLT implementation is efficient, the key
being computed only once. Thus it is tempting to see

whether a suitable set of keys can be generated and used
within modified patterns. The approach is basically:

*[contains(@attr,'string')]
 → *[key('attr','string',.)[1] is .]

where effectively the key has been defined by:

<xsl:key name="attr"
 select="*"
 use="let $e := . return
 (string1, ... stringN)[contains($e/@attr,.)]"/>

The key has indexed all the nodes whose @attr contains
any of the substrings mentioned within the templates,
based on that substring. The pattern uses this key,
subsetting the nodes to just those which are descendant-
or-self::* of the element being tested – if the first node
is the target node then there is a match.

We implemented this scheme, but unsurprisingly
rather than improve, matters deteriorate significantly. In
computing the key (which Saxon does on the first request
via the key() call) every document element is processed,
for every possible contained substring mentioned in the
template sets. Equally well, the predicated key lookup
starting at a given node ([key('attr','string',.)[1]
is .]) involves searching through all the document-
ordered nodes already computed for the key (which in
our case of course means pretty much all the elements in
the entire document) to find the current focus. A

Page 23 of 177

Improving Pattern Matching Performance in XSLT

1 docbook/xsl/html/docbook_custom.xsl in the Oxygen 16.1 implementation

moment's thought suggests that will have O(n2)
performance. (If the templates were of the form
*[@attr='string'] a key approach might work –
certainly <xsl:key name="attr" select="*"

use="@attr"/> will be very much cheaper.)

7. Generalisation?

In the introduction we mentioned both DITA and
Docbook being significant large document-engineering
frameworks. Our experimentation has focussed on DITA
given the expensive nature of processing its class
representation. We were curious to see if similar issues
might appear in processing Docbook documents – we
believe this not to be the case. A survey of one of the
steps (conversion of Docbook into HTML1) which is of
similar “size” to those within DITA-OT, shows that of
the 1500 pattern matching templates within 59 files,
only 113 are against unnamed elements or attributes, and
none of the 190 modes has more than two. The vast
majority of patterns are described for named elements
and thus would be fully indexed within Saxon. Hence we
anticipate the methods discussed in this paper would not
be necessary for that framework.

We have shown that extracting a set of preconditions,
where evaluating one precondition for a particular node
can eliminate many match patterns, is an effective
strategy for the DITA stylesheets we have been studying.
This then raises the next question: can the technique be
generalized so that it is suitable for inclusion in a general-
purpose XSLT processor, producing performance benefits
for a sufficiently large set of stylesheets to justify its
existence?

This divides into two sub-questions: firstly, is the
general strategy of extracting preconditions general-
purpose enough? We think it is. Secondly, what about
the specific rules that we have found to work well on the
DITA stylesheets? Here, we are not convinced – they are
intimately tied up with the way DITA-OT decomposes
the class representation tags.

We believe that for the same general approach to
work with different kinds of stylesheets, we may need to

make the rules for extracting preconditions in some way
configurable. So we might consider shipping the product
with a set of rules that work well for DITA, and other
sets of rules that work well for other XML vocabularies.
We could consider defining a vocabulary allowing the
rules to be written declaratively (see John Snelson's paper
on declarative XQuery rewrite rules [4]) for some
possibilities. The designers of an XML vocabulary could
then perhaps ship a Saxon optimizer plug-in that applies
rules appropriate to the specific vocabulary. Saxon could
perhaps select an appropriate plug-in from the repertoire
available based on the namespaces in use in the particular
stylesheet.

8. Conclusions

In this paper we have examined performance issues in
processing a relatively large document with an XSLT
transform containing a large number of generic templates
whose match computation can be expensive, and where
large numbers of pattern matches occur very late in “rank
order”. We've shown that by choosing suitable shared
preconditions for rules, which need only be computed
once for a node under test, we can ameliorate the effect
of such long rank sequences in pattern sets. Alternatively,
by choosing to add some “higher-level” knowledge,
declaring that a given set of patterns is in effect
implementing a tokenisation, we can also improve
pattern matching.

As implementors of a major XSLT processor, our next
step is to examine ways that such heuristics can be added
and configured in the product. Some of these may be
very specific declarations within a configuration. Others
might be associated with running training sets, collecting
statistics and proposing specific tunings. Watch this
space...
Saxonica would like to thank its (anonymous) client who
was very willing to let us study the processing of one of
his real DITA documents in detail. Hopefully we'll be
able to repay him soon with some welcome “tune-up”.

References

[1] Michael Kay. Saxon: Anatomy of an XSLT processor. 2005.
http://www.ibm.com/developerworks/library/x-xslt2/

[2] Michael Kay. Writing an XSLT Optimizer in XSLT. Extreme Markup Languages. 2007.
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html

Page 24 of 177

Improving Pattern Matching Performance in XSLT

http://www.ibm.com/developerworks/library/x-xslt2/
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html

[3] Michael Kay and Debbie Lockett. Benchmarking XSLT Performance. XML London 2014. June 2014.
doi:10.14337/XMLLondon14.Kay01

[4] John Snelson. Declarative XQuery Rewrites for Profit or Pleasure. XML Prague 2011. March 2011. 211-225.
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf

[5] XSL Transformations (XSLT) Version 3.0. 2014. World Wide Web Consortium (W3C).
http://www.w3.org/TR/xslt-30/

Page 25 of 177

Improving Pattern Matching Performance in XSLT

http://dx.doi.org/10.14337/XMLLondon14.Kay01
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf#page=225
http://www.w3.org/TR/xslt-30/

1 Florent's paper and talk were about the packaging extensions introduced by [8], but these features have since made it into the
specification and have become a major new feature of the language.

It's the little things that matter
How certain small changes in XSLT 3.0 can improve your

programming experience drastically

Abel Braaksma

Abrasoft
<abel@abrasoft.net>

Abstract

Some larger features of XSLT 3.0 and by extension XPath
3.0, like higher order functions, packages and streaming,
have been covered extensively in previous papers. This paper
aims to fill the gap of knowledge and shows you how several
seemingly smaller changes improve your life as a
programmer, how they make common idioms easier to
implement or how they create a cleaner programming
experience. Features covered in this paper include try/catch
and structured error handling, memoization of functions,
iteration, merging, text value templates, assertions, modes
and enforcing mode declarations, shadow attributes, forking
and how it supports multi-threading, applying templates on
atomic values, maps, 2.0 backwards compatibility and
processing JSON input.

After reading this paper, you should have a firm grasp of
what to expect from switching from XSLT 2.0 to XSLT 3.0,
if packages and streaming are not your primary concerns.

Keywords: XML, XSLT, XPath

1. Disclaimer

This paper discusses new features defined in XSLT 3.0
and XPath 3.0. The XSLT 3.0 specification [1] is a Last
Call Working Draft [2] but the information in this paper
may be extended to features added after this public
version, based on publicly available bug reports [3].
XPath 3.0 [4] is a W3C Recommendation, this paper
focuses on XPath 3.0 and not on new features introduced
in XPath 3.1.

This paper is based on the publicly available versions
of XPath 3.0, XSLT 3.0 and XDM 3.0 as of March 12,
2015, see [2] [4] [5]. Since XSLT 3.0 is not yet final, it is
possible that references and details change before the
final specification receives Recommendation status.

2. An introduction

The XSLT 3.0 specification is long underway, in fact,
since the XSLT 2.1 [6] document was published, almost
5 years have passed. During the cause of its development,
the main focus has naturally been on major new features
like streaming and packages. However, both from
external and internal input, many smaller changes have
been introduced and have made their way normatively
into the new specification. With the specification being
close to Candidate Recommendation status, it is a good
moment to reflect on the past half decade of specification
development and review how XSLT 3.0 can improve the
lives of us programmers.

The bigger new features have received ample attention
in recent and less-recent talks and papers, with among
others, [7] on packaging1, [9] on streaming analysis, [10]
on the internals of a streaming processors, [11] on
streaming in XSLT 2.1 and from myself, [12] on higher-
order functions and [13] on streamable functions.

The smaller features have been lightly touched during
standards update talks during conference time, but have
received little attention in recent papers or talks. This
paper will introduce the interested reader to two handfuls
of new features introduced in XSLT 3.0.

Each of the following sections briefly describes a new
feature, gives an introduction to the main syntax and use,
shows how it can improve your current, typically XSLT
2.0-style of programming experience, summarizes some
of the caveats you may encounter when using this new
feature and finally listing limitations imposed by the
official specification text, or by practical concerns from a
programming standpoint.

doi:10.14337/XMLLondon15.Braaksma01Page 26 of 177

mailto:abel@abrasoft.net

1 Some languages provide a means for a field containing the inner exception, which maintains thread information and location of an
exception that was thrown previously. Such mechanism is not available in XSLT 3.0.

3. Structured error handling with
try/catch

Availability in XSLT 2.0: Not available, unless through
extension mechanisms, like the one proposed in [14].

The instructions xsl:try and xsl:catch provide a
means for catching and handling dynamic errors in
XSLT 3.0. It is only possible to catch dynamic errors, that
is, errors that occur after compilation of the stylesheet
and after any static errors have been reported back by the
processor, such as incorrect XPath expressions, missing or
wrong values of attributes etc.

3.1. Syntax and use

<xsl:try>
 <!-- Content, must include an xsl:catch -->
 </xsl:try>

<xsl:catch>
 <!-- Content -->
 </xsl:catch>

The xsl:try instruction wraps a piece of code for which
you expect a possible error to be raised. This is similar to
the scoping rules in C++ style languages where the
try{...} block is used to scope a part of the code for
which you want to capture errors. It is allowed to nest
xsl:try inside itself or indirectly through templates or
function calls, when an error is raised, the innermost
xsl:try block and its accompanying xsl:catch that
matches the error will be used for catching the error.

The xsl:catch element is a required part of each
xsl:try block and must be the last element in the
sequence constructor (it cannot be followed by anything
else than whitespace or XML comments). You can have
more than one xsl:catch element, they are each other
siblings. The first xsl:catch element for which the
errors attribute matches the thrown error (which is an
EQName, that is, both the namespace and the local-
name part must match) will be evaluated and the result
of its sequence constructor will be returned instead. The
body of the xsl:try will be discarded and other
xsl:catch elements will not be processed. The value of
the errors attribute is a space-separated sequence of
NameTests, as used in XPath. If absent or * it matches all
errors. You can select all errors in one namespace with
errors="err:*" or all errors with a specific name in all
namespaces with errors="*:ERR1234". A specific error is
caught with a full QName, as in errors="err:FOAR0001".

Once an error is caught, its properties can be
examined using special variables, such as $err:code,

$err:description and $err:value, the latter being a
user-supplied value with the fn:error function. Apart
from the error code, all these values are implementation
dependent. A processor can further give information on
the location of the error by providing values for the
$err:module, $err:line-number and $err:column-number
variables. The namespace for err is the standard error
namespace http://www.w3.org/2005/xqt-errors, which
must be in scope to be able to use these special variables.
The variables are only available within the scope of
xsl:catch.

If the rollback-ouput attribute is set, which is the
default, any output generated from the body of the
xsl:try prior to catching the error, will be rolled back.
This attribute is available primarily for situations where
memory is a constraint, as with streaming, where keeping
the entire output in memory to be able to perform a
rollback afterwards can mean that the processor will run
out of memory constraints. Another use-case is
xsl:result-document, specifically if the target does not
allow a rollback, for instance if the target is a mail
address, an online resource or a database without
checkpoint capabilities.

The effect of using the attribute may be slightly
different than one might expect. If the attribute is set to
no, and the processor is not capable of rolling back, a
new dynamic error is raised, XTDE3530 and further
processing fails (unless that error itself is wrapped in
another try/catch). The reasoning behind this behavior
and raising an error instead of simply continuing
processing is that if no rollback is possible, the state of
the result document will be in an undetermined state and
further writing to the same result document may yield
unexpected results.

In conjunction with this new instruction, it is
possible to raise your own errors in XPath with the new
fn:error function and in XSLT with the xsl:assert and
xsl:message instructions.

You can rethrow an error only by raising a new error.
This will lose the context, as inner errors are not
maintained1. A typical function call to rethrow an error is
fn:error($err:code, $err:description, $err:value). It
is not possible to set line info for a newly created error.

3.2. Improving your code

Since structured error handling was virtually absent in
XSLT 2.0, this feature does not have comparable
examples in XSLT 2.0, except where external input is
checked with code. For instance, in the past you may

Page 27 of 177

It's the little things that matter

1 It is possible that this may change and that processors may define more specific errors than the ones available in the specification, but
whether this proposal will make it into the final Recommendation is unclear at this moment.

have written something like the following to calculate the
average price of an article in an order:

<xsl:choose>
 <xsl:when test="items = 0">
 <xsl:message select="'Invalid input zero'"
 terminate="no"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence
 select="total-of-order div items"/>
 </xsl:otherwise>
</xsl:choose>

But in XSLT 3.0, you can write this also (and opinions
may vary whether this is clearer or not), as follows:

<xsl:try>
 <xsl:sequence select="total-of-order div items"/>
 <xsl:catch errors="err:FOAR0001">
 <xsl:message select="'Invalid input zero'"
 terminate="no"/>
 </xsl:catch>
</xsl:try>

Another example is with fn:doc-available, which can
raise an error if the argument is not a valid URI. In
XSLT 2.0, you probably wrote something like the
following:

<xsl:choose>
 <xsl:when test="doc-available(settings-doc)">
 <xsl:apply-templates
 select="doc(settings-doc)"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy-of select="$default-settings"/>
 </xsl:otherwise>
</xsl:choose>

There are three issues with this code. First is that the
fn:doc-available function itself can raise an error and in
XSLT 2.0 this would mean that the transformation
would fail. The second is that using the tandem of
fn"doc-available with fn:doc always leads to duplicate
code. Lastly, there is no extra information you can report
back to the user, because you can only succeed or fail,
but you cannot find out in 2.0 what the reason of failure
is. Using try/catch you can rewrite this as follows and

extend it for other error scenarios you would like to
report on:

<xsl:try>
 <xsl:apply-templates select="doc(settings-doc)"/>
 <xsl:catch errors="err:FODC0005">
 <xsl:message select="'The settings doc cannot '
|| 'be retrieved because it is not a valid URI.'"/>
 </xsl:catch>
 <xsl:catch errors="proc:ERR0005">
 <xsl:message
 select="'Access denied while trying to ' ||
 'retrieve settings document.'"/>
 </xsl:catch>
 <xsl:catch errors="err:FODC0003">
 <xsl:message
 select="'The settings doc cannot be ' ||
 'retrieved deterministically, possibly ' ||
 'it is too big to fit in memory.'"/>
 </xsl:catch>
 <xsl:catch errors="err:FODC0002">
 <xsl:message select="if(contains(
 $err:description, 'available documents')
 then 'Settings document not available in ' ||
 'available documents, reason: ' ||
 $err:description
 else 'Settings document found but is not ' ||
 'valid XML, reason: ' ||
 $err:description"/>
 </xsl:catch>
 <xsl:catch errors="*">
 <xsl:message select="'Unknown error raised ' ||
 'while trying to retrieve settings document: '
 || $err:description"/>
 </xsl:catch>
</xsl:try>

This code shows several advantages over the previous
example:
• The programmer can retrieve and return better

information based on the error raised
• You can catch errors raised by the processor that are

not also errors specified by the specification. Note that
in this example proc:ERR0005 is used but that
essentially a processor should raise one of the
predefined errors in such case. However, the fn:doc
function is allowed to return a document with error
information to prevent the transformation to blow up
in XSLT 2.0. If such a processor runs in XSLT 3.0
mode, it is likely that it will raise a proper error
instead and that you can catch that specific error. This
also touches on a limitation of the error catching
mechanism: processors are typically not allowed to
raise error codes other than the ones specified in the
specification, unless they cover a situation not covered
by the specification1.

Page 28 of 177

It's the little things that matter

• Repeated code with the same arguments for fn:doc
and fn:doc-available, which, as any repeated code, is
a cause of concern and maintainability, is not required
anymore in scenarios such as this.

3.3. Caveats

The biggest caveat that may come as a surprise to the
unaware is when and how an error is raised. Stylesheets
can be processed in any order and instructions can be
rearranged as a processor sees fit as long as it doesn't
change the semantics or the result. In cases of try/catch, a
processor must keep the instructions inside the try/catch
wrapper, it cannot rearrange it such that an instruction
falls outside the try/catch. However, lazy initialization of
variables may mean that if such a variable contains an
error, and it is used only inside a try/catch block, you
might expect the error to be raised and catchable within
that block, but they are not catchable in that way as it
would pose a serious processor dependency and it would
violate the scoping rules.

To catch errors that are raised inside a variable, the
body of the variable should be wrapped in a try/catch
instead and the handling of the error conditions should
take place inside the variable itself.

This can still mean that the error is not raised upon
priming the stylesheet, but only when the variable is
actually used, which makes any reliance on the order in
which errors are raised futile.

This behavior is illustrated in the following example:

<xsl:variable name="haserror" select="1 div 0"/>
<xsl:template match="/">
 <xsl:try>
 <xsl:value-of select="$haserror"/>
 <xsl:catch>
 <!-- never triggered -->
 <xsl:text>Error raised</xsl:text>
 </xsl:catch>
 </xsl:try>
</xsl:template>

The variable $haserror does a division by zero. While
this can be statically detected, if the variable is never
used, the processor does not need to raise the error and
furthermore, it is not required to statically raise the error.
Most processors will raise the error once it is used, in this
case in the matching template. However, the xsl:catch,
here with an absent errors attribute to catch all errors,
will never be entered, because the error is lexically in the
declaration of the variable and even though it is raised
within the try/catch block, it will not be catchable from
there.

Rewriting this code as follows would catch the error
inside the variable, either upon priming the stylesheet, or

upon using the variable, but in both cases, the error is
thrown and caught from within the scope of the variable
declaration. An extra try/catch block within the
termplate would therefore be meaningless:

<xsl:variable name="haserror">
 <xsl:try>
 <xsl:value-of select="1 div 0"/>
 <xsl:catch>
 <xsl:text>Error raised</xsl:text>
 </xsl:catch>
 </xsl:try>
</xsl:variable>
<xsl:template match="/">
 <!-- will select 'Error raised' -->
 <xsl:value-of select="$haserror"/>
</xsl:template>

This last example also emphasizes that the processor
cannot raise the error statically anymore, because it is
inside a try/catch block and because the error itself is
marked as dynamic. Of course, as with anything, if a
processor can evaluate the whole sequence constructor
statically, including catching the error and setting its
value to the value of the catch block, it is allowed to do
so.

3.4. Limitations

The difference between dynamic and static errors is not
always as clear-cut as one might expect. For instance
processors may detect certain type errors statically, in
which case catching these errors dynamically is not
possible. Whether a processor chooses to raise such errors
dynamically or not is implementation dependent.

Another limitation is related to rolling back the
output. If it is not possible to rollback the output, a
dynamic error will be raised from the xsl:try instruction
and any containing xsl:try instruction will raise this
error as well. This only occurs when the setting for
rollback-output is no. If it is yes, the processor will
cache the result of the xsl:try body and will always be
capable of rolling back.

As mentioned in the example above, it may be
cumbersome to catch more specific errors than the rather
generic errors that are defined in the specification. If such
a mechanism is not going to be provided, catching more
specific errors can only be done by investigating the
information in the $err:value or the $err:description
variables.

It is not possible to catch errors in declarations that
do not have a sequence constructor (such as the select
expression of a parameter), or to catch dynamic errors
caused by serializing the output to the principal result
document. It is possible, however, to catch errors raised
by serializing to secondary result documents, by

Page 29 of 177

It's the little things that matter

1 Also the new XPath 3.1, now in Candidate Recommendation phase, does not include a mechanism for catching errors.
2 The current text of the specification contains both declared-modes and declare-modes, either of which is a typo, my assumption is that

the attribute name will be declared-modes in the final specification. See also Bug 28232.

wrapping xsl:result-document inside a try/catch block.
An alternative for catching errors from within expressions
is to wrap the expression in a function that itself has a
try/catch block. This is not very flexible however unless
you would resort to dynamic evaluation using
xsl:evaluate, which has its own drawbacks. A
mechanism for catching errors purely within XPath is not
(yet) available1.

4. Forcing statically declared modes
to prevent type errors

Availability in XSLT 2.0: no related mechanism, known
extensions or workaround exists.

In all XSLT versions, including XSLT 3.0, when you
apply templates to a mode, it magically exists. There is no
type- or name-checking of any kind. In XSLT 3.0, a new
feature was introduced on packages to force declaration
of modes through xsl:mode, which makes it a static error
if you try to use a mode that is not declared.

In a way, this feature is the same as for statically typed
OO and other languages, where misstyping the name of
a method, class or property would raise a static error.

4.1. Syntax and use

The new declared-modes2 attribute is only available on
the xsl:package element. To use this feature, you do not
need to create a packages hierarchy. A package, if it is the
principal package, behaves the same as the principal
stylesheet: you can replace the xsl:stylesheet or
xsl:transform root element by xsl:package.

The default of this attribute is true, which means that
even if you do not specify this attribute, you will need to
declare all modes that you are intending to use, as soon
as you write packages. If you prefer the behavior of
implicit modes, you can get the classical XSLT 2.0
behavior back by setting this value to false.

This attribute, and its default, applies equally to
named and unnamed modes.

Example of its use:

<xsl:package
 version="3.0"
 declared-modes="true"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:mode on-no-match="shallow-copy"/>

 <xsl:template match="naam">
 <name>
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates/>
 </name>
 </xsl:template>
</xsl:package>

This example just sets the default of declared-modes, to
make it explicit and has a single template that changes a
misspelled element from <naam> to <name> in the default
mode, which is declared in the only (unnamed) xsl:mode
declaration. Furthermore, this mode is declared to
shallow-copy any nodes not matched, meaning that it is
not required to extend this stylesheet with a typical copy-
idiom.

If the (default) mode was not declared, static error
XTSE3085 would be raised.

4.2. Improving your code

There are two typical cases that often cause frustration,
especially in moderate to larger XSLT projects. Consider
the following XSLT snippet:

<xsl:stylesheet version="3.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="para">
 <xsl:apply-templates select="meta"
 mode="processmeta"/>
 </xsl:template>

 <xsl:template match="meta" mode="process-meta">
 <xsl:text>Changes made by: </xsl:text>
 <xsl:value-of select="change/author/@name"/>
 </xsl:template>
</xsl:stylesheet>

This, and many variants thereof, are common causes of
frustration, because there is nothing wrong with the
stylesheet at first sight, until you find that you made a
typo in the mode attribute of xsl:apply-templates. The
output here would be the text value of the nodes, because
it will trigger the default templates that always exist.
Quite possibly, the programmer would then try to find
out why none of the templates match (a typical cause of

Page 30 of 177

It's the little things that matter

https://www.w3.org/Bugs/Public/show_bug.cgi?id=28232

this behavior is the wrong or missing namespace) only to
find out much later that you incorrectly wrote
mode="processmeta".

If instead the processor would have raised an error
that processmeta did not exist, you would much quicker
have found the issue.

In XSLT 3.0 you should write your stylesheets
starting with xsl:package instead of xsl:stylesheet or
xsl:transform, which will automatically add the need to
declare modes before their use. In most if not all cases, it
means simply replacing the root element of your
stylesheet, like so (it is not necessary to include declared-
modes="true" because that is the default):

<xsl:package version="3.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="para">
 <xsl:apply-templates select="meta"
 mode="processmeta"/>
 </xsl:template>

 <xsl:template match="meta" mode="process-meta">
 <xsl:text>Changes made by: </xsl:text>
 <xsl:value-of select="change/author/@name"/>
 </xsl:template>
</xsl:package>

The result is now error XTSE3085 on the lines containing
xsl:apply-templates and the declaration xsl:template,
because the modes have not been declared. To fix that,
we must add the necessary xsl:mode declarations, for
instance as follows:

<xsl:package version="3.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:mode/>
 <xsl:mode name="process-meta"
 on-no-match="shallow-skip"/>

 <xsl:template match="para">
 <xsl:apply-templates select="meta"
 mode="processmeta"/>
 </xsl:template>

 <xsl:template match="meta" mode="process-meta">
 <xsl:text>Changes made by: </xsl:text>
 <xsl:value-of select="change/author/@name"/>
 </xsl:template>
</xsl:package>

Note the empty xsl:mode declaration, which is required
for the unnamed mode (the one used in the first
template). After this change, the processor will still raise
XTSE3085, this time pointing to the line containing
mode="processmeta". The typo is now detected and
changing it to the appropriate spelling solves the
problem.

We can improve on this further, though. An error
that I still make myself quite often and I like to think I
am not the only one, is forgetting to select the current
mode:

<xsl:package version="3.0" declared-modes="true"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:mode/>
 <xsl:mode name="process-meta"
 on-no-match="shallow-skip"/>

 <xsl:template match="para">
 <xsl:apply-templates select="meta"
 mode="process-meta"/>
 </xsl:template>

 <xsl:template match="meta" mode="process-meta">
 <xsl:apply-templates select="change/author"/>
 </xsl:template>

 <xsl:template match="author" mode="process-meta">
 <xsl:text>Changes made by: </xsl:text>
 <xsl:value-of select="@name"/>
 </xsl:template>
</xsl:package>

There is nothing inherently wrong with this example
from the point of view of the processor. All modes have
been declared, but it is still not working. Why? Because
in the first template matching meta, I have forgotten to
include mode="#current" or mode="process-meta" on
xsl:apply-templates, resulting in switching to the
default unnamed mode.

It is a common mistake. To remedy this, you should
always remove the unnamed mode from the declarations
and only use named modes. This may seem like a big extra
effort, but once you get used to it, you will get clearer
and easier to read code and the processor will be able to
more easily catch coding errors, resulting in quicker and

Page 31 of 177

It's the little things that matter

better development overall. The resulting stylesheet (or
better: stylesheet package) now becomes:

<xsl:package version="3.0" declared-modes="true"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:mode name="process-meta"
 on-no-match="shallow-skip"/>

 <xsl:template match="para" mode="main">
 <xsl:apply-templates select="meta"
 mode="process-meta"/>
 </xsl:template>

 <xsl:template match="meta" mode="process-meta">
 <xsl:apply-templates select="change/author"
 mode="#current"/>
 </xsl:template>

 <xsl:template match="author" mode="process-meta">
 <xsl:text>Changes made by: </xsl:text>
 <xsl:value-of select="@name"/>
 </xsl:template>
</xsl:package>

This change also requires initiating the processor with a
different default mode. All processors support this. Using
a common name for the named default mode and fixing
all your invocation scripts, code or command lines, will
fix this. A simpler solution is perhaps using a new XSLT
3.0 feature to initiate processing by a default mode, by
setting the default-mode attribute on the outermost
element, in this case xsl:package. This will force the
processor to use that mode as the initial mode:

<xsl:package
 version="3.0"
 declared-modes="true"
 default-mode="main"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

This idiom, with an initial default mode and an absent
unnamed template declaration, forms a good basis for a
cleaner programming style where the entry point is
obvious and errors resulting from incorrect mode names
becomes a thing of the past. If you prefer the (declared)
default mode to be the unnamed mode, change this to
have default-mode="#unnamed". See also the next section,
which goes deeper into the default-mode attribute.

4.3. Caveats

There are not many caveats, in fact, this feature removes
many caveats you may have had with typical XSLT
programming. The only thing to look out for is one of
education: everyone in your team should stick to the new
programming style.

Another thing to be aware of is that this feature is not
available on xsl:stylesheet, as mentioned above. That
means that once you have changed your principal
stylesheet into a package, any imported and included
modules (with xsl:import or xsl:include), directly or
indirectly, will have to use declared modes as well,
regardless the fact that those may still be rooted at an
xsl:stylesheet element. In fact, it is not even possible to
simply rename those into xsl:package for consistency,
because it is not allowed to include or import packages.
This can cause confusion during development, because
while you are developing the individual imported
modules, no static errors will be raised when compiling
or testing them. Only after importing them in the main
package, missing mode declarations will be found and
trigger an error.

One way around this is to change the imported
modules into packages, giving them a name, making all
declarations public using a single <xsl:expose names="*"
visibility="public" /> and changing the xsl:import
into an xsl:use-package referencing the new name.

4.4. Limitations

There are several limitations you should be aware of
when using this feature, most have already been
mentioned in previous sections:
• The feature is not backward compatible and cannot be

applied on xsl:stylesheet or xsl:transform.
• Once introduced in the main stylesheet by changing

it into a package, its influence extends to any
imported stylesheets, which may cause confusion
because they start with xsl:stylesheet or
xsl:transform, which on itself does not have this
option.

• It does not extend to used packages, if a used package,
imported through xsl:use-package has declared-

modes="no", that package will not need to have
declared modes.

• The default is that modes must be declared. Changing
your stylesheet into a package requires adding an
xsl:mode declaration for every mode you use, or if you
don't want that, you should add declared-

modes="no".
• If you only use named modes, the standard default

mode, which is the unnamed mode, will no longer be
available and will cause errors when invoking your
stylesheet. You can fix this by setting the default mode
on the xsl:package by using default-

mode="yourdefaultmode".

Page 32 of 177

It's the little things that matter

1 Essentially, in the absence of xsl:package, a stylesheet that starts with xsl:stylesheet or xsl:transform is still considered a (nameless)
implicit package, where the principal stylesheet module is the subtree rooted at the at the xsl:stylesheet or xsl:transform element. In
the case of a package, the principal stylesheet module is the package manifest, which is essentially the body of the xsl:package. In
previous versions of 3.0, the body of a package contained an xsl:stylesheet or xsl:transform element, but this is no longer true, the
body is the principal stylesheet, the same way it used to be in XSLT 2.0 (except that the outermost element is now xsl:package). The
package containing the principal stylesheet module is called the top level package, any other used packages are called library packages.

5. Setting an entry point for your
XSLT stylesheet

Availability in XSLT 2.0: In previous versions, only the
default mode could be set by the invocation API of the
processor, which defaulted to the unnamed mode if not
set. The initial template did not have a default and could
only specifically be set by the invocation API of the
processor.

The working group considered that there was no
common way to invoke a stylesheet without any
arguments, or with only an initial match selection set,
unless you would invoke the unnamed default mode. To
fix this scenario, it is now possible to set the default
mode on the outermost element (or any other element)
and you can use a default initial named template as
default entry point of your transformation.

5.1. Syntax and use

You can set the default mode on the outermost element
of your principal stylesheet or the top level package1 by
using the new [xsl:]default-mode attribute, which is
also available on all declarations, instructions and literal
result elements. When set on the outermost element, it
will set the default mode for invoking the stylesheet,
unless it is overridden by the API or commandline
arguments of the processor. You can set the default mode
to the special values #unnamed for the unnamed mode and
#default for the default mode, which is typically the
same as the unnamed mode, unless an ancestor element
has another default mode set, or if the API of your
processor has the ability to override the default mode.

You can set the default initial template by using the
special name xsl:initial-template. Its intend is that in
the absence of a name for the initial template, and if the
stylesheet is supposed to be invoked with an initial
named template, that it defaults to this name. In
practice, this means that if you invoke your processor
with only the stylesheet as its argument, it will
automatically select this initial template as its starting
point.

Example of its use:

<xsl:template name="xsl:initial-template">
 <xsl:text>Main entry-point</xsl:text>
</xsl:template>

5.2. Improving your code

It is a common scenario in stylesheet programming to
switch to different modes, especially when processing a
certain input multiple times. To forget to continue in the
current mode is a common mistake. For instance,
consider the following snippet:

<xsl:template match="/">
 <xsl:apply-templates mode="invoices"/>
</xsl:template>

<xsl:template match="invoice" mode="invoices">
 <xsl:value-of select="product"/>
 <!-- unintended switching back to
 the unnamed mode -->
 <xsl:apply-templates select="price"/>
</xsl:template>

In this example, applying templates on price ends up in
using the unnamed mode, because the programmer
forgot to specify a new mode. To prevent this from
happening, you can use the new default-mode attribute,
which is specifically helpful if the code is deeper nested
or contains a larger number of xsl:apply-templates

instructions. It is not required to specify both the mode
and the default-mode, unless you want the default mode
for the containing instructions to be different from the
mode specified in the mode attribute:

<xsl:template match="invoice"
 default-mode="invoices">
 <xsl:value-of select="product"/>
 <!-- this will remain inside mode "invoices" -->
 <xsl:apply-templates select="price"/>
</xsl:template>

Another handy use of setting the default mode is setting
it on the outermost element, i.e. xsl:stylesheet or
xsl:package, which will instruct the processor that, in
absence of an initial mode specified on the command
line or by the API, to use the default mode specified in
the outermost element.

A similar method now exists for the initial named
template. Suppose you have a transformation that is
independent of an input document, for instance because
it gets its input elsewhere, a simplified way of coding
your stylesheet, and of making it very clear where the

Page 33 of 177

It's the little things that matter

1 In XSLT 3.0, the initial context and the initial match selection do not need to be the same anymore, though most processors are likely to
default them to the same node. Also, it is not a requirement that this is a node, the initial match selection and the initial context item
can both be atomic items as well.

2 Whether or not an error is raised depends on the API. The default mode only has effect when the stylesheet is invoked using apply-
templates invocation. In the absence of information whether the user wants apply-templates or call-template invocation, it is up to the
processor to decide on a default. If there is no initial context item, the only sensible default is call-template invocation, which will select
the specified initial template, or xsl:initial-template if no such initial template is specified. If there is a context item, the processor
has the option to choose between call-template and apply-templates invocation, and is likely to choose apply-templates invocation as a
default. In that case, the default mode will be in effect.

stylesheet starts, is to use the new xsl:initial-template
name for the initial named template:

<xsl:stylesheet version="3.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template name="xsl:initial-template">
 <xsl:apply-templates
 select="doc('settings.xml')
 /settings/input-doc"/>
 </xsl:template>

</xsl:stylesheet>

The xsl:initial-template takes the role of what int
main(int argc, char *argv[]) is for C and C++, and
variants thereof for C#, Java and other languages: it is the
entry point of your stylesheet and your processor will
select it automatically in absence of a default mode and a
default template name (though processors may vary and
may require you to specifically select the initial template,
however, its intent is that it is the default in the absence
of an initial template name). For instance, in the case of
Exselt, invoking the stylesheet with only an argument for
the XML input tree and no other arguments, will invoke
this stylesheet with an initial match selection1 of the root
of the input tree and an initial named template of
xsl:initial-template. If there is also a default mode, the
initial template must be in the default mode, or an error
is raised2.

5.3. Caveats

Typically, this new feature on default modes and initial
template will work as expected. There are, however, a few
things to keep in mind:

It is processor dependent how a processor invokes a
stylesheet. As a result, it is also processor dependent how
it behaves when there is not enough information to
invoke a stylesheet. The default-mode and the
xsl:initial-template have been introduced to define
defaults in the absence of such information. But there is
no way to tell a processor to be invoked with call-
template invocation or apply-templates invocation from
within the stylesheet itself.

If you invoke a stylesheet without an initial match
selection, it can be expected that it will default to call-
template invocation, as apply-templates invocation will

immediately raise an error (the initial match selection is
required for apply-templates invocation, as otherwise
there is nothing to match on). But when there is an
initial match selection, but no specific default mode, and
there is an xsl:initial-template inside the stylesheet,
the processor may choose to invoke the stylesheet in
either call-template or apply-templates mode.

If you want to prevent your stylesheet to be called in
either way, you can create a template in the default mode
that raises an error. For instance:

<xsl:template name="xsl:initial-template">
 <xsl:text>Correct invocation</xsl:text>
</xsl:template>

<xsl:template match="." default-mode="#default">
 <xsl:message terminate="yes">
 Please invoke this stylesheet
 in call-template mode!
 </xsl:message>
</xsl:template>

5.4. Limitations

The newly introduced difference between the initial
match selection and the global context item could have
benefits for this feature in the sense that you could create
a stylesheet with global variables that depend on the
global context item, and an initial template that requires
the initial match selection to be absent. However, at this
moment, both Saxon and Exselt do not differentiate
between the global context item and the initial match
selection, but this may change in the future.

Page 34 of 177

It's the little things that matter

To test whether a processor differentiates between the
global context item and the initial match selection, you
can write a stylesheet like the following:

<xsl:mode name="none" on-no-match="deep-skip"/>

<xsl:variable name="globctx">
 <xsl:try>
 <xsl:apply-templates select="." mode="none"/>
 <xsl:text>
 There is a global context item
 </xsl:text>
 <xsl:catch>
 <xsl:text>
 There is no global context item
 </xsl:text>
 </xsl:catch>
 </xsl:try>
</xsl:variable>

<xsl:template match="." default-mode="#default">
 <xsl:text>
 Invoked with apply-templates mode
 There is an initial match selection
 </xsl:text>
 <xsl:value-of select="$globctx"/>
</xsl:template>

<xsl:template name="xsl:initial-template">
 <xsl:text>
 Invoked with call-template mode
 </xsl:text>
 <xsl:value-of select="$globctx"/>
 <xsl:try>
 <xsl:apply-templates select="." mode="none"/>
 <xsl:text>
 There is an initial match selection
 </xsl:text>
 <xsl:catch>
 <xsl:text>
 There is no initial match selection
 </xsl:text>
 </xsl:catch>
 </xsl:try>
</xsl:template>

This code works by catching an error in the event of the
absence of a context item when applying templates to a
context item (there is no requirement to use ., but it
makes it explicit that we are testing the current context
item).

There is another way of coding this by using the new
xsl:context-item instruction, but that will raise an
uncatchable error (you cannot wrap this instruction
inside a try/catch block). Using the pattern above allows
you to actually differentiate between the four different
cases: no global context item and no initial match
selection, no global context item and an initial match
selection, a global context item and no initial match

selection and a global context item and an initial match
selection.

I have uses an empty catch-clause here because the
specification does not give a specific error code for this
scenario, though XTTE3090 seems a good candidate,
but it is specific to cases where xsl:context-item is used.

6. Better performance with
memoization

Availability in XSLT 2.0: no related mechanism exists,
though Saxon has an extension attribute that works
somewhat similarly, see [15].

For functions that require processor-intensive
calculations or operations, it can be beneficial to instruct
the processor to only do that calculation once for the
same input. The new cache attribute on xsl:function
was introduced for exactly that purpose.

6.1. Syntax and use

The cache attribute works as a hint to the processor. The
processor is not required to follow that hint. The
available values for this attribute are:
• cache="no" this is the default, with no hints to the

processor on whether to cache this function or not.
• cache="partial" hints the processor to cache the

result of the function, but not necessarily to all extend
possible. For instance, if the cached value is large, it
can decide to drop it to save memory, or if the
invocations are localized, it can drop the cache when
it goes out of scope. It can also decide to only cache a
part of the function if it finds a way to do so.

• cache="full" hints the processor to cache as much as
it can. Still, a processor is not required to actually
cache anything, but it is a strong hint to do so. The
difference between full and partial is that with full
the processor is not supposed to worry too much
about memory constraints, it should simply cache as
aggressively as possible.

The applied caching is dependent on the supplied
arguments. If the argument is a node, for instance, and
the identity of that node is different but its contents is
the same, the processor will not be able to do any
sensible caching because different node identities means
different arguments and different arguments means
potentially different results. A processor is not allowed to
cache in such a way that the outcome of the function
would be different if the cache attribute would not be
applied.

Page 35 of 177

It's the little things that matter

6.2. Improving your code

Scenarios where caching can be beneficial depend highly
on the processor, your input, and the different arguments
of the function. Here are some rules of thumb to follow
when trying to improve performance by using
memoization:
• Functions that take no arguments should always be

cached, or turned into a variable, unless the returned
value is newly constructed node and the identity of
that node is important. In most cases the identity of
the returned node will not matter for your operations,
or you will return an atomic result, in which case
adding cache="full" is the right thing to do. Even
without adding this hint, processors are known to
turn functions into global variables internally, which
has the same effect. However, by adding this hint, you
make this behavior processor-independent.

• Functions that take atomic arguments that change
little and that do a significant amount of processing or
calculations. To know whether the overhead of
caching outperforms non-caching requires careful
measurement. However, some scenarios are trivial to
find, for instance if your function uses an xsl:stream
or fn:collection() internally, which can be expensive
and is typically non-stable, meaning that on each
invocation the processor would be required to load
the referenced documents again. If you don't expect
these documents to change, you should add
memoization.

• Functions that are recursive and the recursion is
dependent on the input value, where the performance
is O(n) or worse. For instance, suppose that if the
input is xs:integer(10) and to calculate the result the
function will call itself with the values n - 1 (i.e., 9, 8,
7 etc), it is almost a requirement to add caching to
prevent all these recursive calculations to happen
again. Adding memoization in such cases will change
an initial call with an argument xs:integer(10) from
10 iterations into 1 iteration, and a subsequent call of
xs:integer(12) into only 2 additional iterations,
instead of 12 without caching.

• Functions that depend on nodes but the supplied
nodes are often identity-equal. For instance, suppose
you have a function that returns the settings from the
first child node of the root as a map. The settings
node will be the same each time, so it makes sense to
memoize this.

A trivial example can be seen in the calculation of
factorial. There are several ways to implement the
factorial function and most will be suitable for

memoization, but let's have a look at a recursive
implementation:

<!-- definition -->
<xsl:function name="f:factorial" cache="full">
 <xsl:param name="i" as="xs:integer"/>
 <xsl:sequence select="
 if($i = 0 or $i = 1) then 1
 else $i * f:factorial($i - 1)"/>
</xsl:function>

<!-- usage -->
<xsl:template name="xsl:intial-template">
 <xsl:value-of select="
 for $i in 1 to 12
 return f:factorial($i)"/>
</xsl:template>

<!--
expected output:
1 2 6 24 120 720 5040 40320 362880 3628800
 39916800 479001600
-->

Without the cache="full", the factorial function will
have to go over each recursive call again and again, which
is computationally intensive. With the cache attribute in
place, calculating each further factorial will require only
one recursive call, which returns the cached result of the
previous calculation (the function cached-value is meant
to denote the implementor's internal function used for
retrieving a cached value of a function):
• f:factorial(1) has no recursion and returns 1.
• f:factorial(2) calls recursively with 2 *

f:factorial(1), which is now cached and returns 2 *
cached-value(f:factorial#1, 1), which returns 2.

• f:factorial(3) calls recursively with 3 *

f:factorial(2), which is now cached and returns 3 *
cached-value(f:factorial#1, 2), which returns 6.

• f:factorial(4) calls recursively with 4 *

f:factorial(3), which is now cached and returns 4 *
cached-value(f:factorial#1, 3), which returns 24.

•
• f:factorial(12) calls recursively with 12 *

f:factorial(11), which is now cached and returns 12
* cached-value(f:factorial#1, 11), which returns
479001600. Without the cache this would require 11
recursive function calls.

The total number of operations is now 12, whereas
without the caching it would be 1 + 2 + 3 + ... + 11 + 12
= 78 operations. A potential performance gain of 600%.

Another example where caching can be beneficial is
where a single call is already expensive. For instance,
suppose the structure of your input XML contains a head
section with settings that you want to use in your pattern

Page 36 of 177

It's the little things that matter

matching. A trivial implementation can look something
like the following:

<xsl:template
 match="project[f:setting(., 'debug')">
 ... implementation ...
</xsl:template>

<xsl:function name="f:setting">
 <xsl:param name="node"/>
 <xsl:param name="setting"/>
 <xsl:sequence select="
 $node/(/)/head/settings[name() = $node/@name]
 [setting = $setting]/@value"/>
</xsl:function>

This is a potentially expensive function to be executed for
each matching pattern where it is used. It is, however,
dependent on the current node, which is changing each
time, which makes it senseless to apply caching as it is
written. However, if we modify the function slightly, we
do not have to change much in our code, but we have a
potential large benefit if it is called many times with the
same argments:

<xsl:template
 match="project[f:setting(@name, 'debug')]">
 ... implementation ...
</xsl:template>

<xsl:function name="f:setting" cache="full">
 <xsl:param name="setting-name" as="xs:string"/>
 <xsl:param name="setting" as="xs:string"/>
 <xsl:sequence select="
 $node/(/)/head/settings[name() = $setting-name]
 [setting = $setting]/@value"/>
</xsl:function>

This new function has changed its signature to accept
strings instead of nodes, which are much easier to cache.
By specifying this explicitly on the xsl:param, the
processor will first atomize any node that is passed into
it, which makes it independent on the node identity and
a good candidate for caching. While this function is a
very straightforward example, scenarios similar to these
where a lookup table is used inside a function occur very
often in XSLT programming scenarios. Instead of
processing the tree each time, by caching the function
subsequent invocations can become instantaneous,
resulting in a better overall performance.

6.3. Caveats

The main caveat with using caching is the concern for
memory constraints. If you would go about caching
every function you write, it may be detrimental to

performance because caching itself adds a little overhead
and unless a function is called multiple times with the
same arguments, this will decrease performance. In the
event of functions that have arguments that take nodes,
the chances that a function can be actively cached are
small and it is not unlikely that with many function calls,
your processor will run out of memory with
cache="full". If your scenario can benefit from caching
and your function is called with many different
arguments, consider using cache="partial", to hint the
processor to limit the maximum amount of cached
results.

If your function generates new nodes, a processor
would typically have a hard time deciding whether or not
it can optimize this by returning the same node each
time or by returning a new node with its own identity.
To hint the caching implementation, an extra attribute
was introduced, identity-sensitive, which can be yes,
the default, or no. If it is no, the returned node is not
identity sensitive and the processor can return the same
node each time, allowing for better optimization. This
attribute does not apply to the arguments passed to the
function.

6.4. Limitations

Memoization is limited to available memory and to your
processor supporting it to an extend useful for your
scenario. But even if a processor does not support
caching fully, using the feature will not change the result
of your transformation. It may, however, run much
longer, especially in regards to recursive function calls.

There is currently no information on how processors
support cache="partial". It can be expected that
processors will allow user-control over the amount of
data cached, for instance with a setting that sets the
maximum amount of cacheable calls for a given function.

7. Simpler templates with text value
templates

Availability in XSLT 2.0: not available, you would use
xsl:value-of in combination with xsl:text instead.

We have all come to love the attribute value
templates with the familiar curly braces that are
abundant in XSLT transformations. This syntax has now
become available inside any sequence constructor as well
and makes writing certain stylesheets quite a bit more
readable, and as a side-effect it reduces the number of
instructions to type.

Page 37 of 177

It's the little things that matter

1 Attribute value templates occur in attributes inside curly braces. Text value templates occur inside any sequence constructor where literal
text is allowed. Collectively both types are called value templates in the specification,

2 While this is indeed typically how it works, any potential @separator on the xsl:value-of has no effect on text value templates.
3 This is not a defined term anywhere, but when used, it typically means a flat XML file with a single root node, an element for rows and

an element for each field in the row
4 And exception can be cases where for clarity's sake it is simply better to write it out in XSLT instructions instead. As with any feature, use

it when it improves your code, but stick to other techniques if it means that code becomes less readable.

7.1. Syntax and use

To use text value templates1, you first have to enable
them by adding the attribute expand-text="yes" to an
ancestor element. This attribute is available on every
instruction, declaration and literal result element. Once
enabled, curly braces get the same special meaning as
they have in attribute value templates: any text outside
curly braces is considered normal text, any text inside
curly braces is considered and XPath expression and will
be evaluated as if xsl:value-of was called with that
expression in that position2. A typical example of using
text value templates is the following:

<xsl:text expand-text="yes">
 Dear {$title} {$firstname} {$lastname},

</xsl:text>

7.2. Improving your code

Almost every XSLT programmer has encountered the
situation where he ends up writing endless combinations
of xsl:text and xsl:value-of to get his output nicely
formatted the way he wants it. For instance, suppose you
want to take some vanilla XML3 and turn it into a
comma-separated-value (CSV) format. In XSLT 2.0, you
could do this as follows:

<xsl:template match="row">
 <xsl:apply-templates/>
 <xsl:text>
</xsl:text>
</xsl:template>

<xsl:template match="field">
 <xsl:text>"</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>",</xsl:text>
</xsl:template>

<xsl:template match="field[last()]">
 <xsl:text>"</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>"</xsl:text>
</xsl:template>

Not really rocket science, but using text value templates,
it becomes quite a bit more readable:

<xsl:template match="row">
 <xsl:apply-templates/>
 <xsl:text>
</xsl:text>
</xsl:template>

<xsl:template match="field" expand-text="yes">
 <xsl:text>"{.}",</xsl:text>
</xsl:template>

<xsl:template match="field[last()]"
 expand-text="yes">
 <xsl:text>"{.}"</xsl:text>
</xsl:template>

Of course, you could set the expand-text="yes" on the
outermost xsl:stylesheet or xsl:package element, so
that you do not need to repeat again and again. To futher
simply the code above, you can write this now without
using xsl:text, and assuming you have placed the
expand-text="yes" at the stylesheet level, the final code
looks like:

<xsl:template match="row">
 <xsl:apply-templates/>
 <xsl:text>
</xsl:text>
</xsl:template>

<xsl:template match="field">"{.}",</xsl:template>

<xsl:template
 match="field[last()]">"{.}"</xsl:template>

This particular feature is surprisingly trivial to use and
once you get used to it, same as with attribute value
templates, you find yourself using it everywhere4.

7.3. Caveats

Using curlies within constructs that allow text value
templates requires you to escape them as respectively
{{ and }}.

Whitespace handling is not quite what you might
expect. Consider the following example:

<xsl:text expand-text="yes">
 {@first-name}
 {@last-name}:
 {@age} years
</xsl:text>

Page 38 of 177

It's the little things that matter

1 There is an opening whiteline and a closing whiteline, which may not be visible depending on the chosen rendering of the original
DocBook code of this paper.

2 This is certainly my preference, and from most examples floating around on the Net, this seems to be the preference of most
programmers, though I do not have any authorative resource to proof that.

This is very readable and you may have put the items on
separate lines precisely to make it more readable. But
other than with attribute value templates, where
whitespace is normalized because it is inside attributes,
that does not apply here. Whitespace is significant in
sequence constructors as soon as there are text nodes
inside it (other than the ones introduced with xsl:text),
and when not inside a sequence constructor, as in this
example, whitespace is significant because whitespace is
always significant inside xsl:text. As a result, this
example, when processed, will look as follows1:

 John
 Doe:
 23 years

To prevent this from happening, simply remove the
white-space by coding it differently:

1 <xsl:text expand-text="yes">{@first-name} {@last
 -name}: {@age} years</xsl:text>

But this can get ugly. Another way of writing this is:

<xsl:text expand-text="yes">{
 @first-name,
 @last-name}:{
 @age} years</xsl:text>

Still not ideal, because we, as XSLT and XML addicts
usually like to close an element on the same column it
was opened2. Let's try yet another potentially (less) ugly
way of coding this (using the string concatenation
operator || from XPath 3.0):

<xsl:text expand-text="yes">{
 @first-name,
 @last-name
 || ': '
 || @age
 || ' years'
}</xsl:text>

It would have been nicer if the Working Group had
decided to remove the whitespace, i.e. to let it work as if
the curlies where replaced in-place by an xsl:value-of
and if, after such expansion, no significant whitespace
remains, the insignificant whitespace is removed or
collapsed, similar to attribute value templates. However,
processors typically remove insignificant whitespace prior
to instruction expansion and the whitespace processor
cannot distinguish between curlies that contain
expressions and curlies that are normal text, which has
been the main reason not to let it behave that way.

7.4. Limitations

Using text value templates is limited to places where
expand-text="yes" is in scope. You cannot apply
sequence normalization with a specified separator as you
would with xsl:value-of (sequences inside a text value
template are normalized with a space between the items
and consecutive text value templates are concatenated
without any separator).

Text value templates, similarly to attribute value
templates, do not apply to themselves, that is, if the
result of evaluating the expression contains curlies, this
does not result in re-evalution of the result of the
expression.

8. Improve production stability by
introducing assertions

Availability in XSLT 2.0: limited, you could partially
mimic it with xsl:if and xsl:message with
terminate="yes".

Assertions help in stabilizing your code by defining
pre- and post-conditions for functions, input documents,
templates and other constructs. If the assertion is not
met, the transformation fails with an error, unless it is
caught inside a try/catch construction. The advantage
over using regular xsl:if or xsl:message is that
assertions can be globally switched on or off.

8.1. Syntax and use

<xsl:assert>
 <!-- content -->
</xsl:assert>

Assertions can be inserted in your code with the new
instruction xsl:assert. It behaves much the same like
xsl:message combined with an xsl:if. If the test

attribute evaluates to false, the assertion instruction will
raise an error, which is by default XTMM9001, but can be
set to anything else on the error-code attribute.

For instance, suppose that you want to ensure that
the version attribute of the input is of at least a certain

Page 39 of 177

It's the little things that matter

1 The commandline interface documentation currently does not seem to list such option. Once it becomes available it is likely that this
documentation will get updated.

value because you do not want to support older versions
of the input, you could write:

<xsl:template match="header" expand-text="yes">
 <xsl:assert test="number(@version) ge 2.0">
 <xsl:text>
 Incorrect version: {@version}
 </xsl:text>
 </xsl:assert>
 <xsl:apply-templates/>
</xsl:template>

Similarly to xsl:message, the result of evaluating the
xsl:assert instruction is the empty sequence.

By default, assertions are switched on. Processors
should support switching it off by any processor-
dependent way through either command-line options or
API settings. In the case of Exselt, you can switch
assertions off by using the command-line option -da=yes
or -disable-assertions=yes. For Saxon, I could not find
such a global instruction, but it may be introduced in a
future version1.

8.2. Improving your code

You can use assertions to add invariants to your code,
which makes testing your code easier and can give you
better information in cases when something goes wrong.
Once your XSLT program has been through rigorous
testing and you know that your pre- and post-conditions
and invariants are always true, you can switch off the
assertions in subsequent processing.

A very common scenario for XSLT stylesheets is to
depend on one or more external resources, for instance,
auxiliary files, catalog files, lookup tables etc. In XSLT
2.0 you would write your code something like the
following if you wanted to inform the user neatly if some
required document was absent:

<xsl:template name="xsl:initial-template">
 <xsl:choose>
 <xsl:when
 test="not(
 document-available('settings.xml'))">
 <xsl:message terminate="yes">
 Settings.xml not found
 </xsl:message>
 </xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates
 select="document('settings.xml')"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

The extra required negation, plus the long-winded
xsl:choose results in many programmers not going
through all the trouble of fool-proofing their code. With
xsl:assert it becomes a bit easier to do, plus the
messages will have a bit more meaning: programmers
seeing such an instruction in your code will immediately
understand the purpose, while with a block of code like
the one above, it requires a little bit more thought to find
out that you are actually asserting something and not just
having a normal program flow instruction.

With assertions, the above code becomes:

<xsl:template name="xsl:initial-template">
 <xsl:assert
 test="document-available('settings.xml')">
 <xsl:text>Settings.xml not found</xsl:text>
 </xsl:assert>
 <xsl:apply-templates
 select="document('settings.xml')"/>
</xsl:template>

This code, while more readable, may not do entirely what
you expect: XSLT does not depend on order of
execution. The earlier example above forced the order of
execution by having and xsl:choose instruction. Several
techniques can be used to force the order of execution.
One such method is the following:

<xsl:template name="xsl:initial-template">
 <xsl:variable name="$doc" select="
 if(document-available('settings.xml'))
 then document('settings.xml') else ()">
 <xsl:assert test="$doc">
 <xsl:text>Settings.xml not found</xsl:text>
 </xsl:assert>
 <xsl:apply-templates select="$doc"/>
</xsl:template>

A similar problem arises with functions. Suppose you
want to assert your input for non-zero values. You could
do that as follows:

<xsl:function name="f:div">
 <xsl:param name="a"/>
 <xsl:param name="b"/>
 <xsl:assert test="$b != 0"
 select="'Cannot div by zero'"/>
 <xsl:sequence select="$a div $b"/>
</xsl:function>

But again, the error of divide-by-zero may kick in before
the assertion is tested (if the arguments are integers,
otherwise INF is returned and the assertion will kick in
before the function ends). To avoid the error to be raised

Page 40 of 177

It's the little things that matter

http://www.saxonica.com/html/documentation/using-xsl/commandline.html

1 Optionally, even fn:doc can be indeterministic. Here I use the term unstable to mean reliance on resources that by definition will cause
your assertions to become non-deterministic

by the function, you would have to rewrite it somewhat.
One approach could be to simply duplicate the logic:

<xsl:function name="f:div">
 <xsl:param name="a"/>
 <xsl:param name="b"/>
 <xsl:assert test="$b != 0"
 select="'Cannot div by zero'"/>
 <xsl:sequence
 select="$a div (if($b = 0) then 1 else $b)"/>
</xsl:function>

Once you have all your assertions in place, you probably
want to be able to switch them on and off. The XSLT 3.0
specifcation does not mandate how this can be done, but
suggests to do it using a use-when attribute. Personally, I
think this is too much added clutter for a feature that
should be as easy to use as possible. In fact, I think it is
better to rely on the ability of the processor to switch this
feature on and off. I think it ought to be off by default,
but the specification states the opposite and turns it on
by default.

8.3. Caveats

The main caveat was already discussed in the previous
section: the inability to use xsl:assert in an as non-
obtrusive way as possible, caused by the default behavior
of how instructions are evaluated: in no pre-defined
order.

There are some other things to look out for, though:
• Assertions should not have side-effects. The only way

to cause side effects to kick in in an assertion is by
using an extension function or instruction, either
directly or indirectly. Such extension function could
have a side-effect, like writing to a file, sending a
message etc. This side-effect will be gone once the
assertions are switched off which may result in
unwanted and hard-to-predict behavior.

• Assertions should not be used to control program
flow. I.e., you should not rely on the assertion to
throw an exception and catch it, because again, once
the assertions are switched off, the exception will
never be caught and your program flow will behave
differently than expected.

• Assertions have empty result. However, the
specification states that assertions, other than other
instructions, cannot be side-stepped for optimization
purposes. That means that any code in the test
attribute will always be executed.

• Assertions should not rely on unstable resources. If
your code requires unstable resources like streams or
collections1, you should not write an assertion with

test being dependent on such resource. Instead, use
normal program flow instructions. The
indeterministic nature of instructions such as
xsl:stream make them a poor candidate for
deterministic assertions.

• If you use assertions in global variables or parameters,
be aware that the assertions only kick in if you
actually use those variables, unless you processor does
eager evaluation, though most, if not all, currently
available processors are known to lazily evaluate
variables.

8.4. Limitations

There are no inherent limitations with this instruction,
other than limitations posed by your processor on
instructions in general.

9. Meta programming with shadow
attributes

Availability in XSLT 2.0: None. The only way to do
meta-programming was to create a stylesheet with a
stylesheet.

While this is a feature that could warrant a whole
paper on itself, I will mention and touch on the essence
of it here, as it is a seemingly small new feature, but one
that is particularly powerful. Each and every attribute in
your XSLT stylesheet can be turned into a shadow
attribute and as such, it will take an attribute value
template that is processed in the same way static
expressions are evaluated for static parameters and use-
when attributes.

9.1. Syntax and use

To create a shadow attribute, prepend it with an
underscore. It then takes an attribute value template and
takes precedence over any existing attribute by the same
name. For instance, the following example uses an
expression in the select statement of apply-templates that
is equal to whatever atomized string is inside $initial-
select:

<xsl:param name="initial-select" static="yes"/>

<xsl:template match="/">
 <xsl:apply-templates
 _select="{$initial-select}"/>
</xsl:template>

Page 41 of 177

It's the little things that matter

1 The array namespace is only avaialable if your processor support XPath 3.1.

Because shadow attributes are evaluated in the static
phase, they can only use static variables and parameters
and whatever else, like document and other resources,
that are available in the static context. The set of
functions is limited to the functions defined in XPath,
including the functions in the map, array1 and math
namespaces.

Any static variable or parameter that you want to use
must be a global variable (static variables can never be
local) and they must precede the element in which they
are used in document order. You cannot use the current
variable or parameter on itself, i.e. the following is illegal:

<xsl:param name="debug" select="true()"
 _use-when="$debug"/>

Shadow attributes can be any attribute, including the
static attribute on xsl:param and xsl:variable, the
use-when attribute and the version attribute on your
outermost xsl:stylesheet or xsl:package declaration.

Attributes in a namespace, including attributes in the
xsl namespace cannot be turned into a shadow attribute.
As a result, default attributes such as default-mode on a
literal result element appear as xsl:default-mode and
they cannot be used as a shadow attribute by changing
them into _xsl:default-mode or xsl:_default-mode.

Shadow attributes cannot appear on literal result
elements as a result of this, they can only appear on
XSLT instructions, declarations and other constructs.

9.2. Improving your code

The main purpose of this feature is to make it easier to
write conditional inclusion of specific attributes. This was
already possible using use-when, but for each variant of a
particular instruction, it would require a full copy of the
whole instruction. For instance, in XSLT 2.0 you would
write something like the following to have a conditional
include for a debug and a release import of a stylesheet:

<xsl:import href="release.xsl"
 use-when="if(document-available('release.xml')
 then true() else false()"/>
<xsl:import href="debug.xsl"
 use-when="if(document-available('debug.xml')
 then true() else false()"/>

The absence of the ability to use variables inside use-when
and the inability to use it on attributes made it rather
cumbersome in such situations. And suppose both the
release and debug versions of the stylesheet are in the

same path, it would become even more troublesome to
code this correctly in XSLT 2.0. Enter shadow attributes:

<xsl:param name="version" static="yes"
 select="'release'"/>
<xsl:import _href="{$version}.xsl"/>

This simple example shows the power of the combination
of static parameters with shadow attributes.

If we take that one big step further, you could, for
instance, create a stylesheet that evaluates a user-input
expression as follows:

<xsl:param name="expression" static="yes"
 select="()"/>
<xsl:template name="xsl:initial-template"
 expand-text="yes">
 <xsl:text>
 Evaluation expression: {$expression}
 </xsl:text>
 <xsl:value-of _select="{$expression}"/>
</xsl:template>

A stronger example of its power is when you have a
stylesheet that must be executed in a certain order,
dependent on a given input. There are multiple ways of
programming such a requirement, but suppose you have
an input configuration file as follows:

<config>
 <step name="run-invoices" />
 <step name="aggregate-invoices" />
</config>

And you have a stylesheet as follows:

<xsl:template name="run-invoices">
 <xsl:apply-templates select="//invoice"
 mode="html"/>
</xsl:template>

<xsl:template name="aggregate-invoices">
 <xsl:apply-templates select="//invoice"
 mode="aggregate"/>
</xsl:template>

<xsl:template name="send-invoices">
 <!-- the message listener is set to
 sending emails -->
 <xsl:message>
 <xsl:apply-templates select="//invoice"
 mode="email"/>
 </xsl:message>
</xsl:template>

Depending on the flow, the moment of the week or
other requirements, not all of these templates need to be

Page 42 of 177

It's the little things that matter

executed. As in the config file above, we only want to
execute the run-invoices and the aggregate-invoices.

<xsl:variable name="step" static="yes"
 select="function($step) {
 (doc('config.xml')/config/step[$step],
 'none')[1]
 }"/>

<xsl:template name="none"/>

<xsl:template name="xsl:initial-template">
 <xsl:call-template _name="{$step(1)}"/>
 <xsl:call-template _name="{$step(2)}"/>
 <xsl:call-template _name="{$step(3)}"/>
 <xsl:call-template _name="{$step(4)}"/>
 <xsl:call-template _name="{$step(5)}"/>
</xsl:template>

This example uses a few advanced concepts, so let's go
over them in detail:
• The static variable named step returns a function item

that takes one argument. In XSLT 3.0 (and in XPath
3.0 using let-binding) it is possible to bind a function
to a variable and to call the contained function using
$variablename($arg1, $arg2, ...) syntax, i.e., the
variable name, followed by parentheses containing the
arguments. This is considered higher-order functions,
which is a feature of XPath 3.0 and by extension a
feature of XSLT 3.0.

In this case, the returned function item has a body
that opens a document config.xml and queries it for a
step element based on the position given in the
argument to the function.

• The result of this query is placed in a sequence of two.
Since sequences eliminate empty sequences, a
sequence like ((), 'none') is the same as ('none').
That means that if the step is not found, the first item
will be the empty sequence and will be ignored. The
filter expression at the end, [1] takes the first item of
this sequence, which will be either the step, or the
value 'none' .

• The function is called five times, which suggests that
our stylesheet can at most execute five steps. The
result of a call like $step(1) is 'none' or the name of
whatever is in our configuration file at that location.

• After the static phase and with our example
configuration file above, our stylesheet will look as
follows:

<xsl:template name="xsl:initial-template">
 <xsl:call-template name="run-invoices"/>
 <xsl:call-template name="aggregate-invoices"/>
 <xsl:call-template name="none"/>
 <xsl:call-template name="none"/>
 <xsl:call-template name="none"/>
</xsl:template>

• Adding the no-op named template none helps us in
keeping this code tidy and simple. If a step is not
needed, it executed this no-op template and no harm
is done.

While this particular use-case can be coded using
traditional means as well, I used it here as an example of
how powerful static expressions in conjunction with
shadow attributes can be.

Another major use-case for shadow attributes and
static parameters is for testing. For instance, suppose you
want to test whether division works properly in XSLT,
you could write a test-case as follows, where each
argument, including the division operator, is
parameterized:

<xsl:param name="numerator" static="yes"/>
<xsl:param name="denominator" static="yes"/>
<xsl:param name="operator" static="yes"/>
<xsl:param name="result" static="yes"/>

<xsl:template name="xsl:initial-template">
 <xsl:assert _select="{
 $numerator
 $operator
 $denominator}
 eq
 {$result}">
 <xsl:text>Not succeeded</xsl:text>
 </xsl:assert>
</xsl:template>

This code will either raise an error, or it will succeed in
which case it returns nothing. The calling application can
now simply define all the parameters for all cases it wants
to test and, when these params are invoked with this
stylesheet, the calling application only needs to check
whether or not an error is raised.

While it is unlikely that you would want to test
yourself for the stability of the division operators of a
processor, it is an example that you can use in your own
code, for instance by having it call your own functions
with a static parameter for each argument. That would
greatly simplify writing a testing framework for your
functions.

9.3. Caveats

Any attribute that used to take either yes or no or true
false can now take the corresponding synonyms. That
means that any value that takes yes also accepts true and
1 and likewise, no, false and 0 are interchangeable. This
was done to make it easier to use shadow attributes that
operate on such boolean values. If you write an
expression for a boolean shadow attribute, all your
expression needs to do is evaluate to true() or false(),
which will then be atomized as true or false.

Page 43 of 177

It's the little things that matter

1 As a result of this rule, if your static parameter returns a function item, it cannot be compared if the same parameter appears with the
same name and the same import precedence, because function items are not comparable.

2 Packages are supposed to be allowed to be precompiled. As such, it makes no sense to allow static parameters to be overridden, as that
would require you package to be recompiled each time it is used. Processors may, however, allow you to specify defaults for static
parameters in packages, for instance, Exselt allows you to set parameters in the Package Catalog configuration file.

3 This name seems a bit redundant, because many patterns can have predicates. But in the case patterns matching any item, the only thing
to distinguish between one item and another, is by a predicate, hence the name.

If you have both a shadow-attribute and a non-
shadow attribute, the shadow attribute takes precedence.
For instance:

<xsl:text expand-text="yes"
 _expand-text="{$expand-text}"/>

The effective attribute for expand-text will be from
evaluating the expression in _expand-text, the other
attribute is ignored and may even contain an invalid
value without leading to an error. For instance, if you
would write the following, it is legal, as long as $expand-
text evaluates to something sensible:

<xsl:text expand-text="invalid-value"
 _expand-text="{$expand-text}"/>

Other things to look out for is the order of evaluation of
static parameters and variables: they must appear prior to
their static usages in document order. Generally, the
normal import precedence rules apply, however if a
collision is detected, i.e. when two parameters have the
same name and the same import precedence, than their
effective values must be the same1.

Be aware of the fact that shadow attributes take
attribute value templates that in turn take static
expressions and that use-when expressions take a static
expression directly. This subtle difference is easily
overlooked. I.e., the following will throw a compile-time
error:

<xsl:param name="test" _static="true()"/>

Instead, write it as follows:

<xsl:param name="test" _static="{true()}"/>

9.4. Limitations

Shadow attributes take static expressions and static
expressions, while allowing the full XPath syntax, are
relatively limited. A few of the more prominent
limitations are:
• Static expressions cannot reference variables or

parameters other than static variables or parameters.
• Static variables or parameters must appear prior to

their usage in document order.
• The set of statically known documents, collections

and unparsed text resources is implementation
defined. Make sure you check with your processor
what set of documents it makes available. In the case

of Exselt, the available documents is only limited by
whatever the resource allocator is able to return,
which is generally the same set as the dynamic set,
assuming that the static and dynamic phase follow
each other in the same environment.

• Static expressions are unlikely to be re-evaluated in a
compiled stylesheet. If your processor supports
compiled stylesheet, keep in mind that however you
distribute your compiled stylesheet that your static
expressions will be cast in stone. This is similar in
behavior to constants in other programming
languages, or compile directives in C.

• Shadow attributes do not apply to shadow attributes,
that means, you cannot change a shadow attribute
into a shadowed shadow attribute by prepending it
with another underscore.

• Static variables and parameters are scoped to the
current package. That means that you cannot override
any static parameter or variables from a used package.
XSLT 3.0 does not give any instrumentation to
influence the static parameters in an xsl:use-package
declaration, but your processor may2.

10. Apply templates on atomic
values

Availability in XSLT 2.0: None, it was not possible to
apply templates or have an initial context item other than
a selection of nodes.

XSLT 3.0 introduces new pattern syntax to be able to
match on atomic values. Such patterns are called
predicate patterns3 and apply both to atomic items and
nodes. They allow you to apply templates on other things
than just nodes, for instance, a sequence of strings,
singleton numeric values, maps, a sequence of functions
etc.

10.1. Syntax and use

The syntax of a predicate pattern is surprisingly
straightforward: a dot followed by one or more
predicates. A dot without any predicates matches any
item.

Examples of valid predicate patterns are:
• . matches any item, whether it is a node, an atomic

value, a map an array or a function item.

Page 44 of 177

It's the little things that matter

1 You cannot just test a function for its arguments or just for its return type. You must specify both the arguments and the return type.
2 It does not literally match nothing, it actually never matches anything, because nothingness, as in empty sequences, cannot be matched.
3 This is an example of how cumbersome it is to match nested maps. If you need matching nested maps, you are better of writing a bunch

of handy functions to do the magic. While at some stage an alternative maps syntax was proposed, specifically for use in patterns, it never
made it into the specification. Also note that the map:keys function returns the keys in an implementation-defined order, so this specific
pattern is rather hit-or-miss and may behave differently under different browsers.

4 I know that there are proponents of either of matching patterns and using for-each, my personal preference is matching patterns as it
reduces nesting and generally "looks" cleaner and I just find it easier to read.

• .[self::para] matches any item that is an element
node that matches the node test para.

• .[. = 'father'] matches any item that, when
atomized, matches the string 'father'.

• .[. instance of xs:string] matches any item that is
a string.

• .[. instance of function(*)] matches any function
item.

• .[. instance of function(xs:integer, xs:integer)

as item()] matches any function item that takes two
integers1.

• .[function-arity(.) = 3] matches any function item
that has arity 3.

• .[position()] matches any item that has a position.
Atomic items do not have a position, so in effect, this
only matches node items.

• .[empty(.)] matches nothing2.
• .[. instance of xs:integer][. le 100] matches

integer less then or equal to 100.
• .[. castable as xs:double] matches any item that

can be cast to a double, like xs:byte, xs:integer and
xs:double

• .[..] matches any item that has a parent, this is the
same as node()[..].

• .[1] matches any item, the position of atomic values
inside a sequence is always 1.

• .[xs:float(.)] matches any item, including
attributes and elements, that successfully parse as an
xs:float.

• .[matches(., '^.{2}-.{3}')] matches any item that,
after atomization, starts with two characters, followed
by a dash, followed by three characters.

• .[. instance of xs:string][matches(., '^.{2}-.

{3}')] limits the previous pattern to match only
string items.

• .[. instance of xs:string][not(.)] matches any
empty string.

• .[. instance of map(*)] matches any map.
• .[. instance of map(*)][.('date')] matches any

map that has a key by the name 'date'.
• .[. instance of map(*)][let $keys := map:keys(.)

return .($keys[1]) instance of map(*)] matches
any map that contains a nested map for each key3.

• .[. instance of xs:string][tokenize(., ',')[10]]

matches any CSV-style string with at least 10 fields in
it.

• .[. instance of xs:string or .[self::node()]]

[contains(., 'hello')] matches any string or node
that contains the word "hello".

• .[.[self::number] or (. instance of

xs:anyAtomicType and number(.) = 'NaN')] matches
either an element number or any atomic type that is
convertible to a number.

Just as with other patterns, if a pattern raises an error, it
is considered to be a negative match. Many examples
above would raise an error depending on the item that is
currently being matched, but these errors are never
visible, they simply mean that the match failed.

10.2. Improving your code

The extra freedom of possibilities that opens up with this
is so big that it is impossible to fit it into a short chapter
here, but I'll give a few examples to get a general idea.

Suppose you want to process a CSV file. The XSLT
2.0 way of doing that would be inside a nested for-each
loop, which can quickly get rather entangled. Using
pattern matching, you can use a much cleaner approach4.
Assuming a simple CSV style where we don't have to
deal with escaping all kinds of corner cases and error
scenarios, a straight-forward approach in XSLT 2.0
would look something like as follows:

<xsl:template name="main">
 <xsl:for-each select="
 tokenize(
 unparsed-text('file.csv'),
 '\r?\n')">
 <row>
 <xsl:for-each select="
 tokenize(., ',')">
 <cell>
 <xsl:value-of select="."/>
 </cell>
 </xsl:for-each>
 </row>
 </xsl:for-each>
</xsl:template>

Page 45 of 177

It's the little things that matter

1 Not necessarily this task, but enriching an input file, or turning attributes into elements and vice versa is very common.

In XSLT 3.0, we can rewrite that as follows (warning: not
necessary less lines):

<xsl:template name="xsl:initial-template">
 <xsl:apply-templates select="
 unparsed-text-lines('file'csv'''file'csv')"/>
</xsl:template>

<xsl:template match=".">
 <row>
 <xsl:apply-templates select="
 tokenize(., ',')" mode="cell"/>
 </row>
</xsl:template>

<xsl:template match="." mode="cell"
 expand-text="yes">
 <cell>{.}</cell>
</xsl:template>

Whether you like the approach of matching templates
and patterns to structure your code or not is a personal
flavor. The advantages of this approach are similar to
normal push vs pull processing [16], where you are
embracing change instead of trying to fight it. A more
balanced comparison that favors neither approach can be
find in [17].

In this example I simply matched anything using the
dot-matches-all predicate pattern. The thought behind
this is that we don't know what is inside the CSV so it
doesn't make much sense to match on something more
specific. Of course, we could change this matching
pattern to .[. instance of xs:string], but in this
particular scenario it wouldn't add anything.

Another scenario is where we take the same CSV
matching as above, but now we want to only process
those rows that have a third column with a color and we
only want the color "red". We could then do as follows:

<xsl:template
 match=".[tokenize(., ',')[3] = 'red']">
 <row color="red">
 <xsl:apply-templates select="
 tokenize(., ',')" mode="cell"/>
 </row>
</xsl:template>

Of course, we are now tokenizing twice and that is
perhaps not very handy, but a good processor will cache
this action, it may even recognize that the body of the
template containing this match contains the same
function call, and it can re-use the result without
extensive caching. If not, and you want to explicitly
cache this, you can write your own function and use the
cache="full" to make it more performant. Though
unless these rows are very large, I doubt it will bring
much performance gain in this particular scenario,

especially considering that building the result tree is
likely much more expensive than breaking up a small
string into smaller chunks.

Atomized values do not only appear inside unparsed
text files. They can appear in generated sequences, or for
instance in attributes that are of type xs:token. Here's an
example, suppose your input is like the following, where
the ids attribute contains the ISBN-10, ISBN-13 and
the internally used ID value:

<books>
 <book ids="0618640150 978-0618640157 95867425"
 title="Lord of the Rings" />
 <book ... />
</books>

If we take this example and want to make the XML a bit
more readable by expanding the ids attribute, a common
task in XSLT processing1, we could use the following
transformation:

<xsl:mode on-no-match="shallow-copy"/>

<xsl:template match="book">
 <xsl:copy-of select="@* except @ids"/>
 <xsl:apply-templates select="
 tokenize(@ids, ' ')"/>
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match=".[string-length(.) = 10]"
 expand-text="yes">
 <isbn-10>{.}</isbn-10>
</xsl:template>

<xsl:template match=".[string-length(.) = 14]"
 expand-text="yes">
 <isbn-13>{.}</isbn-13>
</xsl:template>

<xsl:template match=".[string-length(.) = 8]"
 expand-text="yes">
 <internal-id>{.}</internal-id>
</xsl:template>

Essentially, this transformation works as an identity
transform by virtue of the presence of on-no-

match="shallow-copy". By applying templates on the
tokenized value of the ids attribute we create an easily
manageable approach for any kind of items that is inside
this tokenized attribute. Since we do not need the ids
attribute anymore, we use the except expression to
remove it from any attributes we might be copying that
we do not yet know about (as opposed to explicitly
copying only the title attribute).

As with the other examples in this paper, the expand-
text="yes" is better suited to be placed on the outermost
element of your stylesheet.

Page 46 of 177

It's the little things that matter

10.3. Caveats

There are a number of things to be aware of when
processing non-node items using pattern matching. A
summary:
• The default priority of a predicate pattern without

predicates is -1, which is lower than any other default
priority.

• The default priority of any other predicatge pattern is
1 and is therefore higher than any other default
priority. That means, for instance, that .[self::para]
will match before para or even para[@bold] is
matched.

• Errors in predicate patterns are ignored and result in a
failing match.

• The default template rule matching an atomic item is
to output that item unchanged, after applying the
fn:string() function on it, except in the case of maps
and functions, which are skipped.

• Because of the default priority rules, it doesn't matter
how many predicates you use. The new default
behavior in XSLT 3.0 for equal priority conflict
resolution is to take the last in declaration order. This
may lead to surprising results, to more often than not,
when using this kind of pattern matching, you should
resort to either using explicit priorities, or switch to
different modes.

• Applying templates on string items that are
significantly large can be detrimental to performance.
In such case it is better to use pull processing and to
split the string into smaller chunks if the problem
domain allows that.

10.4. Limitations

You cannot mix predicate patterns with normal patterns.
In fact, you cannot even mix a predicate pattern with a
predicate pattern using the union operator, because that
operator expects nodes on either side. If you want to
match both nodes and other items in one pattern, you
have to do that with a single predicate pattern, as some
examples above show how to. If you want to mix
multiple predicate patterns into a single pattern you
should use the or operator, or if that doesn't work, you
should split your pattern in multiple matching templates
or place the matching logic inside a helper function. If

the function is small enough, you can even do that inside
the pattern itself:

<xsl:template match=".[let $f := function($m) {
 if($m instance of xs:string
 and string-length($m) gt 4)
 then true()
 else if($m instance of xs:integer
 and $m gt 9999) then true()
 else if($m instance of xs:float
 and $m lt 9.9999) then true()
 else
 false() }
 return $f(.)]" expand-text="yes">

 <xsl:text>{
 'Found an item "' || .
 ||' " that is '
 || 'a string of size above 4 '
 || 'or an integer larger than 9999 '
 || 'or a float smaller than 9.9999'
 }</xsl:text>

</xsl:template>

And you maybe surprised, but the above pattern,
however absurd it may look, actually works. For instance,
try to apply it to an integer:

<xsl:apply-templates select="12000"/>

Result:

1 Found an item "12000 " that is a string of size
 above 4 or an integer larger than 9999 or a
 float smaller than 9.9999

Other limitations include that it is far from trivial to
match maps or items in maps. It gets even harder if you
need to match on a map containing a map. A typical
pattern to use when matching on the content of maps is
build up of several steps.

Step 1, generically match a map of a certain type:
• .[. instance of map(*)] matches any map.
• .[. instance of map(xs:integer, item())] matches

a map with all keys of type xs:integer, or an empty
map.

• .[. instance of map(xs:anyAtomicType, person)]

matches a map with all values being of element
person, the key being any key, or an empty map.

• .[. instance of map(xs:string, person)] matches a
map with all keys being of type xs:string and all
values being of element person, or an empty map.

Step 2, match a specific item in the map (replace the
three dots with anything from the previous step):

Page 47 of 177

It's the little things that matter

1 This particular pattern is not foolproof: if the map contains maps or function items, the item cannot be atomized and it will raise an
error, resulting in a failing match. To accommodate for such scenarios, you will need to also test each map item whether it is a function
item or not. Generally, once matching becomes this complex, it is better to wrap it in a function.

• ...[.('name') = 'John'] matches a map that has a
key "name" bound to the value "John".

• ...[map:keys(.)[. = 'name']] matches a map that
has a key "name", regardless of its contents.

• ...[map:contains(., 'name')] same as previous.
• ...[let $m := . return map:keys($m)!(if($m(.) =

123) then true() else ())] matches a map that
contains any value that equals 1231.

• ...[.('invoice') instance of map(*)] matches if a
map item with the key "invoice" is itself a map item.

• ...[.('invoice')('billing')('total')] matches if a
map item contains a key "invoice" with a value of a
map that contains a key "billing" with again a value of
a map that contains a key "total" that is non-empty,
not numerically zero and not false().

In cases where you simply want to interrogate whether a
certain key has a certain value, you can simplify this logic
by writing expressions like the following:
• .[.('invoice')('billing')('total')] same as the

last above, without the predicate determining whether
it is a map. This works, because this pattern only ever
matches if the currently matching item is indeed a
map.

• .[.('invoice')('total') lt 48.50] matches a map
that has key "invoice" mapping to a map that has a
key "total" that itself contains value that is
numerically less than 48.50.

In general, not just for maps, to match certain items you
will typically do an instance of to limit your matching
to a given atomic type, which makes this kind of
matching rather verbose to begin with. If you have an
often repeated (part of a) pattern, you can wrap it inside

a static variable and turn the match attribute in a shadow
attribute:

<xsl:variable name="matchme" static="yes" select="
 . instance of xs:float or
 . instance of xs:integer or
 . instance of xs:double"/>

<xsl:template _match=".[{$matchme}][. = 0]">
 <xsl:text>Found a zero!</xsl:text>
</xsl:template>

<xsl:template
 _match=".[{$matchme}][. lt 10][. != 0]">
 <xsl:text>Found less then 10!</xsl:text>
</xsl:template>

<xsl:template _match=".[{$matchme}][. ge 10]">
 <xsl:text>Found greater/equal than 10!</xsl:text>
</xsl:template>

11. Improve performance helping
the processor decide where to apply
forking

Availability in XSLT 2.0: not available and no known
extension mechanism that does the same exists, however,
Saxon has a somewhat similar attribute that can be
applied to xsl:for-each that specifies how many threads
should be used, see [18].

The instruction xsl:fork is primarily intended for
use with streaming, in that it enables a programming
model that would otherwise require multiple passes over
the input document, which is not always possible, let
alone feasible, in streaming scenarios. At first sight, it
looks like this instruction is a no-op in non-streaming
scenarios, but because it introduces a logical forking of
data, it can be used as a hint to the processor to open up
multiple threads for each fork, and so to improve
performance.

11.1. Syntax and use

<xsl:fork>
 <!--
 content, either:
 - zero or more xsl:sequence
 - one xsl:for-each-group
 -->
</xsl:fork>

Page 48 of 177

It's the little things that matter

1 Not entirely true. A late change, that just made it into the current Working Draft, allows xsl:for-each-group to appear as a child as
well, which allows for a form of complex streamed grouping. For this scenario, we are only interested in xsl:sequence children.

2 In fact, Saxon currently doesn't fire up new threads for streaming, but there is no mention of non-streaming scenarios in the Saxon
documentation.

If you can split your sequence constructor into a bunch
of xsl:sequence instructions, you can also modify it to
use xsl:fork, because that instruction only takes
xsl:sequence instructions as its children1. The xsl:fork
instruction itself changes nothing to the generated
sequences, the result would be exactly the same if the
xsl:fork instruction were not there. A typical fork
instruction could look something like the following:

<xsl:fork>
 <xsl:sequence select="beer"/>
 <xsl:sequence select="lemonade"/>
 <xsl:sequence select="other-drink"/>
</xsl:fork>

Here, the result would be the sequence of all beer
elements, followed by the sequence of all lemonade

elements, followed by the sequence of all other-drink
elements. The only difference is that the processer gets a
hint that it should use multi-threading. The user here
says to the processor that it knows enough of the input
data that the overhead of starting up new threads is
insignificant compared to collecting these elements
concurrently from the input tree.

Since XSLT is largely side-effect free, a strong hint
like the one above can be easily picked up in a processor-
independent way. At this moment, Exselt allows for this
kind of hints to be followed up, I am not sure if Saxon
also fires up multiple threads2.

Note that, even without xsl:fork, processors are
known to apply multi-threading where possible, often
depending on the edition of the processor you have.

11.2. Improving your code

Suppose your XSLT 2.0 code looked like this:

<xsl:template match="publication">
 <xsl:apply-templates select="book"/>
 <xsl:apply-templates select="magazine"/>
 <xsl:apply-templates select="paper"/>
 <xsl:sequence select="f:sum-totals(.)"/>
</xsl:template>

Then you can turn that into a fork as follows:

<xsl:template match="publication">
 <xsl:fork>
 <xsl:sequence>
 <xsl:apply-templates select="book"/>
 </xsl:sequence>
 <xsl:sequence>
 <xsl:apply-templates select="magazine"/>
 </xsl:sequence>
 <xsl:sequence>
 <xsl:apply-templates select="paper"/>
 </xsl:sequence>
 <xsl:sequence select="f:sum-totals(.)"/>
 </xsl:fork>
</xsl:template>

This is obviously a lot more code, but if your input has a
significant size and the individual sequences take some
time to be processed, it makes sense to let the processor
do these actions in parallel.

Whether or not it really improves performance will
depend on processing vs. startup overhead, input size,
computational intensity of the stylesheet and many other
factors. To really find out whether it improves
performance there's only one thing you can do: profile
and measure it.

11.3. Caveats

Processors not supporting multi-threading or not
supporting streaming, may remove the xsl:fork

completely, as it doesn't change its outcome.
Using xsl:fork abundantly may result in many

threads being opened, which in itself is not necessarily
good for performance. It typically depends on the way
threading is implemented (through enveloping, actors,
tasks, divide and conquer algorithms, map/reduce
algorithms, lightweight approaches or heavyweight
approaches etc). As a result, on one processor it may be
beneficial to have as many threads as there are processors,
but not more, on other processors it can be beneficial to
have as many "threads" (which in itself are not
necessarily physical threads) as possible because the
overhead is very light and the algorithm will
automatically choose the best way to spread the tasks
across waiting threads.

Again, the only way to find out what is best for a
given scenario or processor is by profiling the stylesheet.

It is possible to have an empty xsl:fork, but this has
no effect. This was only introduced to make it easier to
auto-generate instructions like this and to make it
orthogonal with the rest of the specification.

Page 49 of 177

It's the little things that matter

http://www.saxonica.com/documentation/index.html#!xsl-elements/fork
http://www.saxonica.com/documentation/index.html#!xsl-elements/fork

11.4. Limitations

There are no inherent limitations imposed by the XSLT
language itself, though processors can either support this
or not and it may be hard to actually find out to what
level they support it if they do. In addition, for
processors that will spawn actual threads, the physical
processing environment may impose limitations on the
amount of threads. Finally, different editions of
processors may support different amounts of CPUs,
threads or otherwise.

12. Conclusion

XSLT 3.0 comes with a host of new functionality that
can improve your current XSLT 2.0 programming

experience significantly. This paper introduced some of
the possibly lesser known improvements that have been
made to the language in the past couple of years. Many
of the "larger" improvements have been covered in web
blogs, papers and conferences, but at least some of the
smaller improvements have not. By showing how these
seemingly small changes can improve your programming
experience, clarity of programming or speed of execution,
these changes, or at least some of them, have now
received the attention to detail as they deserve.

This paper can impossibly be complete, the features
discussed here are, in my opinion, significant, but many
other features are as well. I hope that in a subsequent
paper I can discuss some of these other features that
certainly warrant to be known just as much as these.

Bibliography

[1] XSL Transformations (XSLT) Version 3.0, Latest Version. Michael Kay.
http://www.w3.org/TR/xslt-30/

[2] XSL Transformations (XSLT) Version 3.0, W3C Working Draft 1 February 2013. Michael Kay. World Wide Web
Consortium (W3C).
http://www.w3.org/TR/2013/WD-xslt-30-20130201/

[3] Bugzilla - Public W3C Bug / Issue tracking system. 2014. Miscellaneous authors.
https://www.w3.org/Bugs/Public/

[4] XML Path Language (XPath) 3.0, Latest Version. Jonathan Robie, Don Chamberlin, Michael Dyck, and John
Snelson. World Wide Web Consortium (W3C).
http://www.w3.org/TR/xpath-30/

[5] XQuery and XPath Data Model 3.0, W3C Candidate Recommendation 08 January 2013. Norman Walsh, Anders
Berglund, and John Snelson. World Wide Web Consortium (W3C).
http://www.w3.org/TR/2013/CR-xpath-datamodel-30-20130108/

[6] Requirements and Use Cases for XSLT 2.1. Petr Cimprich. 2010. World Wide Web Consortium (W3C).
http://www.w3.org/TR/xslt-21-requirements/

[7] The EXPath Packaging System. Florent Georges. Proceedings of Balisage 2010.
doi:10.4242/BalisageVol5.Georges01

[8] Collaboratively Defining Open Standards for Portable XPath Extensions. Collaborative.
http://expath.org/

[9] Analysing XSLT Streamability. John Lumley. Proceedings of Balisage 2014.
doi:10.4242/BalisageVol13.Lumley01

[10] A Streaming XSLT Processor. Michael Kay. Proceedings of Balisage 2010.
doi:10.4242/BalisageVol5.Kay01

[11] Streaming in XSLT 2.1. Michael Kay. Proceedings of XML Prague 2010.
http://archive.xmlprague.cz/2010/presentations/Michael_Kay_Streaming_in_XSLT_2.1.pdf

[12] Efficient XML processing with XSLT 3.0 and higher order functions. Abel Braaksma. Proceedings of XML Prague
2013.
doi:10.4242/BalisageVol13.Braaksma01

[13] In pursuit of streamable stylesheet functions in XSLT 3.0. Abel Braaksma. Proceedings of Balisage 2014.
doi:10.4242/BalisageVol13.Braaksma01

Page 50 of 177

It's the little things that matter

http://www.w3.org/TR/xslt-30/
http://www.w3.org/TR/2013/WD-xslt-30-20130201/
https://www.w3.org/Bugs/Public/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/2013/CR-xpath-datamodel-30-20130108/
http://www.w3.org/TR/xslt-21-requirements/
http://dx.doi.org/10.4242/BalisageVol5.Georges01
http://expath.org/
http://dx.doi.org/10.4242/BalisageVol13.Lumley01
http://dx.doi.org/10.4242/BalisageVol5.Kay01
http://archive.xmlprague.cz/2010/presentations/Michael_Kay_Streaming_in_XSLT_2.1.pdf
http://dx.doi.org/10.4242/BalisageVol13.Braaksma01
http://dx.doi.org/10.4242/BalisageVol13.Braaksma01

[14] Try/Catch in XSLT 2.0. Florent Georges. 2007.
http://fgeorges.blogspot.nl/2007/01/trycatch-in-xslt-20.html

[15] saxon:memo-function. Michael Kay. 2015. Saxonica.
http://www.saxonica.com/documentation/index.html#!extensions/attributes/memo-function

[16] Advantages of push-style XSLT over pull-style. E. Welker. 2008.
http://www.eddiewelker.com/2008/11/25/push-style-xslt-vs-pull-style/

[17] XML for Data: XSL style sheets: push or pull?. Kevin Williams. 2008.
http://www.ibm.com/developerworks/library/x-xdpshpul.html

[18] saxon:threads. Michael Kay. 2015. Saxonica.
http://www.saxonica.com/documentation/index.html#!extensions/attributes/thread

Page 51 of 177

It's the little things that matter

http://fgeorges.blogspot.nl/2007/01/trycatch-in-xslt-20.html
http://www.saxonica.com/documentation/index.html#!extensions/attributes/memo-function
http://www.eddiewelker.com/2008/11/25/push-style-xslt-vs-pull-style/
http://www.ibm.com/developerworks/library/x-xdpshpul.html
http://www.saxonica.com/documentation/index.html#!extensions/attributes/thread

Continuous Integration for XML and RDF
Data

Sandro Cirulli

Oxford University Press
<sandro.cirulli@oup.com>

Abstract

At Oxford University Press we build large amounts of XML
and RDF data as it were software. However, established
software development techniques like continuous integration,
unit testing, and automated deployment are not always
applied when converting XML and RDF since these formats
are treated as data rather than software.

In this paper we describe how we set up a framework
based on continuous integration and automated deployment
in order to perform conversions between XML formats and
from XML to RDF. We discuss the benefits of this approach
as well as how this framework contributes to improve both
data quality and development.

Keywords: Jenkins, Unit Testing, Docker

1. Introduction

Oxford University Press (OUP) is widely known for
publishing academic dictionaries, including the Oxford
English Dictionary (OED), the Oxford Dictionary of
English (ODE), and a series of bilingual dictionaries. In
the past years OUP acquired a large number of
monolingual and bilingual dictionaries from other
publishers and converted them into the OUP XML data
format for licensing purposes. This data format was
originally developed for print dictionaries and had to be
loosened up in order to take into account both digital
products and languages other than English. Conversion
work from the external publishers' original format was
mainly performed out-of-house, thus producing a large
number of ad hoc scripts written in various
programming languages. These scripts needed to be re-
run each time on in-house machines in order to
reproduce the final XML. Code reuse and testing were
not implemented in the scripts and external developers'
environments had to be replicated each time in order to
rerun the scripts.

As part of its Oxford Global Languages (OGL)
programme [1], OUP plans to convert its dictionary data

from a print-oriented XML data format into RDF. The
aim is to link together linguistic data currently residing
in silos and to leverage Semantic Web technologies for
discovering new information embedded in the data. The
initial steps of this transition have been described in [2]
where OUP moved from monolithic, print-oriented
XML to a leaner, machine-interpretable XML data
format in order to facilitate transformations into RDF.
[2] provides examples of conversion code as well as
snippets of XML and RDF dictionary data and we
recommend to refer to it for understanding the type of
data modelling challenges faced in this transition.

Since the OGL programme aims at producing lean
XML and RDF for 10 different languages in its initial
phase and for tens of languages in its final phase, the
approach of converting data with different ad hoc scripts
would not be scalable, maintainable, or cost-effective. In
the following chapters we describe how we set up a
framework based on continuous integration and
automated deployment in order to perform conversions
between XML formats and from XML to RDF. We
discuss the benefits of this approach as well as how this
framework contributes to improve both data quality and
development.

2. Continuous Integration

Continuous Integration (CI) refers to a software
development practice where a development team
commits their work frequently and each commit is
integrated by an automated build tool detecting
integration errors [3]. In its simplest form it involves a
build server that monitors changes in the code repository,
runs tests, performs the build, and notifies the developer
who broke the build [4] (p. 1).

2.1. Build Workflow

We adopted Jenkins [5] as our CI server. Although we
have not officially evaluated other CI servers, we decided
to prototype our continuous integration environment
with Jenkins for the following reasons:

doi:10.14337/XMLLondon15.Cirulli01Page 52 of 177

mailto:sandro.cirulli@oup.com

• it is the most popular CI server with 70% market
share [6]

• it is open source and allows to prototype without
major costs

• it is supported by a large number of plugins that
extend its core functionalities

• it integrates with other tools used in-house such as
SVN, JIRA, and Mantis

Nevertheless, we reckon that other CI servers may have
equally fulfilled our basic use cases. On the other hand,
specific use cases may require different CI servers: for
example, Travis CI may be a better choice for open
source projects hosted on GitHub repositories due to its
distributed nature whereas Bamboo may be a safer
option for businesses looking for enterprise support in
continuous delivery.

Figure 1, “Workflow and components for converting
XML and RDF” illustrates the workflow and the
components involved in converting and storing XML
and RDF data via Jenkins.

Figure 1. Workflow and components for converting
XML and RDF

eXist-db
XML Repository

Jenkins CI

JIRA Bug Tracker

SVN
Code Repository

Graph DB
RDF Triple Store

1 GET PUT3a

2

PUT3b

4

XML data in print-oriented format is stored on the XML
repository eXist-db. The data is retrieved by Jenkins via a
HTTP GET request (1). Code for converting print-
oriented XML and building artifacts is checked out from
the Subversion code repository and stored in Jenkins's
workspace (2). The build process is run via an ant script
inside Jenkins and the converted XML is stored in eXist-
db (3a). Should the build process fail, Jenkins
automatically raises a ticket in the Jira bug tracking
system (4).

The same workflow occurs in the RDF conversion.
XML data converted in the previous process is retrieved
from eXist-db (1), converted by means of code checked
out from Subversion (2), and stored in the RDF Triple
Store Graph DB (3b).

The core of the build process is performed by an ant
script triggered by Jenkins. Figure 2, “Build process steps
for XML and RDF conversions” shows the steps involved
in the build process for XML and RDF conversions.

Page 53 of 177

Continuous Integration for XML and RDF Data

Figure 2. Build process steps for XML and RDF
conversions

Clean
workspace

Set properties
and input

parameters

Build XProc
pipeline

Test XProc
pipeline

Retrieve XML
from eXist-db

Convert XML
via XProc
pipeline

Validate XML

Store XML in
eXist-DB

Clean
workspace

Set properties
and input

parameters

Retrieve XML
from eXist-db

Convert to
RDF/XML via

XSLT

Validate RDF/
XML

Convert RDF/
XML to N-triples

Convert OWL
ontology to N-

triples

Validate N-
triples via
RDFUnit

XML conversion RDF conversion

Store RDF/
XML in Graph

DB

2.2. Nightly Builds

Nightly builds are automated builds scheduled on a
nightly basis. We currently build data in both XML and

RDF for 7 datasets and the whole process takes about 5
hours on a Linux machine with 132GB of RAM and 24
cores (although only 8 cores are currently used in
parallel). The build process is performed in Jenkins via
the Build Flow Plugin [7] which allows to perform
complex build workflows and jobs orchestration. For our
project the XML ought to be built before the RDF and
each build is parametrized according to the language to
be converted. The Build Flow Plugin uses Jenkins
Domain Specific Language (DSL), a Groovy-based
scripting language. In this case we used this scripting
language as it ships with the Build Flow Plugin and the
official plugin documentation provides several examples
of complex parallel builds. Example 1, “XML and RDF
builds for English-Spanish data” shows the DSL script
for building XML and RDF for the English-Spanish
dictionary data.

Example 1. XML and RDF builds for English-Spanish
data

out.println 'English-Spanish Data Conversion'
// build lexical XML full data
build("lexical_conversion",
 source_lang: "en-gb",
 target: "build-and-store",
 build_label: "nightly_build",
 input_type: "oxbiling",
 input: "full",
 target_lang: "es")
// build RDF full data
build("lexical_rdf_conversion",
 input_source: "database",
 source_type: "dict",
 source_language: "en-gb",
 target_language: "es",
 target: "update-rdf")

Builds are run in parallel and make use of the multi-core
architecture of the Linux machine. For our current needs
Jenkins is set to use up to 8 executors on a master node
in order to build 7 datasets in parallel. Compared to a
sequential build run on a single executor, the parallel
build reduced by several hours the total execution time of
nightly builds. In the future we foresee to increase the
number of executors as we convert more datasets and to
run nightly builds and other intensive process on slave
nodes in order to scale horizontally.

2.3. Unit testing

Unit testing was originally included in the build process.
However, since the builds took several hours before
producing results, we decided to separate the building
and testing processes in order to provide immediate
feedback to developers. We created validation jobs in

Page 54 of 177

Continuous Integration for XML and RDF Data

Jenkins that poll code repositories on the SVN server
every 15 minutes and run tests within minutes from the
latest commit. Should tests fail, a JIRA ticket is assigned
to the latest developer who committed code and the
system administrator is notified via email.

Unit testing for XSLT code is implemented using
XSpec [8]. [9] suggested the use of Jxsl [10], a Java
wrapper object for executing XSpec tests from Java code.
We took a simpler approach which does not require the
use of Java code. XSpec unit tests are run within the ant

task as outlined in [11] and the resulting XSpec HTML
report is converted into JUnit via a simple XSLT step.
Since JUnit is understood natively by Jenkins, it is
sufficient to store the JUnit reports into the directory
where Jenkins would expect them to be in order to take
advantage of Jenkins's reporting and statistical tools.
Example 2, “XSpec unit test” shows how all the XSpec
HTML reports are converted into JUnit within an ant
script.

Example 2. XSpec unit test

<for param="file">
 <path>
 <fileset dir="${test.dir}" includes="**/*.xspec"/>
 </path>
 <sequential>
 <echo>convert XSpec test results into JUnit XML</echo>
 <propertyregex override="yes" property="basename" input="@{file}"
 regexp=".+[\\/]([^\\/]+?)\.xspec" replace="\1"/>
 <xslt in="${test.dir}/results/${basename}-result.html"
 out="${test.dir}/results/${basename}-result.junit"
 style="${shared.dir}/xsl/xspec_to_junit.xsl" force="true">
 <classpath location="${saxon.jar}"/>
 </xslt>
 </sequential>
</for>

RDF data is tested using the RDFUnit testing suite [12]
which runs automatically generated test cases based on a
given schema. The output is generated in both HTML

and JUnit. Figure 3, “Report for RDFUnit tests” shows a
screenshot of the HTML report (the top level domain
has been hidden for security reasons).

Figure 3. Report for RDFUnit tests

As shown in Figure 2, “Build process steps for XML and
RDF conversions”, the XProc pipeline for the XML
conversion is built on-the-fly during the build process
from a list of XSLT steps stored in a an XML

configuration file. This approach simplifies and
automates the creation of XProc pipelines for new
datasets: for example, developers converting new datasets
have to create and maintain a simple XML file with a list

Page 55 of 177

Continuous Integration for XML and RDF Data

of steps rather than a complex XProc pipeline with
several input and output ports. On the other hand, the
generated XProc file needed to be tested and we therefore
implemented unit tests using the xprocspec testing tool
[13]. Example 3, “xprocspec unit test” shows a test that,
given a valid piece of XML, expects the XProc pipeline
not to generate failed assertions on the ports for
Schematron reports.

Example 3. xprocspec unit test

<x:scenario label="test_fragment">
<x:call step="oup:main">
 <x:option name="source_lang" select="'@LANG@'"/>
 <x:input port="source">
 <x:document type="file"
 href="valid_fragment.xml"/>
 </x:input>
</x:call>
<x:context label="Schematron Validation">
 <x:document type="port"
 port="schematron_intermediate"/>
 <x:document type="port"
 port="schematron_final"/>
</x:context>
<x:expect type="xpath"
 test="count(//svrl:failed-assert)"
 equals="0"
 label="There should be no failed
 Schematron assertions"/>
</x:scenario>

2.4. Benefits of Continuous Integration

Introducing Continuous Integration in our development
workflow has been a big shift from how code used to be

written and how data used to be generated in our
department. In particular, we have seen major
improvements in the following areas:
• Code reuse: on average, 70-80% of the code written

for existing datasets could be reused for converting
new datasets into leaner XML and RDF.

• Code quality: tests ensured that code is behaving as
intended and minimized the impact of regression
bugs as new code is developed.

• Bug fixes: bugs are spotted as soon as they appear,
developers are notified instantly, and bugs are fixed
more rapidly.

• Automation: removing manual steps made the
building process faster and less error-prone.

• Integration: a fully automated building process
reduced risks, time, and costs related to integration
with existing and new systems and tools.

Figure 4, “Jenkins projects” and Figure 5, “Parametrized
build” show respectively the list of Jenkins projects and a
parametrized build inside the Lexical Conversion project.
In Figure 4, “Jenkins projects” we illustrate on purpose a
critical situation showing projects with failed builds in
red, projects with unstable builds (i.e. failing unit tests)
in amber, and project with successful builds in blue; the
weather icon illustrates the general trend.

Figure 4. Jenkins projects

Page 56 of 177

Continuous Integration for XML and RDF Data

Figure 5. Parametrized build

3. Deployment

One of the issues we faced when working with out-of-
house freelancers is that their working environments
needed to be replicated in-house in order to rerun scripts.
Indeed, even within an in-house development team it is
not uncommon to use different software tools and
operating systems. In addition, the need of development,
staging, and production environments for large projects
usually causes integration problems when deploying from
one environment to another.

In order to minimize integration issues and avoid the
classic 'but it worked on my machine' problem, we
picked up Docker as our deployment tool. Docker is an
open source software for deploying distributed
applications running inside containers [14]. It allows
applications to be moved portably between development
and production environments and provides development
and operational teams with a shared, consistent platform
for development, testing, and release.

As shown in Figure 6, “Docker Containers”, we based
our environment on a CentOS image base. This
container also deploys all the software tools employed by
subsequent containers (e.g. Linux package utilities, Java,
ant, maven, etc.). Separate ports are allocated to each
component and re-deploying the components to a
different port is simply a matter of re-mapping the
Docker container to the new port. Graph DB is deployed
as an application inside a Tomcat container. The Jenkins

container is linked to the SMTP server container in order
to send email notifications to the system administrator
and to Graph DB for reindexing purposes. Most of the
components send their logs to logstash which acts as a
centralized logging system. Logs are then searched via
ElasticSearch and visualized with Kibana. Software
components like SVN and Jira are deployed on separate
servers managed by other IT departments, therefore there
was no need to deploy them via Docker containers.

Page 57 of 177

Continuous Integration for XML and RDF Data

Figure 6. Docker Containers

CentOS

8088

Tomcat

8080

Jenkins

25

SMTP server

Graph DB

80
Linked Data

Platform

9200

ElasticSearch

5601

Kibana

12201

Logstash

8008/8443

eXist-db

Example 4, “Dockerfile for deploying eXist-db”
illustrates an example of Dockerfile for deploying eXist-
db inside a Docker container. The example is largely
based on an image pulled out from the Docker hub
registry. The script exist-setup.cmd is used to set up a
basic configuration (e.g. admin username and password).

Example 4. Dockerfile for deploying eXist-db

1 FROM centos7:latest
2 MAINTAINER Sandro Cirulli <sandro.cirulli@oup.com>
3
4 # eXist-db version
5 ENV EXISTDB_VERSION 2.2
6
7 # install exist
8 WORKDIR /tmp
9 RUN curl -LO http://downloads.sourceforge.net/exist
 /Stable/${EXISTDB_VERSION}/eXist-db-setup-${EXISTDB
 _VERSION}RC2.jar

10 ADD exist-setup.cmd /tmp/exist-setup.cmd
11
12 # run command line configuration
13 RUN expect -f exist-setup.cmd
14 RUN rm eXist-db-setup-${EXISTDB_VERSION}RC2.jar exi
 st-setup.cmd

15
16 # set persistent volume
17 VOLUME /data/existdb
18
19 # set working directory
20 WORKDIR /opt/exist
21
22 # change default port to 8008
23 RUN sed -i 's/default="8080"/default="8008"/g'
 tools/jetty/etc/jetty.xml

24
25 EXPOSE 8008 8443
26
27 ENV EXISTDB_HOME /opt/exist
28
29 # run startup script
30 CMD bin/startup.sh

4. Future Work

The aim of the OGL programme is to convert into lean
XML and RDF tens of language datasets and our project
is a work-in-progress that changes rapidly. Although we
are in the initial phase of the project, we believe we have
started building the initial foundations of a scalable and
reliable system based on continuous integration and
automatic deployment. We have identified the following
areas of further development in order to increase the
robustness of the system:
• Availability: components in the system architecture

may be down or inaccessible thus producing
cascading effects on the conversion workflow. In order
to minimize this issue, we introduced HTTP unit
tests using the HttpUnit testing framework [15].
These tests are triggered by a Jenkins project and
regularly poll the system components to ensure that
they are up and running. A more robust approach
would involve the implementation of the Circuit
Breaker Design Pattern [16] which early detects

Page 58 of 177

Continuous Integration for XML and RDF Data

system components failures, prevents the reoccurrence
of the same failure, and reduces cascading effects on
distributed systems.

• Scalability: we foresee to build large amounts of
XML and RDF data as we progress with the
conversion of other language datasets. As our system
architecture matures, we also feel an urgent need to
deploy development, staging, and production
environments. Consequently, we plan to move part of
our system architecture to the cloud in order to run
compute-intensive processes such as nightly builds
and to deploy different environments. Cloud
computing is particularly appealing for our project
thanks to auto-scaling features that allow to start and
stop automatically instances of powerful machines.
Another optimization in terms of scalability would be
to increase the number of executors for parallel
processing and to distribute builds across several slave
machines.

• Monitoring: we introduced a build monitor view in
Jenkins [17] that tracks the status of builds in real
time. The monitor view also allows to display
automatically the name of the developer who may
have broken the last build, to identify common failure
causes by catching the error message in the logs, and
to assign or claim broken builds so that developers
can fix them as soon as possible. We hope that this
tool will act as a deterrent for unfixed broken builds
and will increase the awareness of continuous
integration in both our team and our department.

• Code coverage and further testing: we introduced
code coverage metrics (i.e. the amount of source code
that is tested by unit tests) for Python code related to
the development of the Linked Data Platform and we
would like to add code coverage for XSLT code.
Unfortunately, there is a lack of code coverage
frameworks in the XML community since we could
only identify two code coverage tools (namely XSpec
and Cakupan), one of which requires patching at the
time of writing [18]. In addition, we plan to
increment and diversify the types of testing (e.g. more

unit tests, security tests, acceptance tests, etc.). Finally,
in order to avoid unnecessary stress on Jenkins and
SVN servers, we would like to replace the polling of
SVN via Jenkins with SVN hooks so that an SVN
commit will automatically trigger the tests execution.

• Deployment orchestration: the number of
containers increased steadily since we started to
deploy via Docker. Moreover, some containers are
linked and need to be started following a specific
sequence. We plan to orchestrate the deployment of
Docker container and there are several tools for this
task (e.g. Machine, Swarm, Compose/Fig).

5. Conclusion

In this paper we described how we set up a framework
based on continuous integration and automated
deployment for converting large amounts of XML and
RDF data. We discussed the build workflows and the
testing process and highlighted the benefits of
continuous integration in terms of code quality and
reuse, integration, and automation. We illustrated how
the deployment of system components was automated
using Docker containers. Finally, we discussed our most
recent work to improve the framework and identified
areas for further development related to availability,
scalability, monitoring, and testing.

In conclusion, we believe that continuous integration
and automatic deployment contributed to improve the
quality of our XML and RDF data as well as our code
and we plan to keep improving our workflows using
these software engineering practices.

6. Acknowledgements

The work described in this paper was carried out by a
team of developers at OUP. This team included Khalil
Ahmed, Nick Cross, Matt Kohl, and myself. I gratefully
acknowledge my colleagues for their precious and
professional work on this project.

Bibliography

[1] Oxford's Global Languages Initiative. OUP. Accessed: 8 May 2015.
http://www.oxforddictionaries.com/words/oxfordlanguage

[2] Matt Kohl, Sandro Cirulli, and Phil Gooch. From monolithic XML for print/web to lean XML for data: realising
linked data for dictionaries. In Conference Proceedings of XML London 2014. June 7-8, 2014.
doi:10.14337/XMLLondon14.Kohl01

[3] Martin Fowler. 2006. Continuous Integration. Accessed: 8 May 2015.
http://martinfowler.com/articles/continuousIntegration.html

Page 59 of 177

Continuous Integration for XML and RDF Data

http://www.oxforddictionaries.com/words/oxfordlanguage
http://dx.doi.org/10.14337/XMLLondon14.Kohl01
http://martinfowler.com/articles/continuousIntegration.html

[4] John Ferguson Smart. 2011. Jenkins - The Definitive Guide. O’Reilly Media, Inc.. Sebastopol, CA.
ISBN 978-1-449-30535-2.

[5] Jenkins CI. Jenkins. Accessed: 8 May 2015.
http://jenkins-ci.org

[6] ZeroTurnaround. 10 Kick-Ass Technologies Modern Developers Love. Accessed: 8 May 2015.
http://zeroturnaround.com/rebellabs/10-kick-ass-technologies-modern-developers-love/6

[7] Jenkins CI. Build Flow Plugin. Accessed: 8 May 2015.
https://wiki.jenkins-ci.org/display/JENKINS/Build+Flow+Plugin

[8] Jeni Tennison. XSpec - BDD Framework for XSLT. Accessed: 8 May 2015.
http://code.google.com/p/xspec

[9] Benoit Mercier. Including XSLT stylesheets testing in continuous integration process. In Proceedings of Balisage:
The Markup Conference 2011. Balisage Series on Markup Technologies. vol. 7. August 2-5, 2011.
doi:10.4242/BalisageVol7.Mercier01

[10] Jxsl - Java XSL code library. Accessed: 8 May 2015.
https://code.google.com/p/jxsl/

[11] Jeni Tennison. XSpec - Running with ant. Accessed: 8 May 2015.
https://code.google.com/p/xspec/wiki/RunningWithAnt

[12] Agile Knowledge Engineering and Semantic Web (AKSW). RDFUnit. Accessed: 8 May 2015.
http://aksw.org/Projects/RDFUnit.html

[13] Jostein Austvik Jacobsen. xprocspec - XProc testing tool. Accessed: 8 May 2015.
http://josteinaj.github.io/xprocspec/

[14] Docker. Docker. Accessed: 8 May 2015.
https://www.docker.com/whatisdocker/

[15] Russell Gold. 2008. HttpUnit. Accessed: 8 May 2015.
http://httpunit.sourceforge.net

[16] Michael T. Nygard. 2007. Release it! Design and Deploy Production-Ready Software. The Pragmatic
Programmers, LLC. Dallas, Texas - Raleigh, North Carolina.
ISBN 978-0978739218.

[17] Jenkins CI. Build Monitor Plugin. Accessed: 8 May 2015.
https://wiki.jenkins-ci.org/display/JENKINS/Build+Monitor+Plugin

[18] Google Groups. XSpec Coverage. Accessed: 8 May 2015.
https://groups.google.com/forum/#!topic/xspec-users/VRlCTR5KvIU

Page 60 of 177

Continuous Integration for XML and RDF Data

http://jenkins-ci.org
http://zeroturnaround.com/rebellabs/10-kick-ass-technologies-modern-developers-love/6
https://wiki.jenkins-ci.org/display/JENKINS/Build+Flow+Plugin
http://code.google.com/p/xspec
http://dx.doi.org/10.4242/BalisageVol7.Mercier01
https://code.google.com/p/jxsl/
https://code.google.com/p/xspec/wiki/RunningWithAnt
http://aksw.org/Projects/RDFUnit.html
http://josteinaj.github.io/xprocspec/
https://www.docker.com/whatisdocker/
http://httpunit.sourceforge.net
https://wiki.jenkins-ci.org/display/JENKINS/Build+Monitor+Plugin
https://groups.google.com/forum/#!topic/xspec-users/VRlCTR5KvIU

1 http://www.princexml.com
2 http://www.antennahouse.com
3 http://www.pdfreactor.com
4 https://github.com/fiduswriter/pagination.js (requires CSS Regions, previously known as BookJS)
5 https://github.com/fiduswriter/simplePagination.js (does not require CSS Regions, but has less features than Pagination.js)

Vivliostyle - Web browser based CSS
typesetting engine

How browser based typesetting systems can be made to work also for
printed media

Shinyu Murakami (村上真雄)

Vivliostyle Inc.
<murakami@vivliostyle.com>

Johannes Wilm

Vivliostyle Inc.
<johanneswilm@vivliostyle.com>

Abstract

All currently available typesetting systems and formats are
rather limited, and the integration between workflows
related to print are quite different than those related to web
publishing and ebooks.

In this article we argue that the best way forward to
unite the workflows is to focus on an HTML-centric
workflow, using CSS for styling, and leveraging the power of
browsers through the usage of Javascript for print-based
layouts.

The Vivliostyle project is working on a new typesetting
engine for the next phase of the digital publishing era in
which web, ebook and print publishing are unified. We seek
to demonstrate here that such a project is needed to bring the
three publishing workflows together.

Keywords: HTML, CSS, Page based media

1. Introduction

Publishing of long format text in 2015 usually takes
three different forms: print as a book, a version to be
used on the internet and possibly an ebook.

Ebooks are in most cases EPUB files. The textual
content of EPUBs is provided by files containing a
restricted version of Hyper Text Markup Language
(HTML), the same format used for web pages. The
styling of both web pages and EPUBs is defined through

Cascading Style Sheets (CSS). Converting content
between EPUBs and web pages is therefore not that
difficult.

In contrast, most print typesetting systems are using
quite different formats and standards than those for
ebooks and the web. The workflows from document
creation, through editing to final publication differ
considerably with different tools and different file
formats used. Publishing the same document for print,
web and ebooks is therefore difficult, especially for
documents that require updating after initial publication
as a change in oen fo the files needs to be propagated to
all other versions.

The simplest way to unify the publication processes is
to introduce HTML and CSS to the print publishing
process. Other projects that provide print processing
functionality using HTML/CSS already exist. Among
these are PrinceXML1, the Antenna House Formatter2,
PDFreactor3 or Pagination.js4 and SimplePagination.js5.

However, none of these solutions have been able to
establish themselves as the industry standard. In the
following, we will argue that all the existing solutions
have fundamental shortcomings and that the Vivliostyle
project is needed to effectuate a change to web
technologies in the print publishing industry.

doi:10.14337/XMLLondon15.Wilm01 Page 61 of 177

http://www.princexml.com
http://www.antennahouse.com
http://www.pdfreactor.com
https://github.com/fiduswriter/pagination.js
https://github.com/fiduswriter/simplePagination.js
mailto:murakami@vivliostyle.com
mailto:johanneswilm@vivliostyle.com

2. CSS Paged Media and the
limitations of current
implementations.

To style elements of pages (electronic or physical) there is
a CSS module called "CSS Paged Media" [1]. It is one of
several CSS modules defining styling elements needed to
make exact specifications in CSS for printed and paged
output. There are already several typesetting engines
supporting CSS Paged Media: The Antenna House
Formatter supports CSS as an alternative to XSL-FO,
and also PrinceXML supports it.

However, these proprietary and paid-for solutions
were never able to establish CSS Paged Media as a
standard neither for the web nor for their industry. Web
browsers have not implemented much of it, even though
they have provided features to print web pages and
convert to the Portable Document Format (PDF), the
file format most commonly used to ensure consistency in
print outputs. Even ebook systems, which show
individual pages on the screen, have not been very
concerned with implementing CSS Paged Media.

What is more, the formatters that do support CSS
Paged Media each have their own proprietary vendor
extensions that are not compatible with web browsers or
even each other.

Even though CSS Paged Media formatters are getting
acknowledgment in the XML publishing world, they are
therefore still far away from becoming mainstream tools
that are widely used.

3. Enhancing web browser's page
layout with JavaScript

An approach to try to bring page layout to web browsers
are Pagination.js and simplePagination.js, which use
Javascript in combination with CSS to draw pages. They

provide some of the features used for book printing such
as table of contents, running headers, page floats,
footnotes, word indexes, and margin notes.

However, they are limited to features of books, they
do not interpret CSS but take configuration options only
through Javascript function arguments, and they use
tricks to achieve their results in current browsers. The
usage of tricks means that they only currently work but
that this may not work for all future. For this reason they
may be usable for certain cases of print, but will not be
able to replace broader printing solutions.

4. Standardizing and implementing
next generation CSS standards

The Vivliostyle projects seeks to combine and enhance
both approaches: Use CSS standards and Javascript for
browser based implementations.

Vivliostyle seeks to work with the World Wide Web
Consortium (W3C) to enhance and promote
specifications such as CSS Paged Media and other related
specifications such as "CSS Page Floats" [2], working
with web browsers to work towards implementation of
these specifications in browsers.

Until such support is fully implemented in browsers,
Vivliostyle develops Vivliostyle.js, a polyfill which will
use Javascript to layout pages inside browsers, similar to
simplePagination.js and Pagination.js, but it will do so by
reading and interpreting the CSS that accompanies the
source files and it will provide for a broader usage field,
so that styling options can be defined through CSS and
will work for a broader usage field than just books.

Additionally, the Vivliostyle Formatter, a Command-
Line Interface (CLI) application, and the Vivliostyle
Browser, a Graphic User Interface (GUI) application, will
embed Vivliostyle.js to allow for PDF output of HTML/
XHTML and CSS source files to fit professional
publishing needs.

Bibliography

[1] Melinda Grant, Elika Etemad, Håkon Wium Lie, and Simon Sapin. CSS Paged Media Module Level 3. W3C
Working Draft. 14 March 2013. World Wide Web Consortium (W3C).
http://www.w3.org/TR/css3-page/

[2] Johannes Wilm. CSS Page Floats. Editor’s Draft. 7 April 2015. World Wide Web Consortium (W3C).
http://dev.w3.org/csswg/css-page-floats/

Page 62 of 177

Vivliostyle - Web browser based CSS typesetting engine

http://www.w3.org/TR/css3-page/
http://dev.w3.org/csswg/css-page-floats/

Magic URLs in an XML Universe
George Bina

Syncro Soft / oXygen XML Editor
<george@oxygenxml.com>

Abstract

XML is an ideal format for structured content but we need
to accept that are also other formats that can encode
information in a structured way. We can try to get everyone
to use XML but that may not be always possible for various
reasons. Now it is possible to dynamically unify different
formats by converting all content to XML simply by pointing
to that content though a "magic" URL that performs this
conversion on the fly.

We experimented with creating URLs to convert from
various formats to XML, including Java classes and JavaDoc
files, Excel and Google Sheet spreadsheets, Markdown and
HTML, CSV files, etc. A major advantage of this approach
is that it works immediately with any URL-aware
application and allows to extend single source publishing
across formats in a transparent way.

Keywords: XML, dynamic conversion, URL, DITA,
Markdown, Excel, CSV, SVG, HTML, Java, Javadoc

1. The problem

If you need to write a tutorial for an SDK in DITA, then
there is already some information available inside the
source code - let's consider that to be Java in this example
- so we can have comments inside the Java source code
describing different methods or fields from each Java
class, return values, possible exceptions and so on. It is
not easy to reuse this information outside the basic copy
and paste type of reuse. One possibility will be to
generate JavaDoc documentation and link to that from
DITA, but then again, any reference inside the DITA
code, like the syntax for a method needs to be recoded
and duplicated in DITA.

This problem appears also if you receive a spreadsheet
from accounting and you need to use that information in
a solution proposal and in many other situations.

It is not possible to have developers write in DITA,
the Javadoc documentation is needed to work within
IDEs, when a user tries to insert a method they will be
assisted by the IDE showing the description of that
method. So, it is not possible in the real word to have a
single common language for everything, we need to

accept that there are multiple formats for information
available and we need to look into possibilities to make
them work easily together.

2. The idea

If we look more closely, it is not the actual format, but
the degree of structure that matters, if we want to be able
to process information. And Java source code with its
comments is a very structured language so it can be
reliably converted automatically to a different format.

In general, any reference to a resource is done though
a URL. For example, an HTTP URL has the following
format:

1 http://user:password@www.example.com/path/to/
 file.ext?param1=val1¶m2=val2

where we can identify

http
The URL scheme / access protocol

user:password
Credentials

www.example.com
Server location

path/to/file.ext
Resource path

param1=val1¶m2=val2
Parameters with some specified values

Even in the case of an HTTP URL, the resource part
may not represent what it is actually returned when the
URL is read, the resource may be a script that does some
processing, depending on the suplied parameters. Other
example URLs:
• file:/path/to/file.dita

• http://server/cgi?file=file.dita

• https://server/path/to/file.dita

• ftp://server/path/to/file.dita

• zip:URL!/path/to/file.dita

In general, the URL has a URL scheme or protocol and
the rest of the URL is protocol dependent. As we can see
in the zip URL example, the rest of the URL may
contain also another URL and in this case it is clear that

doi:10.14337/XMLLondon15.Bina01 Page 63 of 177

mailto:george@oxygenxml.com

the access to a resource does not imply only reading the
content of that resource and returning it, in this case the
resource is extracted from the ZIP archive, so a
conversion process takes place from the ZIP encoded
form.

Because all references to resources are done though
URLs and URLs can encode information and decode
that when reading, we can think for example that a Java
class encodes a DITA topic and when we read that
though a java2dita URL, we get back the DITA topic.

3. URLs in Java

Java has a pluggable system for URL support, one can
register a URL handler for a URL scheme, that is a Java
class that implements a specific interface, and that Java
class handles the parsing of the URL syntax for that URL
scheme/protocol as well as how content should be read
from or written to that resource.

Thus, if we register a URL handler class that can
convert from Java to DITA for the java2dita URL
scheme, then we can use URLs starting with java2dita:/
to point to a Java class and when we read from that URL,
the control will be given to our registered URL handler
that will provide a stream from where DITA content will
be read, representing the dynamic conversion of the Java
source code to a DITA topic.

The same can be imagined for any type of conversion
from one format to another - as long as there is enough
structural information to have this conversion possible in
an automatic way.

But, instead of registering a protocol scheme for each
conversion we can also register a single URL scheme,
convert, and use the syntax of the convert URLs to
control the actual conversion process.

4. The convert URLs

We define the convert URLs to have the following
syntax:

1 convert:/pipelineStepN/.../pipelineStep1!/
 targetContentURL

Figure 1. Simple conversion pipeline

where we can identify

convert
The URL scheme / protocol

pipelineStepN
Information for the conversion step N, applied on
the output of conversion step N-1

…
and so on …

pipelineStep1
Information for the first conversion step, applied
on the target URL

targetContentURL
A URL pointing to a resource whose content will
be passed though the conversion pipeline formed
by the conversion steps

This allows us to apply different conversion steps on a
resource, also identified by a URL, the target URL, and
the result when the convert URL is read will be the
dynamic conversion of the resource content though the
specified conversion steps.

We can generalize this to support also writing, that
happens when we change the content of the URL and we
want to save. For that we can specify also a reverse
pipeline, with similar conversion steps as the pipeline
that converts from the target URL but this time the
conversions are performed in the other direction, from
the URL content to the target URL. The content to be
saved will be the input of the first reverse step, and so on,
and the output of the last reverse step will be the new
content of the target URL.

1 convert:/reverseStep1/.../reverseStepM/pipeline
 StepN/.../pipelineStep1!/targetContentURL

Figure 2. Complete conversion pipeline

Using such a URL we can transparently round-trip from
one format to another, from the target URL format to
our URL format and back.

Each pipeline step starts with
processor=processingStep if it is a step representing part
of the direct conversion pipeline and with
rprocessor=processingStep if it is a conversion step part
of the reverse conversion pipeline. This is followed by
parameters specific to that processing step, specified as
paramName=paramValue and separated by ; as separator
character.

Page 64 of 177

Magic URLs in an XML Universe

To proof this concept, we implemented a Java URL
handler for the convert protocol and as basic processing
steps we implemented:
• XSLT
• XQuery
• Java
• JavaScript
• Excel to XML
• JSON to XML
• HTML to XHTML
• Wrap text into an XML element

4.1. XSLT conversion step

The XSLT conversion step allows to apply an XSLT
stylesheet on the input and send the result of the XSLT
processing to the output. The processor name is xslt and
as parameters we have:

ss
This identifies the XSLT stylesheet to be applied
on the input

[any other parameter name]
Optional parameters can be specified other than
ss, they will be transmitted as XSLT parameters to
the XSLT stylesheet

Example 1. Sample XSLT step

processor=xslt;ss=urn:processors:convert.xsl;p1=v1

This specifies that the XSLT stylesheet identified by
urn:processors:convert.xsl should be applied on the
input received by this processing step and the result of
the transformation should go to the output, either as the
result of the convert URL, in case this is the last step of a
direct conversion pipeline or as the result of the target
URL, if this is the last step of a reverse conversion
pipeline, or to the input of the next step in the pipeline.
A parameter with the name p1 will be set for the
transformation and it will have the value v1.

4.2. XQuery conversion step

The XQuery conversion step is similar to the XSLT one,
but it allows to apply an XQuery script on the input
instead of an XLST script. The processing name is xquery
and as parameters we have:

ss
This identifies the XQuery script to be applied on
the input

[any other parameter name]
Optional parameters can be specified other than
ss, they will be transmitted as parameters to the
XQuery script

Example 2. Sample XQuery step

1 processor=xquery;ss=urn:processors:convert.
 xquery;p1=v1

This specifies that the XQuery script identified by
urn:processors:convert.xquery should be applied on
the input received by this processing step and the result
of the XQuery execution should go to the output. A
parameter with the name p1 will be set for the
transformation to the value v1.

4.3. Java conversion step

The Java conversion step allows to apply processing
specified in a Java class on the input and the result of the
Java processing will be sent to the output. The processing
name is java and as parameters we have

jars
A comma separated list of libraries that will be
added to the class path

ccn
Identifies the conversion class name, as a fully
qualified Java class name

[any other parameter name]
Optional parameters can be specified other than
jars and ccn, they will be transmitted as properties
for the Java conversion

The conversion class needs to have a constructor without
parameters and a method with the following signature:

public void convert(
 String systemID,
 String originalSourceSystemID,
 InputStream is,
 OutputStream os,
 LinkedHashMap<String, String> properties)
throws IOException

Example 3. Sample Java step

1 processor=java;jars=urn:processors:jars;
 ccn=j.to.xml.JavaToXML

This specifies that the Java class j.to.xml.JavaToXML will
be applied for the conversion process, and that the folder
identified by urn:processors:jars will be added to the
class path.

Page 65 of 177

Magic URLs in an XML Universe

4.4. JavaScript conversion step

The JavaScript conversion step allows to apply processing
specified in a JavaScript method on the input and the
result of the processing will be sent to the output. The
processing name is js and as parameters we have

js
Points to the JavaScript file

fn
Identifies the method name that should be
invoked for conversion, method that must take a
string as an argument and return a string

Example 4. Sample JavaScript step

1 processor=js;js=urn:processors:md.js;
 fn=convertExternal

This specifies that the JavaScript method
convertExternal from the urn:processors:md.js script
file will be applied for the conversion process.

4.5. Excel to XML conversion step

The Excel conversion step converts an excel sheet to an
XML form that can then be easily processed further with
XSLT towards your desired final format. The processing
name is excel and as parameter we have

sn
This identifies the sheet name

Example 5. Sample XSLT step

processor=excel;sn=test

This specifies that the sheet with the name test should be
converted to XML.

4.6. JSON to XML conversion step

The JSON conversion step converts JSON to XML. The
processing name is json and it does not have any
parameters.

Example 6. Sample JSON step

processor=json

4.7. HTML to XHTML conversion step

The HTML conversion step converts HTML to
XHTML. The processing name is xhtml and it does not
have any parameters.This is a very useful conversion step

as it allows us to process HTML content further with
XSLT and XQuery.

Example 7. Sample HTML conversion to XHTML
step
processor=xhtml

4.8. Wrap text conversion step

The wrap conversion steps helps putting an XML tag
around text content so it can be further processed with
XML-aware processing steps, like XSLT and XQuery.
The processing name is wrap and as parameter we have

rn
Optional, specifies the root name, by default that
will be wrapper.

This is useful if we want to take advantage of the RexExp
support in XSLT 2.0 for example in a following
conversion step.

Example 8. Sample wrap step
processor=wrapThis specifies that the input should be
placed within an XML element called wrapper (the
default element name).

5. URL aliases

Using an XML catalog we can easily implement simple
aliases for a more complex convert protocol syntax. For
example with a mapping like in the following code
fragment we can simplify the URL syntax to the point
that authors can just type it in:

1 <rewriteURI uriStartString="excel2dita:/"
2 rewritePrefix="convert:/processor=xslt;ss=urn:pr
 ocessors:e2d.xsl/processor=excel;sn=sample!/"/>

This allows us to write a convert URL that bundles
together multiple processing steps, and maybe also
reverse processing steps, in case of a URL supporting
round-tripping, as a single new protocol followed by a
pointer to the target resource:

Example 9. Short URL for Excel to DITA conversion
excel2dita:/urn:files:sample.xls

The XML Catalog can be also used to define URN
names pointing to different locations where we have files
used in these URLs either as target files or files used in
the conversion processes:

1 <rewriteURI uriStartString="urn:files:"
2 rewritePrefix="resources/"/>
3 <rewriteURI uriStartString="urn:processors:"
4 rewritePrefix="processors/"/>

Page 66 of 177

Magic URLs in an XML Universe

6. Sample conversion pipelines

Here we have a few sample conversion pipelines that can
be assembled as convert URLs and used though an alias.
These cover some common use cases.

6.1. Excel to DITA

We apply two processing steps, Excel to XML using the
excel processing step and XML to DITA topic using the
xslt processing step:

1 convert:/proc=xslt;ss=excel2d.xsl/proc=excel;
 sn=sample!/urn:files/sample.xls

By defining excel2dita as alias for

1 convert:/proc=xslt;ss=excel2d.xsl/proc=excel;
 sn=sample!

we will be able to write the same URL as:

excel2dita:/urn:files/sample.xls

This allows us to reuse as DITA tables the spreadsheet
tables and we can take advantage of the computations
automatically done in Excel. Also, we have true single
sourcing, if the spreadsheet file changes we automatically
see the changes in our DITA content.

6.2. Google Sheets to DITA

Google sheets allows to access a spreadsheet content as
HTML, so we can apply an HTML to XHTML
conversion using the xhtml processing step and then use
two XSLT stylesheets though xslt steps to filter the
information that we want to convert to DITA and to
transform that to a DITA topic.

By defining as alias for

1 convert:/processor=xslt;ss=urn:processors:h2d.x
 sl/processor=xslt;ss=urn:processors:googleSheet
 s2dita.xsl/processor=xhtml!/

the gs2dita:/ prefix, we can easily express URLs that
bring Google sheets as DITA just by specifying the target
URL after this prefix

1 gs2dita:/https://docs.google.com/spreadsheets/
 d/[...docid...]/edit?usp=sharing

This provides a very simple way to enable people to
collaborate on creating the table information, using the
Google Drive shared editing functionality and being able
to include the up-to-date information automatically in a
DITA processing workflow.

6.3. HTML to DITA

This is a more generic conversion, as we do not make any
assumptions on the HTML input. We accomplish this
with two processing steps, the first will convert HTML
to XHTML using the xhtml processor, and then we use
the xslt processor to apply an XHTML to DITA
conversion.

An example URL looks like this

1 convert:/proc=xslt;ss=h2d.xsl/proc=xhtml!/urn:f
 iles/care.html

But it can be reduced to

html2dita:/urn:files/care.html

by defining an alias in the XML Catalog.

6.4. Markdown to DITA

Markdown source files can be already available from
developers and it may be useful to be able to include
them in your DITA workflow. We can setup a pipeline
that converts Markdown to HTML using JavaScript,
HTML to XHTML and then XHTML to DITA using
XSLT. A full convert URL with these pipeline steps like
this

1 convert:/processor=xslt;ss=urn:processors:h2d.x
 sl/processor=xhtml/processor=js;js=urn:processo
 rs:pagedown%2FMarkdown.Converter.js;fn=convertE
 xternal!/urn:files/sample.md

can be shortened to md2dita:/urn:files/sample.md using
an XML Catalog to define an alias for the more complex
convert URL.

6.5. XML Schema to DITA

XML Schema to DITA topic can be easily converted
though XSLT, so we can package that as a convert URL
like

1 convert:/processor=xslt;ss=urn:proc:xsdToTopic.
 xsl!/urn:files/personal.xsd

or in the short form it can be xsd2dita:/urn:files/
personal.xsd. This allows to easily integrate basic XML
Schema documentation into a DITA-based project.

6.6. Java to DITA

Back to our initial problem, API documentation, we can
get Java source code to DITA using a processing pipeline
that converts the Java source to an XML format using

Page 67 of 177

Magic URLs in an XML Universe

some processing implemented in a Java class, then we
convert to DITA using XSLT.

1 convert:/processor=xslt;ss=urn:processors:javaT
 oTopic.xsl/processor=java;jars=urn:processors:j
 ars;ccn=j.to.xml.JavaToXML!/urn:files:WSAuthorE
 ditorPage.java

with the equivalent short form

java2dita:/urn:files:WSAuthorEditorPage.java

6.7. Javadoc to DITA

JavaDoc does more processing and records additional
information about Java components, for example it can
contain information about where a component is used so
it may be interesting to have also this information
available from DITA. Because JavaDoc is HTML, we can
setup a conversion pipeline that normalizes the HTML
to XHTML, then converts XHTML to DITA:

1 convert:/proc=xslt;ss=urn:proc:jdToTopic.xsl/
 proc=xhtml/!/urn:files:ButtonEditor.html

or the short form
javadoc2dita:/urn:files:ButtonEditor.html

Publish DITA conversion of Javadoc to PDF

6.8. Custom XML to SVG

If we have a set of values in an XML file, we can easily
get them as a graphic, by generating an SVG as a convert
URL

1 convert:/processor=xslt;ss=urn:processors:sales
 .xsl!/urn:files:sales.xml

Using this method we can publish graphs which
dynamically change depending on the values found in
the original source.

6.9. DITA Map to Schematron

Another interesting example is related to an intelligent
style guide, that encodes business rules within the style
guide prose. By default a transformation converts that to
Schematron, but instead of that we can just point to the
style guide through a magic URL that will bring a
Schematron schema.

6.10. Round-tripping CSV to DITA and back

For CSV we implement round-tripping by providing
both a direct conversion pipeline, from CSV to DITA

and a reverse conversion pipeline, from a DITA topic to
a CSV file. We then add a mapping in the catalog to be
able to refer to these convert URLs though a simple
csv2dita protocol:

1 <rewriteURI uriStartString="csv2dita:/"
 rewritePrefix="convert:/rprocessor=xslt;ss=urn
 :processors:dita2csv.xsl/processor=xslt;ss=urn:p
 rocessors:csvtext2dita.xsl/processor=wrap!/"/>

When a CSV file is read through a csv2dita URL, the
processing applied is a wrapping of the CSV in and XML
element done with the wrap processor and then that is
passed though the csvtext2dita.xsl stylesheet which
will return a DITA topic containing a table with all the
CSV data. When the resource is saved, the reverse
conversion pipeline is executed, the content of the DITA
document being sent to the dita2csv.xsl stylesheet and
the output of this transformation will be stored in the
CSV file.

The round-tripping support can be very useful also to
edit a document as a slightly different version in terms of
markup, allowing basically to perform a transformation
before editing and a transformation before saving. For
example, if a document makes havy use of attributes,
these can be transformed to elements when the
document is read and then, after it is changed, when the
document is about to be saved, the elements representing
atribute information will be transformed back to
attributes.

7. Conclusions

The idea of using URLs to dynamically convert content
back and forth between different formats is very simple
and in the same time very powerful. It seamlessly brings
together different formats in a single publishing
framework, and allows any processing flow based on
URLs to automatically handle the references to resources
that otherwise were incompatible to the supported
format.

This is a generic approach that allows to make any
type of automatic conversion dynamic, allowing us to
implement true single sourcing across multiple formats.

The DITA specific examples mentioned here are
made available also in a project published on GitHub at
https://github.com/oxygenxml/dita-glass

so you can experiment with these type of conversions or
use them as a starting point if you want to try your own
ideas.

Page 68 of 177

Magic URLs in an XML Universe

A rendering language for RDF
Fabio Labella

The University of Edinburgh

NCR Corporation

Henry S. Thompson

The University of Edinburgh

Abstract

Since RDF is primarily intended to be processed by
machines, there is a need for a technology to render it into
human readable (HTML) content, similarly to what XSLT
does for XML. This is made hard, however, by the high
syntactic variability of RDF serialisations, that allows the
same graph to be expressed in many different ways.

In this paper we propose an approach, called just-in-
time reflection, that allows the application of normal XSLT
stylesheets directly to RDF graphs. It follows that the
transformation does not depend on any particular
serialisation format: stylesheets can be written in terms of
RDF's abstract syntax.

1. Introduction

With the increasing adoption of RDF comes the need for
transforming RDF graphs into a human readable format
like HTML. While XML has a core technology, XSLT,
devoted to it, a similar tool is sorely missing for RDF.
Let's take for example the simple graph represented in
Figure 1. We might like to be able to transform it into an
HTML output like the one in Figure 2, with the
constraints that it must be possible to express the
transformation declaratively, and that the result should
not depend on the particular serialisation syntax which
was used to create the RDF graph at hand.

Figure 1. A simple RDF graph representation. The
predicate names have been left blank for simplicity

Figure 2. A possible HTML output.

Connections for Dave
Charlie
Alice
Bob

Connections for Charlie
Alice
Dave
Bob

Connections for Alice
Dave
Charlie
Bob

Connections for Bob
Charlie
Alice
Dave

We call this transformation process rendering, and offer
the following contributions:
• We propose an approach, called just-in-time reflection,

that provides access to RDF data, originating from
any format, via XPath expressions (See Section 3,
“Just-in-time reflection”).

• We design a normal form that allows the stylesheet to
be written against RDF's abstract syntax, without
having to know the details of any particular concrete
syntax (See Section 4, “Normal form design”).

doi:10.14337/XMLLondon15.Labella01 Page 69 of 177

• We present an enhanced XSLT processor that uses
just-in-time reflection to give standard XSLT
stylesheets access to RDF graphs via the XPath data

model. This processor implements all the XPath axes
and can be used to transform any RDF graph (See
Section 5, “An XSLT engine for RDF Graphs”).

2. Rendering RDF

Figure 3. Different representations of the same RDF graph [AKKP08]

Table of Contents
1. Introduction
2. Lifting and Lowering
3. Starting Points: XQuery and SPARQL

3.1. XQuery
3.2. SPARQL

4. XSPARQL
4.1. Syntax
4.2. Comments

5. References

1. Introduction
There is a gap within the Web of data: on the one hand, XML provides a popular format for data
exchange with a rapidly increasing amount of semi-structured data available online. On the other hand,
the Semantic Web builds on data represented in RDF, which is optimized for data interlinking and
merging; the amount of RDF data published on the Web is also increasing. Therefore, the reuse of XML
data in the RDF world and vice versa is becoming increasingly important. However, with currently
available tools and languages, translating between XML and RDF is not a simple task.

The importance of this issue is currently being acknowledged within the W3C in several efforts. The
Gleaning Resource Descriptions from Dialects of Languages [GRDDL] (GRDDL) working group faces the
issue of extracting RDF data out of existing (X)HTML Web pages. In the Semantic Web Services
community, RDF-based client software needs to communicate with XML-based Web services, thus it
needs to perform transformations between its RDF data and the XML messages that are exchanged with
the Web services. The Semantic Annotations for WSDL (SAWSDL) working group calls these
transformations lifting and lowering (see [SAWSDL]). Both these groups propose solutions which rely on
XSL transformations (XSLT) [XSLT20] or - more recently - XQuery [XQUERY] for translating between
RDF/XML [RDFXML] and the respective other XML format at hand. Using XSLT or XQuery for handling
RDF data is greatly complicated by the f exibility of the RDF/XML format. XSLT and XPath [XPATH20]
were optimized to handle XML data with a simple and known hierarchical structure, whereas RDF is
conceptually different, abstracting away from f xed, tree-like structures. In fact, RDF/XML provides a lot of
f exibility in how one and the same RDF graph can be serialized. Thus, processors that handle RDF/XML
as XML data (not as a set of triples) need to take different possible representations into account when
looking for pieces of data. This is best illustrated by a concrete example: Figure 1 shows four
representations of the same RDF graph using the FOAF vocabulary (cf. http://www.foaf-project.org). The
f rst version uses Turtle [TURTLE], a simple and readable textual syntax for RDF, inaccessible to pure
XML processing tools though; the other three versions are all RDF/XML, ranging from concise (b) to
verbose (d). Apart from the shown formats, yet another representation for RDF within HTML and XHTML
documents, namely RDFa [RDFa] is completing the portfolio of possible representations for RDF.

Figure 1: Different representations of the same RDF graph
@prefix alice: <alice/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

alice:me a foaf:Person.
alice:me foaf:knows _:c.
_:c a foaf:Person.
_:c foaf:name "Charles".

<rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<foaf:Person rdf:about="alice/me">
<foaf:knows>

<foaf:Person foaf:name="Charles"/>
</foaf:knows>

</foaf:Person>
</rdf:RDF>

(a) (b)

<rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:nodeID="x">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<foaf:name>Charles</foaf:name>

</rdf:Description>
<rdf:Description rdf:about="alice/me">

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<foaf:knows rdf:nodeID="x"/>

</rdf:Description>
</rdf:RDF>

<rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="alice/me">
<foaf:knows rdf:nodeID="x"/>

</rdf:Description>
<rdf:Description rdf:about="alice/me">

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
</rdf:Description>
<rdf:Description rdf:nodeID="x">

<foaf:name>Charles</foaf:name>
</rdf:Description>
<rdf:Description rdf:nodeID="x">

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
</rdf:Description>

</rdf:RDF>

(c) (d)

The three RDF/XML variants in Figure 1 look very different to XML tools, yet exactly the same to RDF
tools. For any variant we could create simple XPath expressions that extract for instance the names of
The RDF specification [CWL14] defines an abstract
syntax where RDF datasets, composed of triples of the
form subject-predicate-object, have a natural
representation as a directed graph.

However, the actual form RDF documents take is
entirely dependant on the serialisation format used: as an
example, Figure 3, “Different representations of the same
RDF graph [AKKP08]” shows the same graph in Turtle
(a), and different flavours of RDF/XML. Path-based
query languages can be easily extended to fit RDF's
graph-based data model, making XSLT an attractive
candidate to solve the RDF rendering problem.

In contrast, attempting to render generic RDF via
XSLT stylesheets targetting RDF/XML directly has
serious drawbacks:
• it would not apply to non-XML formats directly,

whereas the general trend seems to move away from
RDF/XML in favour of simpler formats, especially
Turtle.

• RDF/XML itself is highly flexible (Figure 3,
“Different representations of the same RDF graph
[AKKP08]”), allowing the same graph to be serialised
in several different ways.

• That very flexibility means there is no standard
approach to re-serialising graphs independently of
their original format (if any).

An apparently more serious problem lies in the mismatch
between XPath's tree-based data model and RDF's

graph-based data model, which means that is not
possible, in general, to serialise an RDF graph trivially
into XML in a way that is compatible with path-based
traversal.

Alternative XML formats such as TriX [CS04] have
been designed specifically to be compatible with XSLT,
but, in order to ensure predictability, they move away
from a graph-based encoding of RDF, opting instead to
represent it as a collection of statements, which seems
more suitable for a pattern matching query language.

For these reasons, currently the only available
solution to the rendering problem consists in processing
RDF using native engines, since they are oblivious of the
input format and work directly in terms of the abstract
syntax. This obviously means that for every
transformation custom code must be written to select the
appropriate RDF data and generate the desired HTML
output. Moreover, the semantics of these engines are
usually modelled after SPARQL, and are based on
pattern matching instead of path traversal.

3. Just-in-time reflection

The starting point for this work was a paper by
Thompson et al. [TKC03], which proposed an approach,
called just-in-time reflection, to access XML Infosets and
their extensions from XPath.

Page 70 of 177

A rendering language for RDF

1 Technically, a graph could be consistently encoded in standard XML by using only IDREF attributes to represent edges (see Layman
Normal Form [Tho01]), but this would make path expressions hard to write.

The main contribution of our paper is that the same
approach can be applied successfully to RDF: this section
will hence explain what is meant by just-in-time reflection,
and how it can turn XSLT into a syntax-unaware RDF
processor.

3.1. Static reflection

Thompson et al. [TKC03] defined reflection as " a process
whereby a syntactic form in some language, in our case
XML, is analysed and represented in some underlying data
model, in our case the XML Infoset, and then the
constituents of that representation are themselves expressed
using the same syntactic form, in our case XML once
again.". Adapting this definition to RDF, reflecting
means that the underlying graph is derived from an
RDF/XML serialisation, and then serialised once again in
XML.

Listings Figure 4, “Three different serialisations of the
same RDF statement” and Figure 6 and Figure 5 show
the process of reflecting the statement "Alice is a person",
bearing in mind however, that in this paper the concept
of reflection is used more loosely, for the resulting XML
is not necessarily the reflection of an RDF/XML input,
since the graph it processes can be derived from any RDF
format.

Figure 4. Three different serialisations of the same
RDF statement

TURTLE:

alice:me a foaf:Person .

RDF/XML - ABBREV:

<foaf:Person rdf:about="alice/me"/>

RDF/XML:

<rdf:Description rdf:about="alice/me">
 <rdf:type
 rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
</rdf:Description>

Figure 5. The underlying graph

Figure 6. A possible reflection

<alice:me>
 <rdf:type>
 <foaf:Person>

In our approach the reflection is generated from an RDF
data model exploiting a generic RDF engine, and then
fed to XSLT using extension functions, a native
mechanism to call external functions, written in another
programming language, from any stylesheet. As a result,
path expressions are evaluated against the reflection
instead of the original file, meaning that:
• XSLT can work with different input formats, not

necessarily XML-based.
• Syntactic variability, the single greatest obstacle to

RDF processing with XSLT, is eliminated, provided
that the reflection is expressed in a normal form.

3.2. Generating reflections dynamically

As its name would suggest, a just-in-time reflection differs
from a mere normalisation in that it is not the result of
preprocessing the input data, but is instead generated
dynamically when evaluating a path expression.

More specifically, the system evaluates a path
expression one step at the time, interprets it according to
the normal form used, and returns a nodeset populated
by querying the RDF engine to retrieve the appropriate
resources. Therefore, even though the XSLT processor
behaves as if it were operating on a physical XML file
encoding the reflection of an RDF graph, with this
approach no actual serialisation is needed, which is a
significant advantage over a simple normalisation.

In fact, the complexity of RDF/XML stems from the
mismatch between the graph structure of RDF and the
tree structure of XML, for a graph in the general case is
not constrained to be acyclic, rooted or connected. Since
the edges that violate the aforementioned constraints
cannot be encoded directly into the structure of XML
[Wal03], different approaches to represent them lead to
high syntactic flexibility, which makes RDF/XML very
unfit for XSLT processing1.

On the other hand, when serialisation is not required,
it becomes much easier to devise a normal form to model
closely RDF's abstract syntax, rendering path expressions
straightforward to write. Let's consider for instance the
cyclic graph described by the statement "Alice knows
Bob and Bob knows Alice", which can be encoded as in
Listing Figure 7, “Simple representation of a cyclic
graph”, that is:

Page 71 of 177

A rendering language for RDF

Figure 7. Simple representation of a cyclic graph

 <alice:me>
 <foaf:knows>
 <bob:me>
 <foaf:knows>
 <alice:me>
 <foaf:knows>
 <bob:me>
 <foaf:knows>
 ...
 </foaf:knows>
 </bob:me>
 </foaf:knows>
 </alice:me>
 </foaf:knows>
 </bob:me>
 </foaf:knows>
 </alice:me>

This normal form is very easy to query, but results in an
infinitely deep tree and is hence impossible to serialise:
using just-in-time reflection, however, one can write a
path expression for this normal form, leaving to the
system the synthesis of the appropriate result nodeset
(whose elements are retrieved using any generic RDF
engine's basic navigation capabilities), as if such a
serialisation could exist and be manipulated by XSLT.

Problems only arise when querying along the
descendant axis, since a recursive depth-first search of the
tree would be performed, leading to non-termination
(because the system tries to reflect the same structure
infinitely often). To solve this problem, the reflection
generator must then be equipped with a cycle detection
algorithm, so that when the same node is visited twice
with an unchanged path expression, the search stops
exploring that branch, avoiding infinite recursion.

4. Normal form design

The just-in-time reflection approach effectively overcomes
the limitations of XSLT with respect to the variability in
the concrete syntax of RDF, but it is not sufficient to
ensure that is possible to work directly with the graph-
based data model. In fact, the normal form used for the
reflection is crucial for that purpose, for it must strive to
model closely RDF's abstract syntax, so that one can
easily write a path expression given only knowledge of
the structure of the graph.

Before discussing the design of the normal form we
used, it's necessary to clarify what we exactly mean by
"normal form". Thompson [Tho01] distinguished two
uses of the term: one concrete, to refer to a
representation of a dataset in XML, and one abstract, to
refer to "a set of principles for constructing and/or
interpreting concrete normal forms".

We use "normal form" here in the latter sense, since
it represents a set of rules by which the system interprets
path expressions in order to construct a result nodeset,
rather than a concrete XML encoding, as discussed
above.

The original work on reflection [TKC03] proposed
the so-called Edinburgh Normal Form as a suitable
representation for reflected Post Schema-Validation
Infosets (PSVIs). Due to its blend of simplicity and
conciseness, it was chosen as the starting point for the
one used here, although some changes were necessary to
adapt it to RDF.

This section lays out the rules that define what we are
calling, showing a remarkable lack in imagination,
Edinburgh Normal Form for RDF (ENFR).

4.1. Resources

RDF resources are encoded using XML elements, named
after the resource's QName, or its full URI if no QName
is available. It was decided not to use rdf:resource,
rdf:Description etc., since they are not directly
concerned with the RDF model, but appear to be details
of RDF/XML that make the resulting syntax less human-
friendly.

4.2. Predicates

To reduce verbosity, the representation for predicates is
different depending on whether the object of a statement
is a resource or a literal.

4.2.1. Resource-valued properties

Borrowing from Alternating Normal Form [Tho01],
triples whose object is a resource are represented by
nesting alternately elements representing nodes and
elements representing edges, as shown in Listing
Figure 7, “Simple representation of a cyclic graph”. Path
expressions would then take the form:

subject/predicate/object/predicate/object/...

so that, given the Turtle statements:

Alice:me foaf:knows Bob:me .
Bob:me foaf:knows Charlie:me .

Charlie can be accessed, assuming that Alice is the root
of the reflection, using the expression:

Alice:me/foaf:knows/Bob:me/foaf:knows/Charlie:me.

Page 72 of 177

A rendering language for RDF

1 Technically, it has a parent: the Document node, but this makes no difference in this context since the document is generated on
demand via reflection, starting from the root node.

2 \.. is a short form for \parent::*.

Several strategies are possible for representing two
properties with the same name and different objects: the
one chosen here is to have the two properties as two
different children of the subject element, so as to
guarantee that each property element has exactly one
child. This restriction is more faithful to RDF's data
model, where properties are required to be binary.

4.2.2. Literal-valued properties

Expressions of the form outlined above are desirable as
they model paths through a graph in a very intuitive
manner, but they are unnecessarily verbose when dealing
with literals. Since literals in RDF can only appear in the
object position of a triple, they ought to never have
children in ENFR, and can thus be represented using
attributes, in order to shorten path expression involving
them. This choice, however, has some drawbacks:
• The result is undefined when two properties have the

same name and they both have literal values, however
this appears to be pretty rare.

• Datatypes for literals are not easily supported, as XML
attributes cannot have attributes themselves. This
could be addressed by the use of XML Schema
datatypes, but we will not explore this option here.

It's important to stress, however, that these are
shortcomings of the normal form, and they are not
intrinsic in using a just-in-time reflection. In fact, they
could both be overcome, at the price of verbosity, by
using Alternating Normal Form.

Furthermore, since the implementation is based on
extension functions, one may choose the most
appropriate normal form on demand by calling the
corresponding extension function. Since time constraints
limited the implementation to one normal form, ENFR
seemed more useful for the majority of cases.

4.3. Multiple roots

In general, a graph is not rooted, hence one may start
navigating through it starting from any node. For this
reason a reflection expressed in Edinburgh Normal Form
has multiple roots, one for each subject in the graph, but
this is a strength rather than a weakness, since we are
generating a reflection dynamically instead of serialising.

However, since a root node, by definition, has no
parent 1, one cannot access properties having the root as
their object using the parent axis: if one wants to do so,
one has to choose a different starting node to act as the
root.

4.4. The parent and ancestor
axis:backtracking

Since an XML document is modelled as a rooted tree,
every element has at most one parent node. This
constraint is of course violated by an RDF graph, since a
node can be the object of multiple statements, as in
Figure 8, “The parent axis carries problems with directed
non rooted graphs.”.

To understand the exact behaviour of our
implementation of the parent axis given this, one must
consider how nodes are generated by the reflection
process: they can either be returned by an extension
function to act as the root of a reflection, or reflected
during the evaluation of a path expression. We 'solve' the
parent axis problem by implementing it to backtrack one
step along the path that led to the creation of the current
node, returning the empty nodeset in case of a root node.

Figure 8. The parent axis carries problems with
directed non rooted graphs.

Alice:me Bob:me

Charlie:me

Dave:me

foaf:knows foaf:knows

foaf:knows

Taking the graph in Figure 8, “The parent axis carries
problems with directed non rooted graphs.” as an
example, let's consider the following expressions 2, where
the node following reflect() is the root of the reflection:

reflect()/Alice:me/..

returns the empty nodeset.

reflect()/Alice:me/foaf:knows/Charlie:me/../..

returns Alice:me.

reflect()/Bob:me/foaf:knows/Charlie:me/../..

returns Bob:me.

Page 73 of 177

A rendering language for RDF

Therefore, unlike in XML, the parent axis is path-
dependant, meaning that the ancestors of a node are all
the nodes visited in the evaluation of the current path
that are reachable via the parent access. It follows that
one can trace back from a node to the root used to
evaluate the expression that generated it by simply
querying the ancestor axis.

4.5. The descendant axis: reentrancy and
circularity

Since RDF graphs, in the general case, are not acyclic,
they can result in infinitely deep trees when using a
serialisation that represents edges using nesting, such as
ENFR. However, reflecting a graph dynamically ensures
that this is not an issue in most cases, since the system
only goes as deep as required by the query at hand, even
if the graph contains a cycle.

A notable exception is the descendant axis: since it
performs a depth first search, it exhibits non-terminating
behaviour if the tree is infinitely deep. Using just-in-time
reflection alone does not solve the problem in this case,
because the search forces the reflection of a cyclic
structure recursively, which is effectively the same as
trying to serialise it.

For this reason, having an algorithm capable of
detecting and breaking cycles is essential. This is however
not sufficient to ensure a consistent behaviour of the
descendant axis, due to the fact that, unlike in trees, the
same node could be a descendant of the context node
along multiple paths. Since graphs can exhibit this
property, called reentrancy, independently from
circularity, one might have duplicate nodes in the result
nodeset, even when the search does terminate.

We have chosen to change the behaviour of the
descendant axis by implementing a graph-based depth-
first search algorithm, which deals explicitly with
reentrancy and circularity.

The key idea of the search algorithm is to avoid
visiting the same node twice, thus preventing endless
loops or duplicate results when dealing with circular or
reentrant graphs. For this purpose, an adequate
definition of equality is crucial: in RDF two things are
equal if they have the same URI, but, in this case, this
definition cannot handle properties correctly.

In fact, if two properties with the same URI but
different objects were to be considered equal, some
branches would be left unexplored by the search
algorithm, since it will erroneously think such branches
were visited before.

To overcome this problem, the equality test for
properties was changed so that two properties are equal if
they have the same URI, and their children also have the

same URI. Note that this definition is not ambiguous
since in Edinburgh Normal Form properties are
constrained to have exactly one child (the object of the
statement that they encode).

4.6. The sibling axis: sibling properties

As a final remark, it's appropriate to discuss briefly the
behaviour of the sibling axis. In the Edinburgh Normal
Form for RDF, an element representing a node in the
graph can either be:
• The only child of a property element, thus having no

siblings.
• The root node of the reflection, which has no siblings

by definition.
It should therefore be evident how the concept of sibling
is only meaningful for property elements. In particular,
sibling properties can be thought of as properties with
the same subject.

5. An XSLT engine for RDF Graphs

Having discussed both just-in-time reflection and
Edinburgh Normal Form, it is now possible to present
the resulting engine. We will not go into much detail on
its architecture, whereas greater attention will be given to
the form of the stylesheets it can process.

5.1. Overall architecture

This section will describe the overall architecture of the
system. While the discussion will be kept to a fairly high
level, it should be enough to understand how a typical
XSLT transformation is carried out.

The system consists mainly of a pipeline, with the
RDF engine on one end and the XSLT processor on the
other: these two components are connected by a set of
extension functions, that basically allow access to the
graph API from XSLT stylesheets. More specifically, the
system takes two files as input: an RDF file, which is
parsed by the RDF engine, and an XSLT stylesheet,
which is compiled and executed by the XSLT processor,
and can contain one or more calls to interface extension
functions.

The different extension functions implemented have
slightly different behaviours, but they can all be thought
of as returning a special wrapper object to act as the root
of the reflection. Since both expose the same interface to
the XSLT processor, such a wrapper looks no different
from the in-memory representation of a node generated
during the parsing of a physical XML document, but it
differs greatly in the implementation, since:

Page 74 of 177

A rendering language for RDF

• It wraps an RDF resource, named after its QName, if
available, or URI otherwise.

• It is capable of reflecting other nodes, so that, when
used as the context node in a path expression step, it
will use the rules laid out in the normal form to
interpret it, and then query the RDF engine to
retrieve the desired resources. The result is a nodeset
accordingly populated with other wrappers, which are
in turn used to reflect the next step in the path, and
so on until the expression has been completely
evaluated.

• It uses the depth-first graph search algorithm
described above to ensure termination and absence of
duplicate results when reflecting along the descendant
axis.

Specifically, Jena and Saxon were used as the RDF and
XSLT engine respectively: since Saxon represents XML
nodes via the NodeInfo interface, the wrapper object, in
which lies all the just-in-time reflection logic, is simply a
custom implementation of this interface.

As briefly mentioned before, this architecture is not
dependent on the normal form used: a different kind of
wrapper object could implement an entirely different
normal form. Furthermore, since the root wrapper is
accessed through an extension function, different
functions can return different wrappers, allowing to mix
and match the normal form to the input data on
demand.

5.2. Stylesheet structure

RDF stylesheets look almost identical to standard XML
ones, the only difference being the use of extension
functions in the initial template. Once their semantics
are understood, an XSLT user should be able to write
stylesheets for RDF easily, because, apart from the initial
template, stylesheets look exactly the same as if they were
processing a physical XML file expressed in Edinburgh
Normal Form.

5.2.1. The Reflect function

Reflect is the most important function of the engine, in
that it gives access to the Document node of the
reflection. To better understand its usage, let's notice that
when using XSLT with XML, if the user does not write
an initial template, the processor implicitly executes the
instruction:

<xsl:template match="/">
 <xsl:apply-templates select="/*">
</xsl:template>

where / is the document node and * is the outermost
element, i.e. the root node of the tree. Subsequent
templates then match the various children of the root
node.

For RDF, the initial template is written explicitly, like
so:

<xsl:template name="main">
 <xsl:apply-templates select="enf:reflect()/*"/>
</xsl:template>

There is an important difference though: in XML the
outermost element is unique, for a Document node is
required to have exactly one Element node among its
children, whereas an ENFR reflection has multiple roots,
and therefore one can replace the wildcard match with
the name of any subject in the graph: the argument to
select takes then the form enf:reflect/root-qname.

This characteristic is still compatible with the XPath
2.0 data model [BFM+10] and, while it can be useful in
general to shorten some path expression, it becomes
essential in the case of disconnected graphs.

However, note how one cannot write directly
something like:

<xsl:template
 match="reflect()/Alice:me/foaf:knows/*">

Due to the fact that a template match expression cannot
start with a function call or variable. This limitation
should disappear in XSLT 3.0 [Kay13], but until then,
the correct form is:

<xsl:template name="main">
 <xsl:apply-templates select="reflect()/Alice:me"/>
</xsl:template>

<xsl:template match="foaf:knows/*">
...

Finally, a name for the initial template is strictly required
when writing a stylesheet for RDF: since the Saxon
processor is not running on any physical XML source
file, the initial template acts as the starting point for the
transformation.

Page 75 of 177

A rendering language for RDF

5.2.2. The Select function

Let's consider the following template, which operates on
an RDF graph containing several statements, some of
which are about Persons:

<xsl:variable name="doc" select="enf:reflect()"/>

<xsl:template name="main">
 <xsl:for-each select="$doc/*[rdf:type/
 foaf:Person]">
 <div>
 <xsl:value-of select="@rdfs:comment"/>
 </div>
 </xsl:for-each>
</xsl:template>

The foreach loop outputs the textual description of the
resources in the graph, but only if they are of type
Person. Filtering by type is indeed a very common need,
so it seemed appropriate to devote a function to it, called
select(), which returns a RdfDocWrapper whose
children are filtered according to the specified type. The
stylesheet then becomes:

<xsl:variable name="doc"
 select="enf:select('foaf:Person')"/>

<xsl:template name="main">
 <xsl:for-each select="$doc/*">
 <div>
 <xsl:value-of select="@rdfs:comment"/>
 </div>
 </xsl:for-each
</xsl:template>

5.3. Transformation example

As an example of the capabilities of our engine, we will
use it to perform the transformation outlined at the very
beginning of this paper: the graph in Figure 1, “A simple
RDF graph representation. The predicate names have
been left blank for simplicity” is encoded by the
following Turtle, which describes the connections

between Alice, Bob, Charlie and Dave, using the
foaf:knows predicate:

@prefix crc: <http://www.inf.ed.ac.uk/~fl/crc#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf:
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs:
 <http://www.w3.org/2000/01/rdf-schema#> .

crc:A a foaf:Person ;
 foaf:name "Alice" ;
 foaf:knows crc:D .

crc:B a foaf:Person ;
 foaf:name "Bob" ;
 foaf:knows crc:C , crc:A .

crc:C a foaf:Person ;
 foaf:name "Charlie" ;
 foaf:knows crc:A , crc:B .

crc:D a foaf:Person ;
 foaf:name "Dave" ;
 foaf:knows crc:C .

This data is an ideal candidate to test the behaviour of
the descendant axis, since it has several reentrant and
cyclic paths. The idea is to use the descendant axis with
the predicate foaf:knows to find out all the connections
that each Person has, where a connection is defined as a
Person that is at any degree of separation in the chain of

Page 76 of 177

A rendering language for RDF

acquaintances. The output in Figure 2 is produced by the
following stylesheet:

<xsl:variable name="Node" select="enf:reflect()"/>

<xsl:template name="main">
 <html>
 <body>
 <table>
 <tr>
 <xsl:for-each select="$Node/*">
 <td>
 <table border="1">
 <tr bgcolor="#9acd32">
 <th>
 Connections for
 <xsl:value-of
 select="@foaf:name"/>
 </th>
 </tr>
 <xsl:for-each select=".//*
 [parent::foaf:knows]">
 <tr>
 <td>
 <xsl:value-of
 select="@foaf:name"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </td>
 </xsl:for-each>
 </tr>
 </table>
 </body>
 </html>
</xsl:template>

6. Limitations

While this project goes a good deal towards
implementing a rendering language for RDF, it is not
without limitations. Some of them are due to the
relatively limited time available for the implementation,
whereas others are intrinsic. Here is a brief overview:
• If two properties with the same name both have a

literal object, the result of querying them is
undefined, as ENFR encodes literal-valued properties
as attributes, which are required to be unique.
However is possible to implement another, more
verbose normal form that does not have this
limitation. More importantly, it's possible to use both
at the same time by calling the appropriate extension
function.

• Variables or function calls are not allowed in match
expressions: this is inconvenient, as one has to resort
to inelegant workarounds. This limitation is enforced

by XSLT and therefore very little can be done about
it, however it should disappear in XSLT 3.0.

• RDF Containers are unsupported. In theory they
could be queried using standard XPath expressions,
but no tests have been done to ensure they will work
correctly.

• We would like to thank an anonymous reviewer for
pointing out that there might be other ways to break
the XSLT processor with a graph data model,
including fetching the string value of an element,
fn:deep-equal(), << , is, and fn:root() and also
for highlighting that document order might be an
important factor. The current implementation
guarantees to preserve document order as long as the
underlying RDF engine does so during the parsing,
and appears to deal well with fn:string() (in ENFR
there are no text nodes). However, we have not
explored these aspects in detail and they deserve
further investigation.

• Using the ancestor and descendant axes in
conjunction may lead to unexpected results. Let's
consider for example the graph in Figure Figure 9,
“DFS can cause non intuitive behaviour of the
ancestor axis.”; if one is interested in retrieving the
descendants of Alice that are also descendants of Bob,
one could write:

select="enf:reflect()/Alice//*[ancestor::Bob]"

Figure 9. DFS can cause non intuitive behaviour of
the ancestor axis.

Page 77 of 177

A rendering language for RDF

1 This means three out of the thirteen XPath axes. Most notably, the descendant axis is missing.

While it's clear that this query should select both
Charlie and Ellen, only Charlie is guaranteed to
always appear in the result nodeset. This happens
because there are two paths from Alice to Ellen, and
since the depth first search will avoid reflecting her
twice, Ellen will be reached either through Bob and
Charlie or through Dave, depending on the
document order. If Ellen is reached via Dave, than her
ancestors will be Dave itself and Alice, and therefore
she will not be selected by the above query.

7. Related work

Besides the approach followed by TriX, various attempts
have been made that do not require a change in the
existing formats: most of them are now abandonware, yet
some of the ideas used may still be worth exploring.

7.1. XSPARQL

XSPARQL does not deal directly with rendering RDF,
but with the related and somewhat more general problem
of RDF lifting and lowering [KVBF07],[FL07].

In this context lifting is not relevant, but it's not hard
to envision how lowering, the task of translating RDF
into arbitrary XML, originally for use with Web Services,
could be adapted to produce XHTML for formatting
purposes.

XSPARQL [AKKP08] stems from merging SPARQL
into XQuery, so that RDF data is accessed using
SPARQL, and then processed as in normal XQuery.

While undoubtedly an interesting approach, it has a
few drawbacks: it is an entirely new technology, with
only one implementation available, and, perhaps more
importantly, does not use a path semantics, which is very
familiar to users that deal with templating, since this is
usually done in XSLT.

7.2. TriAl

TriAl [LRV13] is a query language for RDF capable of
working directly on triples, in order to account for the
few but significant differences between directed graphs
and RDF's data model. TriAL semantics model RDF
more closely than XPath does, but they also prevent its
usage with XSLT, therefore making it a worse fit in the
context of RDF rendering.

7.3. RDFXSLT

RDFXSLT [Kop07] is basically an XSLT stylesheet that
turns RDF/XML into a more predictable form, which

can then be queried using standard XPath expressions,
along with a set of XSLT extension functions.

The main attractive of this approach is that is written
in pure XSLT, and hence independent from any
particular XSLT processor or platform. However,
RDFXSLT is clearly limited to RDF/XML, and the
RDF/XML subset it produces, although predictable and
hence usable with XSLT, is admittedly ugly.

7.4. RDF Twig

RDF Twig [Wal03] is implemented through a set of
XPath extension functions, which provide access to
different XML serialisation of a graph, mainly breadth-
first and depth-first trees. Twig is quite limited, in that it
does not attempt a uniform mapping between RDF's
abstract syntax like the one presented in this paper.
However, it contains two important ideas:
1. It uses an RDF engine to access the graph, and then

provides the result in a form amenable to XSLT
processing.

2. The graph is not preprocessed, but rather the
serialisations needed (e.g. a breadth-first tree) are
generated on demand.

7.5. TreeHugger

TreeHugger [McD12] is an extension function that
builds on Twig's two ideas as outlined above, and
improves on them in that the serialisation it gives access
to is a more accurate mapping from the RDF model to
XML's than a mere search tree, like the ones used by
Twig.

TreeHugger's approach is very similar to the one used
in this project, however its implementation is limited to
the parent, attribute and child axes1.

7.6. RxSLT

The RxPath language [Sou06] is a more complete
attempt at RDF rendering that supports all the XPath
axes. However, it does not use XPath extension functions,
but is a new language with a native processor.

Even though RxPath's syntax is designed to be
identical to XPath 1.0, the choice of using a native
processor carries a few consequences:
• It cannot benefit from improvements in newer

versions of XPath.
• For implementation reasons, it constraints the

behaviour of the ancestor and descendant axes
[Sou06].

Page 78 of 177

A rendering language for RDF

• A new processor is likely to be not nearly as popular
as the alternatives available for XSLT (like Saxon or
Xalan).

However, it is the only attempt trying a complete,
deterministic mapping from RDF to the XPath data
model, and has been influential on this work.

RxSLT emulates XSLT by replacing XPath
expressions with RxPath expressions to select nodes.

8. Conclusions and future work

After more than a decade, RDF is on its way to become a
widespread technology. However, the lack of a suitable
mechanism for rendering it to humans makes it costly to
integrate into web-facing applications, and hardly
appealing to the casual user. It is worth mentioning the
case of SGML, whose diffusion was hindered by the lack
of a template language, a mistake that its successor,
XML, avoided thanks to the introduction of XSLT.

While XSLT cannot work directly on arbitrary RDF,
and can only deal with RDF/XML at the price of great
complexity, we showed how just-in-time reflection can be

used to abstract away from the concrete syntax, and work
directly on the data model. Furthermore, changing the
descendant algorithm to a graph-based search accounting
for both reentrancy and circularity completes the
mapping to the tree based model used by XPath.

Now that a working implementation is available,
several extensions are possible. First and foremost, new
normal forms can be implemented, in order to avoid
trading off generality for concision, as ENFR does. Also,
it will be useful to add support for inference, which is
currently lacking. This does not seem excessively hard, as
it will probably only require adding the inferred triples to
the Jena model.

Finally, one could improve on the Document node,
so that it can act as the Saxon Source for the
transformation. This is a very interesting possibility, as
extension functions would then become unnecessary,
making RDF stylesheets exactly identical to the ones
used on XML. Achieving this goal, however, would
require substantially more implementation effort than
the approach reported here.

References

[AKKP08] Waseem Akhtar, Jacek Kopecky, Thomas Krennwallner, and Axel Polleres. XSPARQL: Traveling between
the XML and RDF Worlds - and Avoiding the XSLT Pilgrimage. The Semantic Web: Research and
Applications. Springer. 2008.
doi:10.1007/978-3-540-68234-9_33

[BBC+10] Anders Berglund, Scott Boag, Don Chamberlin, Mary Fernandez, Michael Kay, Jonathan Robie, and
Jerome Simeon. XML path language (XPath) 2.0 (second edition). W3C recommendation. W3C.
December 2010.
http://www.w3.org/TR/xpath20/

[BFM+10] Anders Berglund, Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Norman
Walsh. XQuery 1.0 and XPath 2.0 data model (XDM) (second edition). W3C recommendation. W3C.
December 2010.
http://www.w3.org/TR/xpath-datamodel/

[BM12] Dan Brickley and Libby Miller. Foaf vocabulary specification 0.98. Namespace Document. 9. 2012.
http://xmlns.com/foaf/spec/

[BYM+08] Tim Bray, Francois Yergeau, Eve Maler, Jean Paoli, and Michael Sperberg-McQueen. Extensible markup
language (XML) 1.0 (fifth edition). W3C recommendation. W3C. November 2008.
http://www.w3.org/TR/REC-xml/

[CP14] Gavin Carothers and Eric Prud'hommeaux. RDF 1.1 turtle. W3C recommendation. W3C. February
2014.
http://www.w3.org/TR/turtle/

[CS04] Jeremy J Carroll and Patrick Stickler. RDF triples in XML. 412-413. Proceedings of the 13th
international World Wide Web conference on Alternate track papers & posters. ACM. . 2004.
doi:10.1145/1010432.1010566

Page 79 of 177

A rendering language for RDF

http://dx.doi.org/10.1007/978-3-540-68234-9_33
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-datamodel/
http://xmlns.com/foaf/spec/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/turtle/
http://dx.doi.org/10.1145/1010432.1010566

[CWL14] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 concepts and abstract syntax. W3C
recommendation. W3C. February 2014.
http://www.w3.org/TR/rdf11-concepts/

[FL07] Joel Farrell and Holger Lausen. Semantic annotations for WSDL and XML schema. W3C
recommendation. W3C. August 2007.
http://www.w3.org/TR/sawsdl/

[GS14] Fabien Gandon and Guus Schreiber. RDF 1.1 XML syntax. W3C recommendation. W3C. February
2014.
http://www.w3.org/TR/rdf-syntax-grammar/

[HB11] Tom Heath and Christian Bizer. Linked data: Evolving the web into a global data space. 1--136. Synthesis
lectures on the semantic web: theory and technology. 1. 1. 2011.
doi:10.2200/s00334ed1v01y201102wbe001

[HS13] Steven Harris and Andy Seaborne. SPARQL 1.1 query language. W3C recommendation. W3C. March
2013.
http://www.w3.org/TR/sparql11-query/

[Kay09] Michael Kay. XSL transformations (XSLT) version 2.0 (second edition). W3C recommendation. W3C.
April 2009.
http://www.w3.org/TR/xslt20/

[Kay13] Michael Kay. XSL transformations (XSLT) version 3.0. Last call WD. W3C. December 2013.
http://www.w3.org/TR/2013/WD-xslt-30-20131212/

[Kop07] Jacek Kopecky. Dx. yvzz rdfxslt: Xslt-based data grounding for rdf wsmo working draft 12 april 2007.
WSMO Working Draft, WSMO. 2007.
http://www.wsmo.org/TR/d24/d24.2/v0.1/20070412/rdfxslt.html

[KVBF07] Jacek Kopecky, Tomas Vitvar, Carine Bournez, and Joel Farrell. Sawsdl: Semantic annotations for wsdl
and xml schema. 60--67. Internet Computing, IEEE. 11. 6. 2007.
doi:10.1109/mic.2007.134

[LRV13] Leonid Libkin, Juan Reutter, and Domagoj Vrgoc. Trial for rdf: adapting graph query languages for rdf
data. 201--212. Proceedings of the 32nd symposium on Principles of database systems. ACM. . 2013.
doi:10.1145/2463664.2465226

[McD12] Mat McDermott. Treehugger. TreeHugger. 2012.
[MM04] Frank Manola and Eric Miller. RDF primer. W3C recommendation. W3C. February 2004.

http://www.w3.org/TR/rdf-primer/
[RGN+01] Jonathan Robie, Lars Marius Garshol, Steve Newcomb, M Fuchs, L Miller, D Brickley, V

Christophides, and G Karvounarakis. The syntactic web: Syntax and semantics on the web. 411--440.
Markup Languages: Theory and Practice. 3. 4. 2001.
doi:10.1162/109966202760152176

[Sou06] Adam Souzis. Rxpath: a mapping of rdf to the xpath data model. Extreme Markup Languages. . 2006.
http://conferences.idealliance.org/extreme/html/2006/Souzis01/EML2006Souzis01.html

[SR14] Guus Schreiber and Yves Raimond. RDF 1.1 primer. W3C note. W3C. June 2014.
http://www.w3.org/TR/rdf11-primer

[Tho01] H Thompson. Normal form conventions for xml representations of structured data. Proceedings of XML
2001. GCA. . 2001.
http://www.ltg.ed.ac.uk/~ht/normalForms.html

[TKC03] Henry S Thompson, K Ari Krupnikov, and Jo Calder. Uniform access to infosets via reflection..
Proceedings of Extreme Markup Languages 2003. Extreme Markup Languages. . 2003.
http://conferences.idealliance.org/extreme/html/2003/Thompson01/EML2003Thompson01.html

[Wal03] Norman Walsh. Rdf twig: accessing rdf graphs in xslt.. Extreme Markup Languages. Citeseer. . 2003.
http://nwalsh.com/docs/articles/extreme2003/

Page 80 of 177

A rendering language for RDF

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/rdf-syntax-grammar/
http://dx.doi.org/10.2200/s00334ed1v01y201102wbe001
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/2013/WD-xslt-30-20131212/
http://www.wsmo.org/TR/d24/d24.2/v0.1/20070412/rdfxslt.html
http://dx.doi.org/10.1109/mic.2007.134
http://dx.doi.org/10.1145/2463664.2465226
http://www.w3.org/TR/rdf-primer/
http://dx.doi.org/10.1162/109966202760152176
http://conferences.idealliance.org/extreme/html/2006/Souzis01/EML2006Souzis01.html
http://www.w3.org/TR/rdf11-primer
http://www.ltg.ed.ac.uk/~ht/normalForms.html
http://conferences.idealliance.org/extreme/html/2003/Thompson01/EML2003Thompson01.html
http://nwalsh.com/docs/articles/extreme2003/

Publishing with XProc
Transforming documents through progressive refinement

Nic Gibson

Corbas Consulting and LexisNexis
<nicg@corbas.co.uk>

Abstract

Over the last few years, we, as a community, have spent a
great deal of time writing code to convert Microsoft Word
documents into XML. This is a common task with fairly
predictable stages to it. We need to read the .Docx or
WordML file and and transform the flat, formatting-rich
XML in a well structured XML document.

One approach to this problem is to create a pipeline that
uses a progressive refinement technique to achieve a simple
sequence of transformations from one format to another.
Given that this approach requires the ability to chain
multiple transformations together, we decided to build a
framework to enable that.

This paper explores the implementation of this kind of
pipelining through XProc and examine the pipeline
processing used. We discuss the use of progressive
enhancement to convert Microsoft Word files to an
intermediate format, considering the challenges involved in
converting Word in context. We look at the features of XProc
which enable this sort of processing.

Keywords: XProc, XSLT, Word

1. Introduction

Authors like Microsoft Word, transformers of content
don’t. Traditionally, a publishing house (or publishing
organisation) would receive manuscript in Word, copy
edit it, typeset it, proofread it and publish it. Structured
authoring is not something the majority of authors are
able do. Organisations and individuals involved in digital
publishing conversion are interested in converting Word
files to XML as it enables multi-output publishing,
querying of documents and simplifies reuse. Conversion
from Word to structured formats has become an
important part of the publishing process. Currently,
many publishers are migrating existing content from
Word and/or RTF sources to XML. There is a need for a
robust framework to enable this kind of conversion. The
framework we present here was originally created in

order to fulfil that requirement although it can be used
for any multi-stage XML conversion task.

XSLT is the obvious choice for a processing tool but
the environment in which that tool operates is a less clear
choice. Apache Ant has been used but this usage is not
within the realm which Ant was designed for and bulk
conversion in Ant suffers from performance problems.
We chose to implement an XProc based processing
environment because the language supports in-memory
pipelining of multiple documents through multiple
steps. This dramatically decreases the overheads while
proving a more elegant solution to the problem.

2. Progressive enhancement

It is, in general, simpler to create a sequence of
transformations, each one focussed on a particular aspect
of a task than it is to define a single complex
transformation.

It is worthwhile considering that XML content is
generally found in two basic forms: linear and structured.
Microsoft Word (and sometimes HTML) are the
archetypal linear formats. Linear formats are well suited
to authoring as authoring tends to be a linear activity.
XML languages such as DocBook, JATS and the internal
formats used by many publishers are the structured forms
to which we need to transform. Structured formats are
well suited for transformation to multiple outputs,
storage and analysis.

Conversion, is therefore, primarily as task of adding
structure to content. Any reasonably complex, mature,
publishing activity such as legal publishing will have
complex formatting rules used by authors and editors
when preparing documents. Conversion to structured
XML can be considered primarily as the addition of
structure. However, the conversion of an element in one
language to semantically appropriate equivalent in the
other is still a required portion of the process.

Complex conversions can be challenging for a
developer to maintain. A sequence of simpler
transformations has both a better change of being
maintained and a better change of reuse.

doi:10.14337/XMLLondon15.Gibson01 Page 81 of 177

mailto:nicg@corbas.co.uk

When converting from WordML to XML we choose
to convert to XHTML 5 before we convert to the final
format. The vast majority of narrative documents can be
decomposed into a sequence of nested sections and
blocks of text.

3. Microsoft Word

The approach we have taken starts with conversion of
Microsoft Word OOXML elements to XHTML 5
elements. Following that we, add structure to the
intermediate XML document in several stages.

Legal documents tend to contain structured at several
levels:
• the sectional structure of the document
• clauses
• numbered paragraphs
This structure is also found in legislation (although
legislation tends to have additional structures such as
chapters).

The approach we are describing here is intended for
use in bulk conversion. This allows us to ignore problems
of performance in some ways. There may be performance
issues caused by this approach and we intend to
investigate this a later date.

4. WordML conversion

In current versions Word emits an XML based format
(either packaged into a zip file or as a single XML file).
The difference between the various versions in the wild is
not hugely significant and support for the varying
formats can be easily achieved.

Fundamentally, the vast majority of constructs in a
Word document are paragraphs. Lists are represented as
paragraphs so grouping is required to identify and mark
up list content. Tables are marked up using a format very
different to either that of CALS or HTML.

Figure 1. Formatting in Word

Image and picture markup can be very complex. In the
context of the projects in which the toolkit described
here is used, image markup has not been complex and no

attempt has been made to find a general solution to the
problem. Consider the XML created by Word for those
two paragraphs:

<w:p>
 <w:r>
 <w:t>Normal paragraph</w:t>
 </w:r>
</w:p>
<w:p>
 <w:pPr>
 <w:pStyle
 w:val="ListParagraph"/>
 <w:numPr>
 <w:ilvl
 w:val="0"/>
 <w:numId
 w:val="1"/>
 </w:numPr>
 </w:pPr>
 <w:r>
 <w:t
 >Bulleted paragraph</w:t>
 </w:r>
</w:p>

An initial conversion step would convert these
paragraphs to XHTML preserving some of the important
information:

<p>Normal paragraph</p>
<li cword:list-level="0"
 cword:list-mark="1"
 >Bulleted paragraph

Obviously, this content is not yet close to a structured
output but it has been simplified and important
information retained.

A second step would be to add the list markup
around the li element:

<p>Normal paragraph</p>

 Bulleted paragraph

At this point the namespaced attributes are no longer
required because we have determined that the list is a
simple bulleted list (by examining other structures in the
WordML).

4.1. Challenges in conversion of WordML to
XHTML

There are several challenges in conversion. Change
tracking markup and annotations have no obvious
analogs in XHTML. However, these are simply
challenges in that a decision has to be made and
implemented (we have generally converted change

Page 82 of 177

Publishing with XProc

tracking markup to sequences of spans and annotations
to XHTML spans).

Inline text can be complex when converting from
Word markup to XHTML. A WordML paragraph
consists of one or more “runs” of text. These can have
complex properties and, sometimes, it can be unclear
why a span exists at all.

Example 1. Inline formatting in Word

<w:p>
 <w:r>
 <w:t xml:space="preserve"
 >A sample sentence in a word document
 </w:t>
 </w:r>
</w:p>

If a user formats any of the text in the paragraph (either
using a character style or direct formatting), Word will
add additional run elements:

Example 2. User marks text as bold

<w:p>
 <w:r>
 <w:t xml:space="preserve"
 >A sample </w:t>
 </w:r>
 <w:r w:rsidRPr="0077343A">
 <w:rPr>
 <w:b/>
 </w:rPr>
 <w:t>sentence</w:t>
 </w:r>
 <w:r>
 <w:t xml:space="preserve"
 > in a word document</w:t>
 </w:r>
</w:p>

Here, a word has been marked as bold. This processing is
relatively simple. However, almost every user change of
this type will be represented in this way even if those
changes lead to identical formatting:

Example 3. User changes an adjacent run

<w:p>
 <w:r>
 <w:t xml:space="preserve"
 >A sample </w:t>
 </w:r>
 <w:r >
 <w:rPr>
 <w:b/>
 </w:rPr>
 <w:t>sentence</w:t>
 </w:r>
 <w:r>
 <w:rPr>
 <w:b/>
 </w:rPr>
 <w:t xml:space="preserve"
 > in</w:t>
 </w:r>
 <w:r>
 <w:t xml:space="preserve"
 > a word document</w:t>
 </w:r>
</w:p>

The initial conversion to XHTML for a paragraph like
this would be:

<p>A sample sentence
 in a word document</p>

Word does not merge runs in identical formatting so the
initial, simplistic, conversion won’t either. This is
something that needs to be resolved in structured XML.
The obvious solution to this problem is to create a step in
our pipeline to handle this situation. It should be
possible to create a general transformation.

5. Progressive enhancement and
XSLT

Progressive enhancement is XSLT is simple. The identity
transformation does much of the work for us. We will

Page 83 of 177

Publishing with XProc

demonstrate the process using a transformation to
XHTML 5. This transformation is useful as the first stage
of a transformation into another XML format.

The first step of our conversion process is generally to
convert the WordML elements to XHTML 5 elements
without regard to validity. During this step we convert
paragraphs and tables and we maintain the original Word
styles using a namespaced attribute.

There is no major complexity in the initial
conversion.

1 <xsl:stylesheetl
2 version="2.0"
3 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
4 xmlns:xs="http://www.w3.org/2001/XMLSchema"
5 xmlns:cword="http://www.corbas.co.uk/ns/word"
6 xmlns:w="http://schemas.microsoft.com/office/wo
 rd/2003/wordml"
7 xmlns="http://www.w3.org/1999/xhtml"
8 xpath-default-namespace="http://schemas.microso
 ft.com/office/word/2003/wordml">
9
10 <xsl:import href="identity.xsl"/>
11
12 <xsl:template match="w:wordDocument">
13 <html xmlns="http://www.w3.org/1999/xhtml">
14 <head/>
15 <xsl:apply-templates select="w:body"/>
16 </html>
17 </xsl:template>
18
19 <xsl:template match="w:body">
20 <body>
21 <xsl:apply-templates/>
22 </body>
23 </xsl:template>
24
25 <xsl:template
 match="w:p[w:pPr/w:numPr[w:numId and w:ilvl]]"
 priority="1">

26 <li
27 cword:list-level="{w:pPr/w:numPr/w:ilvl/@w:val}"
28 cword:list-mark="{w:pPr/w:numPr/w:numId/@w:val}">
29 <xsl:next-match/>
30
31 </xsl:template>
32
33 <xsl:template match="w:p">
34 <p><xsl:apply-templates/></p>
35 <xsl:template/>
36
37 <xsl:template match="w:pPr/w:pStyle">
38 <xsl:attribute name="cword:style"
39 select="@w:val"/>
40 </xsl:template>
41
42 </xsl:stylsheet>

Each step is used to transform the content to a form
nearer to that desired in the final output. This process

allows us to maintain relatively simple XSLT whilst
creating a complex transformation. Additional steps can
be written to improve the transformation.

5.1. Using meta-programming to structure
content taken from Word

Adding structure to content taken from Microsoft Word
can be challenging. There is nothing inherently different
about a heading or title in Microsoft Word — they are
simply paragraphs with a style. It is relatively simple to
convert the Word built-in paragraph styles to HTML
heading elements:
Style Element

Heading 1 h1

Heading 2 h2

Heading 3 h3
However, publishers conventionally use document and
task specific styles in Word:
• Title
• Sub Title
• Clause Title
• A-Head
• B-Head

We could write a new stylesheet to convert these
elements to the right headings and insert this into our
sequence of stylesheets:

<xsl:template match="p[@cword:style='Title']">
 <h1><xsl:apply-templates/></h1>
</xsl:template>

<xsl:template match="p:[@cword:style='Sub Title']">
 <h2><xsl:apply-templates/></h2>
</xsl:template>

It is clear that any stylesheet as repetitive as this could be
replaced with a configuration file and another stylesheet
to generate it. We took this approach because it allows a
stylesheet to be generated from a standard configuration:

<map xmlns="http://www.corbas.co.uk/ns/transforms/map"
 xmlns:cword="http://www.corbas.co.uk/ns/word"
 source-attribute="cword:style"
 ns="http://www.w3.org/1999/xhtml"
 source-element="p">
 <mapping source-value="Title"
 target-element="h1" heading-level="1"/>
 <mapping source-value="Sub Title"
 target-element="h2" heading-level="2"/>
 <mapping source-value="Clause Title"
 target-element="h3" heading-level="2"/>
</map>

Page 84 of 177

Publishing with XProc

We can then write a stylesheet that will generate the
appropriate stylesheet:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xd="http://www.oxygenxml.com/ns/doc/xsl"
 xmlns:axsl=
 "http://www.w3.org/1999/XSL/TransformAlias"
 exclude-result-prefixes="xs xd axsl"
 version="2.0">

 <xsl:strip-space elements="*"/>
 <xsl:namespace-alias stylesheet-prefix="axsl"
 result-prefix="xsl"/>

 <xsl:template match="mapping" as="element()">

 <axsl:template>
 <xsl:apply-templates select="@source-value"/>
 <xsl:apply-templates select="."
 mode="generate-elements"/>
 </axsl:template>

 </xsl:template>

 <xsl:template match="@source-value">
 <xsl:attribute name="match"
 select="concat(../@source-element, '[@',
 /map/@source-attribute, ' = ''', ., ''']')"/>
 </xsl:template>

 <xsl:template match="mapping"
 mode="generate-elements">

 <xsl:param name="element-list" as="xs:string*"
 select="tokenize(@target-element, '\s+')"/>
 <xsl:param name="top-level" as="xs:boolean"
 select="true()"/>

 <xsl:choose>

 <!-- If there are no input elements in the
 sequence, create an apply-templates only
 - stop the recursion -->
 <xsl:when test="count($element-list) = 0">
 <axsl:apply-templates select="node()"/>
 </xsl:when>

 <xsl:otherwise>

 <!-- Generate a literal element -->
 <xsl:element name="{$element-list[1]}"
 namespace="{/map/@ns}">

 <!-- If top level, process mapping
 attributes and generate an apply
 templates for the input ID attributes
 (if any) -->
 <xsl:if test="$top-level = true()">
 <xsl:apply-templates
 select="@hint|@heading-level"/>

 <axsl:apply-templates
 select="@*[local-name() = 'id']"/>
 </xsl:if>

 <xsl:apply-templates select="."
 mode="copy-attributes"/>

 <!-- Recursing passing the tail of the
 sequence and setting top-level to
 false -->
 <xsl:apply-templates select="."
 mode="generate-elements">
 <xsl:with-param name="element-list"
 select="subsequence($element-list, 2)"/>
 <xsl:with-param name="top-level"
 select="false()"/>
 </xsl:apply-templates>

 </xsl:element>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates a new stylesheet which we can
apply to the content. We consider that the ability to
generate stylesheets for predictable parts of the process is
very important. It allows us to reduce the amount of new
code written for each transformation. The purpose of the
toolkit we have created is to maximise reuse.
Configuration driven approaches to transformations
allow us to reduce the custom code requirements
dramatically.

5.2. Implementation

The XSLT approach techniques discussed here have
allowed us to create a set of stylesheets that maximise
reuse and minimise coding. However, we require an
environment in which this code can be run. We
considered several approaches to constructing the
framework in which these stylesheets could be executed.

The first approach constructed a shell script using
XSLT. This proved inefficient since the overhead caused
by IO requirements and the overhead of restarting the
JVM proved excessive. A second approach was taken
where we wrote custom software using Perl and the
XML::LibXML libraries. This was more efficient but
required us to maintain and support a second codebase.
The first XProc implementations appeared at the time at
which we were creating the Perl implementation. We
chose to investigate using XProc to process our
documents.

Given that the stylesheets required for any given
transformation process may differ from that required for
any other process, we decided to find an approach which

Page 85 of 177

Publishing with XProc

allowed us use configuration files to indicate which
stylesheets should be run and in which sequence.

6. XProc

We chose to implement this framework using XProc
because we believed that it had all of the features we
required built into the implementations. We chose to use
Norm Walsh’s Calabash XProc processor.

XProc is a language for specifying pipelined
transformations on XML documents. A pipeline takes
one or more documents as input and produces one or
more as output. There is a certain amount of symmetry
to an XProc pipeline since steps in the pipeline and the
pipeline itself share semantics allowing an existing
pipeline to be used as a step in another pipeline.

6.1. Manifest files

We have defined a schema and processing mechanism for
manifest files which allows an XProc step to load a
sequence of XSLT files via a manifest file and prepare
them for evaluation against a document.

At its simplest a manifest file may be a simple set of
stylesheets:

<manifest
 xmlns="http://www.corbas.co.uk/ns/transforms/data"
 version="1.0">
 <item href="word-to-xhtml5-elements.xsl"/>
 <item href="wrap-blocks.xsl"/>
 <item href="merge_sups.xsl"/>
 <item href="merge_spans.xsl"/>
</manifest>

This manifest simply indicates that four documents
should be loaded and a sequence of documents returned
by the XProc step Additional features are available to
allow metadata to be stored with the document after
loading and to allow documents to be processed with an
XSLT stylesheet before being returned:

<item href="merge_spans.xsl"/>

<processed-item
 stylesheet="build-mapping-stylesheet.xsl">
 <item xml:base="../../mapping/" href="efp.xml"/>
</processed-item>

<item href="rewrite-para-numbers.xsl"/>

<item href="merge_spans.xsl">
 <meta name="merge-sup" value="false"/>
</item>

Finally, inclusion and grouping syntax is available to
allow metadata items to be included and to enable and
disable items and groups.

6.2. Applying XProc to the problem

If we break down the problem into multiple stages we
find that it can be viewed as:
1. Load a sequence of XSLT stylesheets to be applied to

a source document
2. Load a source document to be processed
3. Thread the source document through the XSLT files
4. Return the final output

6.2.1. Loading the manifest

The XProc specification provides for 31 required steps
and 10 optional steps. Additionally, custom steps can be
written. An XProc step is an operation on (generally) one
or more XML documents resulting in one more XML
documents. The two major stages identified above map
to custom XProc steps.

XProc operates on documents and sequences of
documents in much the same way as XSLT operates on
nodes and sequences of nodes. This feature allows us to
create an XProc step which reads a configuration file,

Page 86 of 177

Publishing with XProc

loads the documents referenced in that file and return a
sequence of files as the result

<p:declare-step 1
 xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:ccproc=
 "http://www.corbas.co.uk/ns/xproc/steps"
 type="ccproc:load-sequence-from-file"
 name="load-sequence-from-file">

 <p:input port="source" primary="true"/> 2
 <p:output port="result" primary="true"
 sequence="true">
 <p:pipe port="result" step="load-iterator"/>
 </p:output> 3

 <p:for-each name="load-iterator"> 4

 <p:output port="result" primary="true">
 <p:pipe port="result" step="load-doc">

 <p:iteration-source select="/data:manifest/*">
 <p:pipe port="source"
 step="load-sequence-from-file"/>
 </p:iteration-source>

 <p:variable name="href"
 select="p:resolve-uri(/data:item/@href,
 p:base-uri(/data:item))"/>

 <p:load name="load-doc">
 <p:with-option name="href" select="$href"/>
 </p:load>

 </p:for-each>

</p:declare-step>

1 A custom step in XProc is created using p:declare-
step

2 In this context the p:input statement declares an
input. The primary attribute is used to indicate that
this is the primary input to the step (it will connect
automatically and acts as the default XPath context).

3 The p:output statement declares an output. The
output of the step is the output of the substep called
load-manifest. We also indicate that it returns a
sequence of documents.

4 This substep loops over items in the input document,
resolves the URI against the document itself and
then loads the file.

This step (simplified from real-world code) shows the
basic features of the XProc environment. In order to load
the files listed in the manifest file, we use the manifest as
an input document, use XPath to locate and resolve the
URIs and then load them using the built-in p:load step.
The p:load step returns an XML document, the loop

returns a sequence of them. This is used as the custom
step output. Once this code has been saved, we can
import it and use it as it were a built-in step. This is one
of the great advantages of working with XProc — the
ability to extend functionality and reuse high level
operations. This step alone provides us with the ability to
list the transformations applicable to a document (or set
of documents) and laod them.

6.2.2. Processing the manifest

In order to process a source document and convert it to
XHTML, it is necessary to apply the sequence of
stylesheets loaded by the step we previous described. This
initially presented some challenges when we considered
implementing it in XProc. There is nothing in the XProc
specification that would allow a document to be threaded
through a sequence of stylesheets. Therefore, it was
necessary to define a custom step.

Jostein Jacobsen suggested an approach using
recursion and Romain Deltour provided a simple
implementation which forms the basis of the step we
wrote. We can approach the problem indirectly. Given a
document and a sequence of stylesheets the task can be
broken down into repeated application of a simpler task:
apply the first stylesheet in a sequence to a document and
then apply the same approach to the output and the next
document.

This is relatively simple in XProc and the custom step
model allows us to hide the complexity of the process in
a simple appearing interface.

<p:declare-step
 xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:ccproc=
 "http://www.corbas.co.uk/ns/xproc/steps"
 name="threaded-xslt"
 type="ccproc:threaded-xslt">

 <p:input port="source" sequence="false"
 primary="true"/>

 <p:input port="stylesheets"
 sequence="true"/>

 <p:output port="result" primary="true"
 sequence="true">
 <p:pipe port="result"
 step="determine-recursion"/>
 </p:output>

 <!-- Split of the first transformation from
 the sequence -->
 <p:split-sequence name="split-stylesheets"
 initial-only="true" test="position()=1">
 <p:input port="source">
 <p:pipe port="stylesheets"

Page 87 of 177

Publishing with XProc

 step="threaded-xslt"/>
 </p:input>
 </p:split-sequence>

 <!-- How many of these are left? We actually
 only care to know if there are *any*
 hence the limit. -->
 <p:count name="count-remaining-transformations"
 limit="1">
 <p:input port="source">
 <p:pipe port="not-matched"
 step="split-stylesheets"/>
 </p:input>
 </p:count>

 <!-- run the stylesheet/ -->
 <p:xslt name="run-single-xslt">
 <p:input port="stylesheet">
 <p:pipe port="matched"
 step="split-stylesheets"/>
 </p:input>
 <p:input port="source">
 <p:pipe port="source"
 step="threaded-xslt"/>
 </p:input>
 <p:input port="parameters">
 <p:empty/>
 </p:input>
 </p:xslt>

 <!-- If there are any remaining stylesheets
 recurse. The primary input is the result of
 our XSLT and the remaining sequence from
 split-transformations above will be the
 stylesheet sequence -->
 <p:choose name="determine-recursion">

 <p:xpath-context>
 <p:pipe port="result"
 step="count-remaining-transformations"/>
 </p:xpath-context>

 <!-- If we have any transformations
 remaining recurse -->
 <p:when test="number(c:result)>0">

 <p:output port="result" sequence="true">
 <p:pipe port="result"
 step="run-single-xslt"/>
 <p:pipe port="result"
 step="continue-recursion"/>
 </p:output>

 <ccproc:threaded-xslt-impl
 name="continue-recursion">

 <p:input port="stylesheets">
 <p:pipe port="not-matched"
 step="split-stylesheets"/>

 </p:input>

 <p:input port="source">
 <p:pipe port="result"
 step="run-single-xslt"/>
 </p:input>

 </ccproc:threaded-xslt-impl>

 </p:when>

 <!-- Otherwise, pass the output of our
 transformation back as the result -->
 <p:otherwise>

 <p:output port="result" sequence="true">
 <p:pipe port="result"
 step="terminate-recursion"/>
 </p:output>

 <p:identity name="terminate-recursion">
 <p:input port="source">
 <p:pipe port="result"
 step="run-single-xslt"/>
 </p:input>
 </p:identity>

 </p:otherwise>

 </p:choose>

</p:declare-step>

The listing above is a simplified version of the step in the
framework. In addition to processing content with XSLT,
the framework version of the code supports XSLT
parameters and debug output.

This step allows us to emulate the process of iterating
and threading using recursion. Each call to the step
processes the output of the preceding steps as input using
the first stylesheet in the sequence. If the sequence is not
empty after the first has been consumed, then the step
calls itself using the output as the input document for the
next call and the tail of the stylesheet sequence.

The power of the XProc p:declare-step statement is
again demonstrated here. The relatively complex
processing of the sequence of stylesheets can be hidden
behind a simple interface:

<ccproc:threaded-xslt
 name="thread-content">
 <p:input port="source">
 <p:document href="my-doc.xml"/>
 </p:input>
 <p:input port="stylesheets">
 <p:pipe port="result" step="load-stylesheets"/>
 </p:input>
</ccproc:threaded-xslt>

Page 88 of 177

Publishing with XProc

6.2.3. A complete pipeline

In order to appreciate the power of the XProc approach
to building pipelines, we must examine the final pipeline
code.

<p:declare-step
 xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:ccproc=
 "http://www.corbas.co.uk/ns/xproc/steps"
 version="1.0" name="process-doc">

 <p:input port="manifest"/>
 <p:input port="source"/>
 <p:output port="result">
 <p:pipe port="result" step="run-stylesheets"/>
 </p:output>

 <p:import href="load-sequence-from-file.xpl"/>
 <p:import href="threaded-xslt.xpl"/>

 <!-- load the stylesheets -->
 <ccproc:load-sequence-from-file
 name="load-transformations">
 <p:input port="source">
 <p:pipe port="manifest" step="process-doc"/>
 </p:input>
 </ccproc:load-sequence-from-file>

 <!-- run it through the stylesheets
 in the manifest -->
 <ccproc:threaded-xslt name="run-stylesheets">
 <p:input port="source">
 <p:pipe port="result" step="process-doc"/>
 </p:input>
 <p:input port="stylesheets">
 <p:pipe port="result"
 step="load-transformations"/>
 </p:input>
 </ccproc:threaded-xslt>

</p:declare-step>

The final pipeline chains together the two custom
pipelines and allows a user process a document using the
progressive transformation framework. The model of
chaining and layering steps used by XProc allows for high
levels of modularity and reuse. The combination of XSLT
and XProc provides and elegant solution to the problem
of reliable conversion from Microsoft Word to useful
structured XML.

7. Conclusions

Processing Word (or other complex XML sources) can be
challenging using conventional single stylesheet or Ant
driven approaches. The majority of the XSLT code
required is quite generic. However, the requirements
imposed by varying style information on the Word

document make it impossible to design a stylesheet that
can both cope with all situations and be maintained.
Therefore, an combination approach of using progressive
enhancement and careful metaprogramming techniques
provides a poweverful mechanism for building generic
processing tools. XProc provides a valuable and elegant
environment in which to build the systems required to
chain transformations agains one or more files together.

All of the code discussed in this paper is available
from our Github repositories at https://github.com/
Corbas/xproc-tools and https://github.com/Corbas/
mapping-tools. The code presented here is a simplified
version of that held in the repositories.

We have implemented this code as the basis of a
conversion pipeline at LexisNexis which has been used to
successfully convert 49.000 legal precedents from RTF to
a proprietory XML format. The only made was to replace
the single input document with the results of a directory
traversal. We believe that this demonstrats the validity of
both the approach and implementation.

7.1. Issues with XProc

Chaining steps can be opaque. The default input and
outputs of a step and their relationship to other steps are
not clear. Explicit input and output definitions are
simpler to use but are complex. In the examples in this
paper we have avoided the use of implicit inputs and
outputs because they do not add to code clarity and they
are generally of little use as soon as steps with multiple
inputs or outputs are used. We believe that the implicit
default mechanism is valuable and would prefer to see a
mechanism for simplifying the definition of all inputs
and outputs.

Iteration. The ability to iterate over a sequence of
steps would be a great advantage to processing XProc
pipelines. The xsl:iterate statement added to XSLT 3
could provide a useful template. A new compound step
allowing iteration over content with the ability to wire
inputs to outputs would reduce the need for recursion
and mitigate the risk that a complex pipeline could cause
memory issues.

Memory. The pipeline can be very memory intensive.
We have seen XProc pipelines using over 10GB of
memory because each document is held for the duration
of the script. There does not appear to be any mechanism
by which an XProc processor can determine when a
document is no longer required by the pipeline. The
addition of some mechanism which would allow the
pipeline implementer to indicate that a document is no
longer required which go some way to resolving the
problem.

Page 89 of 177

Publishing with XProc

https://github.com/Corbas/xproc-tools
https://github.com/Corbas/xproc-tools
https://github.com/Corbas/mapping-tools
https://github.com/Corbas/mapping-tools

Data-Driven Programming in XQuery
Eric van der Vlist

Dyomedea

Abstract

Data-driven development is a popular programming
paradigm often implemented using reflection in object-
oriented programming languages.

Even if this is less common, data-driven development
can also be implemented with functional programming
languages, and this paper explores the possibilities opened by
higher-order functions in XQuery 3.0 to develop data-driven
applications.

1. Problem statement

1.1. Definitions

 In computer programming, data-driven
programming is a programming paradigm in which
the program statements describe the data to be
matched and the processing required rather than
defining a sequence of steps to be taken.[1] Standard
examples of data-driven languages are the text-
processing languages sed and AWK,[1] where the
data is a sequence of lines in an input stream – these
are thus also known as line-oriented languages – and
pattern matching is primarily done via regular
expressions or line numbers.

 --Wikipedia

 Data Driven Programs are programs which process
data files whose contents cause the program to do
something different. The extreme case is an
interpreter and the interpretable program files.

 --c2.com

 If the ultimate result of an application is data, and all
input can be represented by data, and it is recognised
that all data transforms are not performed in a
vacuum, then a software development methodology
can be founded on these principles, the principles of
understanding the data, and how to transform it
given some knowledge of how a machine will do
what it needs to do with data of this quantity,
frequency, and it's statistical qualities. Given this
basis, we can build up a set of founding statements
about what makes a methodology data-oriented.

 --Data-oriented Design

1.2. Real world examples

These definitions make it clear that any XSLT
transformation making good use of templates is a data-
driven program and that XSLT is the best example of a
programming language rooted in the data-driven
programming paradigm.

Even so, I had to wait until 2003 to discover the
notion of data-driven programming in "Data-Driven
Classes in Ruby", a most inspiring presentation by
Michael Granger and David McCorkhill at OSCON
2003. So inspiring that I followed up with my own
"XML Driven Classes in Python" presented at OSCON
2004 and then TreeBind in 2005.

The common point between these three
methodologies or libraries and many others is to bridge
the gap between data-driven and object-oriented
programming by driving object-oriented classes and
methods through data.

These approaches are very useful in a number of
cases. For instance, the Python utility which is backing
up all my servers and managing their archives hes, since
2006, been driven by XML configuration files processed
by the library presented at OSCON 2004. Similarly, the
mailing list manager handling emails sent to the XML
Guild is powered by TreeBind driven by the following
XML document (sensitive information have been
removed for obvious reasons):

doi:10.14337/XMLLondon15.Vlist01Page 90 of 177

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Data-driven_programming#cite_note-awk-1
http://en.wikipedia.org/wiki/Sed
http://en.wikipedia.org/wiki/AWK
http://en.wikipedia.org/wiki/Data-driven_programming#cite_note-awk-1
http://en.wikipedia.org/wiki/Input_stream
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Data-driven_programming
http://c2.com/cgi/wiki?DataDrivenPrograms
http://www.dataorienteddesign.com/dodmain/node3.html
http://web.archive.org/web/20040721205645/http://conferences.oreillynet.com/presentations/os2003/granger_mccorkhill.pdf
http://web.archive.org/web/20040721205645/http://conferences.oreillynet.com/presentations/os2003/granger_mccorkhill.pdf
https://dyomedea.com/papers/2004-OSCON/xmlDataDrivenClasses.pdf
http://eric.van-der-vlist.com/blog/?s=treebind
http://www.nongnu.org/treebind/

<?xml version="1.0"?>

<listManager>
 <server>localhost</server>
 <storeType>imap</storeType>
 <user>...</user>
 <password>...</password>
 <port>143</port>
 <folderManager>
 <folder>INBOX</folder>
 <messageHandler>
 <ifEither>
 <ifIsRecipient>
 info@xmlguild.org
 </ifIsRecipient>
 <ifIsRecipient>
 info@thexmlguild.org
 </ifIsRecipient>
 <ifIsRecipient>
 info@xmlguild.info
 </ifIsRecipient>
 <ifIsRecipient>
 info@xml-guild.org
 </ifIsRecipient>
 <ifIsRecipient>
 info@xml-guild.com
 </ifIsRecipient>
 </ifEither>
 <sendToList>
 <subjectPrefix>
 [the XML Guild]
 </subjectPrefix>
 <footer><![CDATA[
--
The XML Guild
 where you find established XML experts . . .
 http://xmlguild.org/
 info@xmlguild.org
]]></footer>
 <recipient>vdv@dyomedea.com</recipient>
 <recipient>...</recipient>
 <recipient>
 <!-- other recipients removed -->
 </recipient>
 <envelopeFrom>
 info-bounce@xmlguild.org
 </envelopeFrom>
 <header name="Precedence">
 List
 </header>
 <header name="List-Id">
 <info.xmlguild.org>
 </header>
 <header name="List-Post">
 <mailto:info@xmlguild.org>
 </header>
 <server>localhost</server>
 <user>...</user>
 <archive>archive</archive>
 </sendToList>
 <moveTo>done</moveTo>
 </messageHandler>

 <messageHandler>
 <moveTo>unparsed</moveTo>
 </messageHandler>
 </folderManager>
</listManager>

1.3. More precisely

Data-driven programming is a paradigm.
Like for any paradigm, programming languages and

libraries influence the easiness with which data-driven
applications can be written:
• In Apple][basic you'd have to use a bunch of if/then/

else statements to implement data-driven applications.
• In object-oriented languages it is convenient to use a

data binding library to directly bound data to object
and methods to write data-driven applications.

• In XSLT, templates are natively bound to data
through patterns.

• For functional programming languages, the frontier
between code and data is fuzzy since functions are
considered as data and we can expect a very special
relation to data "driveness" as we will see in the next
sections.

2. Data Driving XQuery

If XSLT is natively data-driven and object-oriented
languages can be used with a twist to develop data-driven
programs, what can we say about functional
programming languages in general and XQuery in
particular?

2.1. A simple example

As an example to illustrate our discussion, we will
implement the example Hangman game given by

Page 91 of 177

Data-Driven Programming in XQuery

http://en.wikipedia.org/wiki/Hangman_%28game%29#Example_game

Wikipedia. The state of the current game will be defined
by the following XML document:

<hangman status="in-progress" misses="Z">
 <word>
 <letter guessed="true">H</letter>
 <letter guessed="true">A</letter>
 <letter guessed="true">N</letter>
 <letter guessed="false">G</letter>
 <letter guessed="true">M</letter>
 <letter guessed="true">A</letter>
 <letter guessed="true">N</letter>
 </word>
 <display>
 <head shown="true"/>
 <body shown="true"/>
 <right_arm shown="true"/>
 <left_arm shown="true"/>
 <right_leg shown="false"/>
 <left_leg shown="false"/>
 </display>
</hangman>

And the implementation will consist in updating the
document based on a letter given as a parameter.

2.2. Python

Before jumping to XML technologies, we can have a
look at a possible Python implementation using the
XML data-driven classes that I presented at OSCON
2004:

#!/usr/bin/python
-*- coding: utf-8 -*-
__author__ = 'vdv'

import XmlObject

Class Hangman: overall logic
class Hangman(XmlObject.XmlObjectElement):

 def isInProgress(self):
 return self.status._value() == 'in-progress'

 def addGuess(self, guess):
 isAGuess = self.word.addGuess(guess)
 if isAGuess:
 if self.word.areAllGuessed():
 self.status._set('won')
 else:
 self.misses._set(
 self.misses._value() + guess)
 self.display.addFailure()
 if self.display.areAllShown():
 self.status._set('lost')

XmlObject.XmlObjectElement_hangman = Hangman

Class Word: handle guesses

class Word(XmlObject.XmlObjectElement):

 def addGuess(self, guess):
 result = False
 for letter in self.letter:
 if letter.addGuess(guess):
 result = True
 return result

 def areAllGuessed(self):
 for letter in self.letter:
 if not letter.isGuessed():
 return False
 return True

XmlObject.XmlObjectElement_word = Word

Class Letter: individual letters to be guessed
class Letter(XmlObject.XmlObjectElement):

 def addGuess(self, guess):
 if self._value() == guess:
 self.guessed._set('true')
 return True
 else:
 return False

 def isGuessed(self):
 return self.guessed._value() == 'true'

XmlObject.XmlObjectElement_letter = Letter

Class Display: displays the hangman
class Display(XmlObject.XmlObjectElement):

 def addFailure(self):
 result = False
 for member in self._childElements:
 if not member.isShown():
 member.show()
 return

 def areAllShown(self):
 return self._childElements[-1].isShown()

XmlObject.XmlObjectElement_display = Display

Class members (generic to different
element types): hangman members to be displayed
class Member(XmlObject.XmlObjectElement):

 def isShown(self):
 return self.shown._value() == 'true'

 def show(self):
 self.shown._set('true')

XmlObject.XmlObjectElement_head = Member
XmlObject.XmlObjectElement_body = Member
XmlObject.XmlObjectElement_right_arm = Member
XmlObject.XmlObjectElement_left_arm = Member

Page 92 of 177

Data-Driven Programming in XQuery

XmlObject.XmlObjectElement_right_leg = Member
XmlObject.XmlObjectElement_left_leg = Member

Main

x = XmlObject.XmlObjectDocument()
x._Parse('hangman.xml')
hangman = x.hangman
print hangman._xml.toxml()

while hangman.isInProgress():
 guess = raw_input('Enter a letter: ')
 hangman.addGuess(guess[0].upper())
 print hangman._xml.toxml()

In this first example we have followed the principles of
object orientation by defining a class for each element
and never short-circuiting intermediary classes by
accessing descendant properties directly.

2.3. XSLT

In XSLT on the contrary, we tend to use XPath to access
the information wherever it can be found, and can
implement the hangman as:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 extension-element-prefixes="xs" version="2.0">

 <xsl:strip-space elements="*"/>
 <xsl:output indent="yes"/>

 <xsl:param name="guess"/>

 <xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="hangman">
 <xsl:copy>
 <xsl:variable name="updated-content"
 as="element()+">
 <xsl:apply-templates select="*"/>
 </xsl:variable>
 <xsl:attribute name="status">
 <xsl:choose>
 <xsl:when test="not($updated-content/
 self::word/letter[@guessed='false'])">
 won
 </xsl:when>
 <xsl:when test="not($updated-content/
 self::display/*[@shown='false'])">
 lost
 </xsl:when>
 <xsl:otherwise>
 in-progress

 </xsl:otherwise>
 </xsl:choose>
 </xsl:attribute>
 <xsl:attribute name="misses">
 <xsl:value-of select="@misses"/>
 <xsl:if test="not(word/letter = $guess)">
 <xsl:value-of select="$guess"/>
 </xsl:if>
 </xsl:attribute>
 <xsl:copy-of select="$updated-content"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="letter[.=$guess]/@guessed">
 <xsl:attribute name="guessed">
 true
 </xsl:attribute>
 </xsl:template>

 <xsl:template match="hangman[
 not(word/letter = $guess)]/display/*[
 @shown = 'false'][1]/@shown">
 <xsl:attribute name="shown">
 true
 </xsl:attribute>
 </xsl:template>

</xsl:stylesheet>

2.4. XQuery, using transform.xq

After this XSLT transformation, it is tempting to use the
amazing transform.xq library presented by John Snelson
at XML Prague 2012.

There are a number of ways to write a transformation
with this library, and the most straightforward is to
define it as a sequence of rules:

xquery version "3.0";

import module namespace tfm =
 "http://snelson.org.uk/functions/transform" at
 "transform.xq/transform.xq";

declare namespace f =
 "http://ns.dyomedea.com/functions/";

declare variable $guess := 'G';

declare function f:isAGuess(
 $node as node(),
 $guess as xs:string) as xs:boolean {
 $node/ancestor-or-self::hangman/word/letter =
 $guess
};

let $hangman :=
 <hangman status="in-progress" misses="Z">
 <word>
 <letter guessed="true">H</letter>
 <letter guessed="true">A</letter>

Page 93 of 177

Data-Driven Programming in XQuery

https://github.com/jpcs/transform.xq

 <letter guessed="true">N</letter>
 <letter guessed="false">G</letter>
 <letter guessed="true">M</letter>
 <letter guessed="true">A</letter>
 <letter guessed="true">N</letter>
 </word>
 <display>
 <head shown="true"/>
 <body shown="true"/>
 <right_arm shown="true"/>
 <left_arm shown="true"/>
 <right_leg shown="false"/>
 <left_leg shown="false"/>
 </display>
 </hangman>

let $mode := tfm:mode((

(:
 Default rule: identity template for elements
:)
 tfm:rule('*', function($mode, $node) {
 element {xs:QName(name($node))} {
 $mode($node/(@*|node()))
 }
 }),

(:
 Default rule: identity template for attributes
:)
 tfm:rule('@*', function($mode, $node) {
 $node
 }),

(: Hangman root element :)

 tfm:rule('hangman', function($mode, $node) {
 let $updated-content := $mode($node/node())
 return
 <hangman
 status="{
 if (not($updated-content/self::word/
 letter[@guessed='false']))
 then 'won'
 else if (not($updated-content/
 self::display/*[@shown='false']))
 then 'lost'
 else 'in-progress'}"
 misses = "{concat($node/@misses,
 if (f:isAGuess($node, $guess)) then ''
 else $guess)}"
 > {
 $updated-content
 } </hangman>
 }),

 (: Guesses :)
 tfm:rule('letter/@guessed',
 function($mode, $node) {
 attribute {xs:QName(name($node))} {
 if ($node/.. = $guess)
 then 'true'

 else $node
 }
 }),

 (: Display :)
 tfm:rule('display/*/@shown',
 function($mode, $node) {
 attribute {xs:QName(name($node))} {
 if (not(f:isAGuess($node, $guess)) and
 not($node/../preceding-sibling::*/
 @shown = 'false'))
 then 'true'
 else $node
 }
 }),

 ()
))

return $mode($hangman, ())

I won't go into the details, let's just note that the result
of tfm:mode() is a function that is then used to perform a
transformation and that tfm:rule() is another function
which is used to associate patterns (defined as a subset of
XSLT 2.0 match patterns) and actions defined as XQuery
functions.

Note

transform.xq includes its own XSLT match patterns
parsers to convert each pattern expressed as strings into
a function performing pattern evaluation!

The principle of all these binding tools is to bind
functions, classes or templates to specific nodes in a
document. In the Python library, classes were associated
to elements based on element names. In XSLT, templates
are bound to nodes through their @match attributes. In
XQuery 3.0, we need to find a trick to bind a match
pattern, a function or any other property to actions
defined as functions.The transform.xq library proposes
two different ways to do this association. In this first
example, this is done through this tfm:rule function,
and we'll see how that works in one of our next
examples. The second way is using standard MarkLogic
extension functions to perform reflection, and this
binding is done using annotations:

xquery version "3.0";

import module namespace tfm =
 "http://snelson.org.uk/functions/transform" at
 "transform.xq/transform.xq";

declare namespace f =
 "http://ns.dyomedea.com/functions/";

Page 94 of 177

Data-Driven Programming in XQuery

declare variable $guess := 'G';

declare function f:isAGuess(
 $node as node(),
 $guess as xs:string) as xs:boolean {
 $node/ancestor-or-self::hangman/word/letter =
 $guess
};

declare function f:copy(
 $node as node(),
 $content as item()*) as node()? {
 if($node instance of element()) then
 element {xs:QName(name($node))} { $content }
 else if ($node instance of attribute()) then
 attribute {xs:QName(name($node))} { $content }
 else $node
};

declare %tfm:rule("default","*",1)
function f:identity-elt($mode, $node){
 f:copy($node, $mode($node/(@*|node())))
};

declare %tfm:rule("default","@*",1)
function f:identity-att($mode, $node) {
 $node
};

declare %tfm:rule("default","hangman",2)
function f:hangman-elt($mode, $node) {
 let $updated-content := $mode($node/node())
 return
 <hangman
 status="{
 if(not($updated-content/self::word/letter
 [@guessed='false']))
 then 'won'
 else if(not($updated-content/self::display/*
 [@shown='false']))
 then 'lost'
 else 'in-progress'}"
 misses =
 "{concat($node/@misses, if(f:isAGuess(
 $node, $guess)) then '' else $guess)}"
 > {
 $updated-content
 } </hangman>
};

declare %tfm:rule("default","letter/@guessed",2)
function f:guessed-att($mode, $node) {
 f:copy($node,
 if ($node/.. = $guess)
 then 'true'
 else $node
)
};

declare %tfm:rule("default","display/*/@shown",2)
function f:shown-att($mode, $node) {

 f:copy($node,
 if (not(f:isAGuess($node, $guess)) and
 not($node/../preceding-sibling::*/
 @shown = 'false'))
 then 'true'
 else $node
)
};

let $hangman :=
 <hangman status="in-progress" misses="Z">
 <word>
 <letter guessed="true">H</letter>
 <letter guessed="true">A</letter>
 <letter guessed="true">N</letter>
 <letter guessed="false">G</letter>
 <letter guessed="true">M</letter>
 <letter guessed="true">A</letter>
 <letter guessed="true">N</letter>
 </word>
 <display>
 <head shown="true"/>
 <body shown="true"/>
 <right_arm shown="true"/>
 <left_arm shown="true"/>
 <right_leg shown="false"/>
 <left_leg shown="false"/>
 </display>
 </hangman>

let $mode := tfm:named-mode('default')

return $mode($hangman, ())

We have also taken advantage of this second version to
define a f:copy() function which is more or less
equivalent to <xsl:copy> but otherwise it is equivalent to
the previous version.

2.5. XQuery, simple recursion

Transform.xq is really well thought out, and it includes
an incredible number of bells and whistles, but it's worth
seeing what we can do straight away in XQuery.

Before we jump into higher-order functions we can
see what we can do with good old recursion, and in fact
that's not that bad:

xquery version "3.0";

declare namespace f =
 "http://ns.dyomedea.com/functions/";

declare variable $guess := 'G';

declare function f:isAGuess(
 $node as node(),
 $guess as xs:string) as xs:boolean {
 $node/ancestor-or-self::hangman/word/letter =
 $guess

Page 95 of 177

Data-Driven Programming in XQuery

};

declare function f:copy(
 $node as node(),
 $content as item()*) as node()? {
 if ($node instance of element()) then
 element {xs:QName(name($node))} { $content }
 else if ($node instance of attribute()) then
 attribute {xs:QName(name($node))} { $content }
 else $node
};

declare function f:transform(
 $node as node()) as node()? {

 if ($node/self::hangman) then
 let $updated-content := $node/node()
 ! f:transform(.)
 return
 <hangman
 status="{
 if (not($updated-content/self::word/
 letter[@guessed='false']))
 then 'won'
 else if (not($updated-content/self::display/
 *[@shown='false']))
 then 'lost'
 else 'in-progress'}"
 misses = "{concat($node/@misses,
 if(f:isAGuess($node, $guess)) then
 '' else $guess)}"
 > {
 $updated-content
 } </hangman>
 else if ($node instance of attribute(guessed)) then
 f:copy($node,
 if ($node/.. = $guess)
 then 'true'
 else $node
)
 else if ($node instance of attribute(shown)) then
 f:copy($node,
 if (not(f:isAGuess($node, $guess)) and
 not($node/../preceding-sibling::*/
 @shown = 'false'))
 then 'true'
 else $node
)
 else if ($node/self::*) then
 f:copy($node, $node/(@*|node()) !
 f:transform(.))
 else $node
};

let $hangman :=
 <hangman status="in-progress" misses="Z">
 <word>
 <letter guessed="false">H</letter>
 <letter guessed="true">A</letter>
 <letter guessed="true">N</letter>
 <letter guessed="false">G</letter>

 <letter guessed="true">M</letter>
 <letter guessed="true">A</letter>
 <letter guessed="true">N</letter>
 </word>
 <display>
 <head shown="true"/>
 <body shown="true"/>
 <right_arm shown="true"/>
 <left_arm shown="true"/>
 <right_leg shown="false"/>
 <left_leg shown="false"/>
 </display>
 </hangman>

return f:transform($hangman)

This new example is functionally equivalent to what
we've done with transform.xq, and I find it surprisingly
readable.

It could have been made more modular by using
function calls for each alternative and we would them
have been left with individual functions similar those
defined in the second transform.xq implementation
called from a central multi level if/then/else block.

2.6. XQuery using higher-order functions

The last exercise will be to implement our own simple
transformation mechanism using higher-order functions.

Here again we need to associate several items in a
simple structure. Maps would have been ideal but they've
not made their way into XQuery 3.0. However we can
use the same trick as transform.xq does and mimic a map
with two fixed keys (k1 and k2):

xquery version "3.0";

declare namespace f =
 "http://ns.dyomedea.com/functions/";

declare function f:map-hack(
 $v1,
 $v2) as function(*) {
 function($k as xs:string) {
 switch($k)
 case 'k1' return $v1
 case 'k2' return $v2
 default return ()
 }
};

let $map := f:map-hack('foo', 'bar')

return ($map('k1'), $map('k2'))

This method will be used to associate match patterns
defined as a functions and actions defined as functions as
well as rules.

Page 96 of 177

Data-Driven Programming in XQuery

Where transform.xq has an elaborated mechanism to
derive priority from match pattern selectivity similarly to
XSLT, we can adopt a simpler priority system similarly to
Schematron where the rules are evaluated in the order in
which they appear in a sequence and the evaluation stops
after the first matching rule.

With these principles, the implementation becomes:

xquery version "3.0";

declare namespace f =
 "http://ns.dyomedea.com/functions/";

declare variable $guess := 'W';

declare function f:isAGuess(
 $node as node(),
 $guess as xs:string) as xs:boolean {
 $node/ancestor-or-self::hangman/word/letter =
 $guess
};

declare function f:copy(
 $node as node(),
 $content as item()*) as node()? {
 if($node instance of element()) then
 element {xs:QName(name($node))} { $content }
 else if($node instance of attribute()) then
 attribute {xs:QName(name($node))} { $content }
 else $node
};

(: borrowed from transform.xq :)
declare function f:rule(
 $predicate as (function(node()) as xs:boolean),
 $action as
 (function(node(),
 function(*)) as node()?)) as function(*)
{
 function($k as xs:string) {
 switch($k)
 case 'predicate' return $predicate
 case 'action' return $action
 default return ()
 }
};

(: Some higher-order functions magic :)
declare function f:transform(
 $rules as function(*)*) as function(*) {
 function($node as node(),
 $transform as function(*)) as node()? {
 if (head($rules)('predicate')($node))
 then head($rules)('action')($node,
 $transform)
 else if (exists(tail($rules)))
 then f:transform(tail($rules))($node,
 $transform)
 else ()
 }
};

(: The transformation itself :)
let $t := f:transform((
 (: hangman element :)
 f:rule(
 function($node as node()) as xs:boolean {
 boolean($node/self::hangman)
 }, function(
 $node as node(),
 $transform as function(*)) as node() {
 let $updated-content := $node/node() !
 $transform(., $transform)
 return
 <hangman
 status="{
 if (not($updated-content/self::word/
 letter[@guessed='false']))
 then 'won'
 else if (not($updated-content/
 self::display/*[@shown='false']))
 then 'lost'
 else 'in-progress'}"
 misses = "{concat($node/@misses,
 if (f:isAGuess($node, $guess))
 then '' else $guess)}"
 > {
 $updated-content
 } </hangman>
 }),

 (: @guessed attributes :)
 f:rule(
 function($node as node()) as xs:boolean {
 $node instance of attribute(guessed)
 }, function($node as node(),
 $transform as function(*)) as node()
 {
 f:copy($node, if ($node/.. = $guess)
 then 'true'
 else $node)
 }),

 (: @shown attributes :)
 f:rule(
 function($node as node()) as xs:boolean {
 $node instance of attribute(shown)
 }, function($node as node(),
 $transform as function(*)) as node()
 {
 f:copy($node,
 if (not(f:isAGuess($node, $guess)) and
 not($node/../preceding-sibling::*/@shown
 = 'false')) then
 'true'
 else
 $node)
 }),

 (: Any other attribute :)
 f:rule(
 function($node as node()) as xs:boolean {
 $node instance of attribute()

Page 97 of 177

Data-Driven Programming in XQuery

 },
 function($node as node(),
 $transform as function(*)) as node() {
 f:copy($node, $node)
 }),

 (: Anything else :)
 f:rule(
 function($node as node()) as xs:boolean {
 true()
 },
 function($node as node(),
 $transform as function(*)) as node() {
 f:copy($node, $node/(@*|node()) !
 $transform(., $transform))
 })
))

let $hangman :=
 <hangman status="in-progress" misses="Z">
 <word>
 <letter guessed="true">H</letter>
 <letter guessed="true">A</letter>
 <letter guessed="true">N</letter>
 <letter guessed="false">G</letter>
 <letter guessed="true">M</letter>
 <letter guessed="true">A</letter>
 <letter guessed="true">N</letter>
 </word>
 <display>
 <head shown="true"/>

 <body shown="true"/>
 <right_arm shown="true"/>
 <left_arm shown="true"/>
 <right_leg shown="true"/>
 <left_leg shown="false"/>
 </display>
</hangman>

return $t($hangman, $t)

3. Conclusion

Even if, unlike XSLT, XQuery doesn't have any feature to
make it natively data-driven you can easily write your
own mechanisms to bind data into functions.

These mechanisms can be generic such as
transform.xq but it is also easy to write you own
specialized one to perform specific tasks.

4. Acknowledgments

Many thanks to Tony Graham, Patrick Durusau and my
three anonymous reviewers for their reviews, comments,
questions and suggestions and to John Snelson for his
very inspiring transform.xq.

Page 98 of 177

Data-Driven Programming in XQuery

1 https://github.com/dvreeze/yaidom
2 https://www.xbrl.org

XML Processing with Scala and yaidom
Chris de Vreeze

EBPI
<chris.de.vreeze@ebpi.nl>

Abstract

Yaidom is a uniform XML query API, written in the Scala
programming language and leveraging its Collections API.
Moreover, yaidom provides several specific-purpose DOM-
like tree implementations offering this XML query API.

In this paper the yaidom library is introduced, using
examples from XBRL (eXtensible Business Reporting
Language).

Keywords: Scala, XML, yaidom

1. Introduction

This article introduces the open source yaidom XML
query library1, using examples in the domain of XBRL
(eXtensible Business Reporting Language)2.

It is assumed that the reader has some experience
with XML processing in Java (e.g. JAXP) or another OO
programming language (such as Scala or C#).

XSLT, XQuery and XPath are standard XML
transformation/query languages, yet in this article
yaidom (with Scala) is introduced as an alternative
approach to in-memory XML querying/transformation,
leveraging the Scala programming language. Still, yaidom
can also be used together with standard languages such as
XQuery, for example when using an XML database.

As shown in the table of contents, after introducing
Scala, Scala Collections and yaidom, a brief introduction
to XBRL follows. XBRL is an XML-based business
reporting standard. Business reports in XBRL format are
called XBRL instances. XBRL instances must obey many
requirements, in order for them to be considered valid.
After the brief XBRL introduction, the remainder of this
paper shows how many of these rules can be expressed
using yaidom and Scala. It will be shown that using Scala
and yaidom instead of standard XML query and
transformation languages actually makes expressing these
rules relatively easy.

There are several other papers about XML processing
in Scala, mostly about Scala's own standard XML libary.
For example, [1] contains many well-chosen examples

that show how to process XML in Scala. Moreover, it
first introduces Scala, assuming some familiarity with
XQuery on the part of the reader. To get an appreciation
of XML processing using Scala in general, and of XML
processing using Scala and yaidom in particular, it makes
sense to read both papers, starting with [1].

2. Brief introduction to Scala and
Scala Collections

The Scala programming language is the most popular
alternative to the Java language on the Java virtual
machine. It is object-oriented (more so than Java) and also
functional, in that functions are first-class objects. It is
statically typed, but it feels like a dynamically typed
language, because of features such as type inference.

Scala is a safe and expressive language, typically
leading to good productivity and low bug counts in
skilled disciplined teams. Its rich Collections API, its
strong support for immutable data structures, and its
focus on expressions rather than statements enables
programmers to work at a higher level of abstraction in
Scala than in Java.

The Collections API of a programming language
(which in the case of Scala and Java is a part of the
standard library of the language, not of the core
language) often says a lot about the expressive power of
that language. Below follows some Scala code that
manipulates collections, to illustrate Scala's
expressiveness.

Consider a book store and some queries about books
(using sample data from the Stanford University online
course Introduction to Databases). The Scala code is as
follows:

case class Author(
 firstName: String, lastName: String)

case class Book(
 isbn: String,
 title: String,
 authors: List[Author],
 price: Int)

doi:10.14337/XMLLondon15.DeVreeze01 Page 99 of 177

https://github.com/dvreeze/yaidom
https://www.xbrl.org
mailto:chris.de.vreeze@ebpi.nl

val someBooks = List(
 Book(
 "ISBN-0-13-713526-2",
 "A First Course in Database Systems",
 List(
 Author("Jeffrey", "Ullman"),
 Author("Jennifer", "Widom")),
 85),
 Book(
 "ISBN-0-13-815504-6",
 "Database Systems: The Complete Book",
 List(
 Author("Hector", "Garcia-Molina"),
 Author("Jeffrey", "Ullman"),
 Author("Jennifer", "Widom")),
 100),
 Book(
 "ISBN-0-11-222222-3",
 "Hector and Jeff's Database Hints",
 List(
 Author("Jeffrey", "Ullman"),
 Author("Hector", "Garcia-Molina")),
 50),
 Book(
 "ISBN-9-88-777777-6",
 "Jennifer's Economical Database Hints",
 List(Author("Jennifer", "Widom")),
 25)
)

// Return all books that cost no more than 50
// dollars (i.e., the last 2 books)

val cheapBooks =
 someBooks.filter(book => book.price <= 50)

// Return all books having Jeffrey Ullman as an
// author (i.e., the first 3 books)

def hasAuthor(book: Book, authorLastName: String):
 Boolean = {

 book.authors.exists(
 author => author.lastName == authorLastName)
}

val booksByUllman =
 someBooks.filter(book =>
 hasAuthor(book, "Ullman"))

// Return all book authors, without duplicates

val allAuthors =
 someBooks.flatMap(book => book.authors).distinct

// Return all titles of books having Jeffrey
// Ullman as an author

val bookTitlesByUllman =
 someBooks.filter(bk => hasAuthor(bk, "Ullman")).
 map(bk => bk.title)

Note how the queries in prose naturally map to their
counterparts in Scala code, using a small vocabulary of
higher-order functions such as map, flatMap and filter.
The code shows the "what" more than the "how". In that
respect, the Scala code is more like XQuery than Java
(especially than Java before version 8). In a sense, the
Scala core language along with its Collections API form a
universal query (and transformation) language. Of course,
Scala is a lot more than that, but for the purposes of this
article this is a fitting description.

3. Brief introduction to yaidom

The yaidom library can be used for querying and
transforming XML in Scala. It interoperates very well
with the Scala Collections API.

It was mentioned above that Scala and its Collections
API can be used as a universal query and transformation
language. The yaidom library offers an XML element
query API that turns elements into Scala collections of
elements. So yaidom can be said to turn a universal query
and transformation language into an XML querying and
transformation language. In other words, Scala + its
Collections API + yaidom can be used as an "XML
querying/transformation stack". Below it will become
clear that yaidom can plug in different "XML backends",
thus making the "XML stack" very powerful.

Using the bookstore example above, some simple
yaidom XML queries are shown below. The XML is as
follows:

// The book store XML

<Bookstore>
 <Book ISBN="ISBN-0-13-713526-2"
 Price="85" Edition="3rd">
 <Title>A First Course in Database Systems
 </Title>
 <Authors>
 <Author>
 <First_Name>Jeffrey</First_Name>
 <Last_Name>Ullman</Last_Name>
 </Author>
 <Author>
 <First_Name>Jennifer</First_Name>
 <Last_Name>Widom</Last_Name>
 </Author>
 </Authors>
 </Book>
 <Book ISBN="ISBN-0-13-815504-6" Price="100">
 <Title>Database Systems: The Complete Book
 </Title>
 <Authors>
 <Author>
 <First_Name>Hector</First_Name>
 <Last_Name>Garcia-Molina
 </Last_Name>

Page 100 of 177

XML Processing with Scala and yaidom

 </Author>
 <Author>
 <First_Name>Jeffrey</First_Name>
 <Last_Name>Ullman</Last_Name>
 </Author>
 <Author>
 <First_Name>Jennifer</First_Name>
 <Last_Name>Widom</Last_Name>
 </Author>
 </Authors>
 <Remark>
Buy this book bundled with "A First Course"
 </Remark>
 </Book>
 <Book ISBN="ISBN-0-11-222222-3" Price="50">
 <Title>Hector and Jeff's Database Hints
 </Title>
 <Authors>
 <Author>
 <First_Name>Jeffrey</First_Name>
 <Last_Name>Ullman</Last_Name>
 </Author>
 <Author>
 <First_Name>Hector</First_Name>
 <Last_Name>Garcia-Molina
 </Last_Name>
 </Author>
 </Authors>
 <Remark>
An indispensable companion to your textbook
 </Remark>
 </Book>
 <Book ISBN="ISBN-9-88-777777-6" Price="25">
 <Title>
 Jennifer's Economical Database Hints
 </Title>
 <Authors>
 <Author>
 <First_Name>Jennifer</First_Name>
 <Last_Name>Widom</Last_Name>
 </Author>
 </Authors>
 </Book>
</Bookstore>

Below follow the yaidom XML queries corresponding to
the (non-XML) queries above. Written rather verbosely,
they are as follows:

// Assume a root element called bookstore.

val someBooks =
 bookstore.filterChildElems(bk =>
 bk.localName == "Book")

// Return all books that cost no more than 50
// dollars (i.e., the last 2 books)

val cheapBooks =
 someBooks.filter(book =>
 book.attribute(EName("Price")).toInt <= 50)

// Return all books having Jeffrey Ullman as an
// author (i.e., the first 3 books)

def hasAuthor(
 book: simple.Elem, authorLastName: String):
 Boolean = {

 require(book.localName == "Book")

 book.findElem(e =>
 e.localName == "Author" &&
 e.getChildElem(che =>
 che.localName == "Last_Name").text ==
 authorLastName).isDefined
}

val booksByUllman =
 someBooks.filter(bk => hasAuthor(bk, "Ullman"))

// Return all book author elements (with
// duplicates, this time)

val allAuthors =
 someBooks.flatMap(
 book => book.filterElems(e =>
 e.localName == "Author"))

// Return all titles of books having Jeffrey Ullman
// as an author

val bookTitlesByUllman =
 someBooks.filter(book =>
 hasAuthor(book, "Ullman")).
 map(book => book.getChildElem(e =>
 e.localName == "Title").text)

Above, the EName type stands for "expanded name". It
corresponds to Java's javax.lang.namespace.QName,
except that it does not retain the prefix, if any.

For clarity, these XML queries were written more
verbosely than needed. Even when writing these queries
in a less verbose way than has been done above, there
would still be some verbosity related to XML handling.
This is intentional: yaidom is a precise XML query API.

Page 101 of 177

XML Processing with Scala and yaidom

For example, yaidom does not abstract away the
distinction between elements and attributes, or between
names with a namespace and those without any
namespace. Despite the syntax dedicated by yaidom to
XML node manipulation, the yaidom query examples are
not that much more verbose than the non-XML query
examples presented earlier. Compared to ad-hoc XML
querying in Java (using JAXP), however, ad-hoc XML
querying in Scala using yaidom is much less verbose.
Even when invoking XPath queries (returning node sets)
from Java code, the processing of the resulting node sets
would add "syntactic clutter" that the use of Scala with
yaidom could have prevented.

Why use yaidom and not Scala's own XML library?
As will become apparent in this article, yaidom has very
precise support for XML namespaces, more so than Scala
XML. Using the yaidom API it is always clear if queries
are namespace-aware. If it is intentional to query for
elements that have specific local names, regardless of the
namespace, then yaidom forces the user to be explicit
about that. Precise namespace support in yaidom even
goes as far as the ability to express a simple theory of
XML namespaces (relating namespace declarations, in-
scope namespaces, qualified names and expanded names)
in yaidom code itself, outside of any particular XML tree!

There are more reasons why yaidom may be
preferable to Scala's own XML library. For example,
yaidom has a precise uniform XML query API that is
offered by multiple "XML backend" implementations.
Not only does yaidom offer own native DOM-like tree
(XML backend) implementations with different
strengths and weaknesses, but it is also possible to wrap
existing XML library tree implementations (DOM,
JDOM, XOM, Saxon etc.) in yaidom, offering the same
yaidom query API. For example, yaidom wrappers
around Saxon-EE NodeInfo trees offer the best of Saxon
and the Scala-yaidom combination: on the one hand the
completeness and schema-type-awareness of Saxon-EE,
and on the other hand a "Scala Collections API querying
experience", using yaidom as the natural bridge between
Saxon "nodes" and Scala collections processing. Unlike
yaidom, the Scala XML library does not offer multiple
tree implementations backing the same query API.

This extensibility of yaidom goes even further than
specific XML backends. It is also possible to extend
yaidom for custom "XML dialects" (or "vocabularies").
This will be explained and shown later in this paper.
Arguably this could be the best reason to prefer yaidom
to Scala's own XML library.

Why not just use standards such as XSLT or XQuery?
XBRL processing is a good example where yaidom
shines, as will become clear below. After all, XBRL is a
lot more than "just" XML, so XBRL processing is a lot

more than just XML processing. Performing most or all
of this processing in Scala using yaidom offers the
following advantages:
• No Scala syntax is spent on processing sequences (or

node sets) resulting from XPath/XQuery evaluation
• In a programming language (such as Scala) it is quite

natural and easy to store intermediate results in
variables (unlike XPath)

• As a rich (functional) OO programming language,
Scala has a lot of expressive power, which makes it easy
to build layered models on top of DOM-like element
trees (as will be shown below)

• Yaidom leverages the Scala Collections API, which
enables the user to achieve a lot using only a small
vocabulary

• There is a large ecosystem around Scala (and Java),
offering many high quality libraries.

• Yaidom offers (and enables) element implementations
optimized for fast querying (although no benchmarks
are provided in this paper)

• For programmers on the JVM, Scala and yaidom have
more familiar semantics than XPath and the XQuery
and XPath Data Model (XDM):
• In XDM there is no difference between an item

(node or atomic value) and a singleton sequence
containing that item

• Sequences in XDM cannot be nested, so are always
flattened

• In Scala (as in Java), "equality" is expected to be an
equivalence relation (unlike the general
comparison equality operator in XPath, which is
not transitive)

If desired, yaidom can be used with XQuery when using
an XML(-enabled) database, where XQuery joins and
filters database XML data into "raw result sets", which
are further processed using yaidom queries. Still, it makes
sense to keep the number of boundaries between XQuery
and yaidom/Scala relatively low, for each such boundary
has some (syntactic and semantic) costs. In summary, the
more some XML processing task can benefit from the use
of Scala, the more attractive the use of yaidom becomes.

4. Brief introduction to the XBRL
examples

So far, this article has introduced Scala and yaidom,
using only trivial examples. In the remainder of this
article, yaidom examples in the domain of XBRL are
used. First, this section gives a very brief introduction to
XBRL.

XBRL (eXtensible Business Reporting Language) is a
standard for business reporting. Many (but not all)

Page 102 of 177

XML Processing with Scala and yaidom

1 http://www.xbrlsite.com/examples/comprehensiveexample/2008-04-18/sample-Instance-Proof.xml

XBRL reports are financial statements. XBRL reports
("XBRL instances") are XML documents, following a
specified structure.

Suppose we want to report that for a given
organization ("CIK") the average number of employees
in 2003 was 220, and that the corresponding numbers
for 2004 and 2005 were 240 and 250, respectively. More
precisely, concept gaap:AverageNumberEmployees

(described by the so-called US-GAAP XBRL taxonomy)
has the value 220 in the given context (organization
"CIK", year 2003). Then we can report the 3 facts above
in XBRL format as follows:

<xbrl xmlns="http://www.xbrl.org/2003/instance"
 xmlns:gaap="http://xasb.org/gaap">

 <context id="D-2003">
 <entity>
 <identifier
 scheme="http://www.sec.gov/CIK">
 1234567890
 </identifier>
 </entity>
 <period>
 <startDate>2003-01-01</startDate>
 <endDate>2003-12-31</endDate>
 </period>
 </context>

 <context id="D-2004">
 <entity>
 <identifier
 scheme="http://www.sec.gov/CIK">
 1234567890
 </identifier>
 </entity>
 <period>
 <startDate>2004-01-01</startDate>
 <endDate>2004-12-31</endDate>
 </period>
 </context>

 <context id="D-2005">
 <entity>
 <identifier
 scheme="http://www.sec.gov/CIK">
 1234567890
 </identifier>
 </entity>
 <period>
 <startDate>2005-01-01</startDate>
 <endDate>2005-12-31</endDate>
 </period>
 </context>

 <unit id="U-Pure">
 <measure>pure</measure>
 </unit>

 <gaap:AverageNumberEmployees
 contextRef="D-2003"
 unitRef="U-Pure"
 decimals="INF">220
 </gaap:AverageNumberEmployees>
 <gaap:AverageNumberEmployees
 contextRef="D-2004"
 unitRef="U-Pure"
 decimals="INF">240
 </gaap:AverageNumberEmployees>
 <gaap:AverageNumberEmployees
 contextRef="D-2005"
 unitRef="U-Pure"
 decimals="INF">250
 </gaap:AverageNumberEmployees>

</xbrl>

This example comes from a non-trivial sample XBRL
instance written by Charles Hoffman, also known as "the
father of XBRL".

There are many requirements that have to be met in
order for an XBRL instance to be valid. The XBRL Core
specification (as well as other XBRL specifications)
describes many of these requirements. There are also
many common best practices that have been formalized
as complementary rules. For example, the International
FRIS Standard places additional constraints on XBRL
instances. [2]

Most of the remainder of this article will show how
many of those FRIS rules can be written naturally as
Scala expressions using yaidom. Yaidom is in no way
married to XBRL, but XBRL validations are good XML
processing examples where Scala and yaidom really shine.

5. Simple yaidom query examples

The XBRL snippet above is part of this sample instance1.
In this section, some simple yaidom XML queries are
performed on the XBRL instance.

Before showing these queries on this XBRL instance,
it should be noted that knowing only 3 yaidom query
API methods to some extent means knowing them all.
These 3 methods are filterChildElems, filterElems and
filterElemsOrSelf. They all filter elements, based on the
passed element predicate function. The difference is that
they filter child elements, descendant elements, and
descendant-or-self elements, respectively. The word
"descendant" is left out from the method names.

It should also be noted that methods
filterChildElems and filterElemsOrSelf have
shorthands \ and \\, respectively. Method
attributeOption has shorthand \@. Moreover, some
element predicate functions have names, such as
withLocalName and withEName.

Page 103 of 177

XML Processing with Scala and yaidom

http://www.xbrlsite.com/examples/comprehensiveexample/2008-04-18/sample-Instance-Proof.xml

Some yaidom queries on the sample XBRL instance
are as follows:

// Let's first parse the XBRL instance document

val docParser = DocumentParserUsingSax.newInstance

val doc = docParser.parse(sampleXbrlInstanceFile)

// Check all gaap:AverageNumberEmployees facts
// have unit U-Pure.

val xmlNs = "http://www.w3.org/XML/1998/namespace"
val xbrliNs = "http://www.xbrl.org/2003/instance"
val gaapNs = "http://xasb.org/gaap"

val avgNumEmployeesFacts =
 doc.documentElement.filterChildElems(
 withEName(gaapNs, "AverageNumberEmployees"))

println(avgNumEmployeesFacts.size) // prints 7

val onlyUPure =
 avgNumEmployeesFacts.forall(fact =>
 fact.attributeOption(EName("unitRef")) ==
 Some("U-Pure"))
println(onlyUPure) // prints true

// Check the unit itself, minding the default
// namespace

val uPureUnit =
 doc.documentElement.getChildElem(e =>
 e.resolvedName == EName(xbrliNs, "unit") &&
 (e \@ EName("id")) == Some("U-Pure"))

println(
 uPureUnit.getChildElem(
 withEName(xbrliNs, "measure")).text)
// prints "pure"

// Now we get the measure element text, as QName,
// resolving it to an EName (expanded name)
println(
 uPureUnit.getChildElem(
 withEName(xbrliNs, "measure")).
 textAsResolvedQName)
// prints EName(xbrliNs, "pure")

// Knowing the units are the same, the
// gaap:AverageNumberEmployees facts are
// uniquely identified by contexts.

val avgNumEmployeesFactsByContext:
 Map[String, simple.Elem] =
 avgNumEmployeesFacts.groupBy(_.attribute(
 EName("contextRef"))).
 mapValues(_.head)

println(avgNumEmployeesFactsByContext.keySet)
// prints the set:
// "D-2003", "D-2004", "D-2005", "D-2007-BS1",

// "D-2007-BS2", "D-2006", "D-2007"

println(
 avgNumEmployeesFactsByContext("D-2003").text)
// prints 220

The uniform query API of yaidom consists of several
query API traits. They are like LEGO blocks, that can
easily be combined. Yaidom (native and wrapper)
element tree implementations all mix in some or most of
these query API traits. The example queries above are not
bound to any particular element implementation, but
use a common query API trait, namely ScopedElemApi,
which is itself a combination of query API traits. This
trait offers methods like filterElemsOrSelf,
filterChildElems (from trait ElemApi), as well as
methods to get text content, qualified names, expanded
names, attributes etc. In other words, it offers a query
API abstraction that is valid for almost all element
implementations.

The query API traits themselves are not visible in
normal yaidom client code. They are relevant for creators
of custom yaidom element implementations, for example
wrappers around elements offered by existing XML
libraries. Yaidom users that do not extend yaidom may
still want to know which query API traits are offered by
some XML tree implementation, of course.

Sometimes we want to use methods that are only
offered by specific element implementations, and not by
any query API traits. The default native yaidom element
implementation is simple.Elem. It knows about elements
and text content (as per the mixed-in ScopedElemApi
trait), but it also knows about comments, processing
instructions and CDATA sections (if passed by the XML
parser). For example:

println(doc.comments.map(_.text.trim).mkString)
// prints
// "Created by Charles Hoffman, CPA, 2008-03-27"

val contexts =
 doc.documentElement.filterChildElems(
 withEName(xbrliNs, "context"))

println(contexts forall (e =>
 !e.commentChildren.isEmpty))
// prints true: all contexts have comments

// Being lazy, and ignoring the namespace here
val facts =
 doc.documentElement.filterChildElems(
 withLocalName(
 "ManagementDiscussionAndAnalysisTextBlock"))

println(
 facts.flatMap(e => e.textChildren.filter(
 _.isCData)).size >= 1)
// prints true

Page 104 of 177

XML Processing with Scala and yaidom

6. Namespace examples

Yaidom has very precise namespace support. Like the
article [3], yaidom distinguishes qualified names from
expanded names, and namespace declarations from in-
scope namespaces. Their yaidom counterparts are
immutable classes QName, EName, Declarations and Scope.
Having these 4 distinct concepts, their relationships can
be expressed very precisely, even in yaidom code, and
even outside of the context of any particular XML tree.

In the example XBRL instance above, all namespace
declarations are in the root element, and therefore all
descendant-or-self elements have the same in-scope
namespaces. In code:

val rootScope = doc.documentElement.scope

val sameScopeEverywhere =
 doc.documentElement.findAllElemsOrSelf.forall(
 e => e.scope == rootScope)

println(sameScopeEverywhere) // prints true

Let's consider the first FRIS rule taken from [2],
expressed in yaidom. Rule 2.1.5 states that some
commonly used namespaces should use their "preferred"

namespace prefixes in XBRL instances. The rule can be
expressed in yaidom as follows:

val standardScope = Scope.from(
 "xbrli" -> "http://www.xbrl.org/2003/instance",
 "xlink" -> "http://www.w3.org/1999/xlink",
 "link" -> "http://www.xbrl.org/2003/linkbase",
 "xsi" ->
 "http://www.w3.org/2001/XMLSchema-instance",
 "iso4217" -> "http://www.xbrl.org/2003/iso4217")

val standardPrefixes = standardScope.keySet
val standardNamespaceUris =
 standardScope.inverse.keySet

// Naive implementation: expects only namespace
// declarations in root element

def usesExpectedNamespacePrefixes(
 xbrlInstance: simple.Elem): Boolean = {

 val rootScope = xbrlInstance.scope
 require(
 xbrlInstance.findAllElemsOrSelf.forall(
 e => e.scope == rootScope))

 val subscope =
 xbrlInstance.scope.withoutDefaultNamespace
 filter {
 case (pref, ns) =>
 standardPrefixes.contains(pref) ||
 standardNamespaceUris.contains(ns)
 }
 subscope.subScopeOf(standardScope)
}

Above, there is no useful error reporting, but that is easy
to add, because the implementation is entirely in the rich
Scala programming language. In prose, method
usesExpectedNamespacePrefixes checks that if some of
the 5 namespace prefixes above are used, that they all
map to the expected namespace URIs. The method also
checks the other side: if some of the namespace URIs are
in-scope, then the corresponding namespace prefixes are
the expected ones, with the exception that they may be
the default namespace.

The example above illustrates yaidom's precise
support for namespaces in the uniform query API, and
therefore offered by diverse element tree
implementations. Yet the namespace support goes further
than that. As article [3] makes clear, namespaces are not
only used in element and attribute names, but can also
be used in text content and attribute values.

FRIS rule 2.1.7 must take namespaces in text content
and attribute values into account, because it states that
XBRL instances should not have any unused namespace
declarations. Yet how do we detect the use of namespaces
in text content or attribute values? We know this from

Page 105 of 177

XML Processing with Scala and yaidom

the XML schema(s) describing XBRL instances. For
example, the xbrli:measure element has type xs:QName.
So the text content of an xbrli:measure should be
interpreted as an expanded name. The namespace of that
expanded name is therefore one of the namespaces used
in the XBRL instance.

Yaidom makes it possible to code a
DocumentENameExtractor strategy, holding information
about ENames and therefore namespaces occurring in
text content or attribute values. So, looking at the XML
schema(s), we can easily code such a strategy ourselves
(yaidom itself has no XML Schema awareness). Then,
using method NamespaceUtils.findAllNamespaces, all
namespaces used in the XBRL instance can be found.

Method NamespaceUtils.findAllNamespaces does not
work on the default "simple" elements, however, because
simple elements do not know their ancestry. For this
purpose, yaidom offers so-called "indexed" elements, that
do know their ancestry. Like simple elements, indexed
elements are immutable, because they are just wrappers
around a root as simple element along with an "index"
into that element tree. The indexed and simple elements
also share most of the query API, in particular the
ScopedElemApi query API trait.

Let's now implement FRIS rule 2.1.7, but only for
the sample XBRL instance:

val xbrliDocumentENameExtractor:
 DocumentENameExtractor = {
 // Not complete, but suffices for this example!

 new DocumentENameExtractor {

 def findElemTextENameExtractor(
 elem: indexed.Elem):
 Option[TextENameExtractor] =

 elem.resolvedName match {
 case EName(Some(xbrliNs), "measure")
 if elem.path.containsName(
 EName(xbrliNs, "unit")) =>

 Some(SimpleTextENameExtractor)
 case EName(
 Some(xbrldiNs), "explicitMember") =>
 Some(SimpleTextENameExtractor)
 case _ => None
 }

 def findAttributeValueENameExtractor(
 elem: indexed.Elem, attrEName: EName):
 Option[TextENameExtractor] =

 elem.resolvedName match {
 case EName(
 Some(xbrldiNs), "explicitMember")
 if attrEName == EName("dimension") =>

 Some(SimpleTextENameExtractor)
 case _ => None
 }
 }
}

val indexedDoc = indexed.Document(doc)

val namespaceUrisDeclared =
 indexedDoc.documentElement.scope.inverse.keySet

import NamespaceUtils._

// Check that the used namespaces are almost
// exactly those declared in the root element
// (approximately rule 2.1.7)

val companyNs = "http://www.example.com/company"

val usedNamespaces =
 findAllNamespaces(
 indexedDoc.documentElement,
 xbrliDocumentENameExtractor).diff(Set(xmlNs))

// The "company namespace" is an unused namespace
// in our sample XBRL instance
require(usedNamespaces == namespaceUrisDeclared.
 diff(Set(companyNs)))

Although yaidom itself has no XML Schema awareness,
yaidom can still be useful in a context where schema-
awareness is needed. For example, Saxon-EE NodeInfo
objects can be wrapped as yaidom trees, thus getting the
best of Scala Collections processing and Saxon-EE XML
and XML Schema support.

Let's now remove the unused namespaces (the
"company" namespace in this example), and compare the
result with the original XBRL instance. Yet how do we
compare two XML trees (as simple elements) for
equality? In order to do so, note that namespace prefixes
are irrelevant to equality comparisons, but namespace
URIs do count. (Be careful with prefixes in text content
and attribute values!) Yaidom offers an XML element
implementation in which namespace prefixes do not
occur. These elements are called "resolved" elements.
They share much of the same query API with simple and
indexed elements, but not all of it. After all, resolved
elements do not know about namespace prefixes, so they
do not know about qualified names. Therefore they do
not mix in the ScopedElemApi trait, but they do mix in
traits like ElemApi and HasTextApi, that is, all traits
extended by ScopedElemApi that do not know about
qualified names. Hence, resolved elements still have
much of the yaidom query API in common with simple
and indexed elements.

Page 106 of 177

XML Processing with Scala and yaidom

1 http://dvreeze.github.io/code-snippets/xbrl-instances.html

The following code strips unused namespaces, and
shows that the result is the same, when comparing the
trees as resolved elements.

val editedRootElem =
 stripUnusedNamespaces(
 indexedDoc.documentElement,
 xbrliDocumentENameExtractor)

val areEqual =
 resolved.Elem(
 indexedDoc.document.documentElement) ==
 resolved.Elem(editedRootElem)

println(areEqual) // prints true

7. Extending yaidom for custom
XML dialects

Above, all XBRL instance processing was coded as
normal XML processing, mostly using yaidom simple
and indexed elements. That's not very convenient. It
would be nice if we could talk about contexts, units, facts
etc., instead of just XML elements that happen to be
contexts, units, facts, etc. In general, it would be nice if
yaidom would make it easy to support custom XML
dialects. That is indeed the case. We already knew that
yaidom is extensible, in that new element
implementations offering the same yaidom query API
can easily be added. Yet, what's more, yaidom also
facilitates a "yaidom querying experience" for custom
XML dialects, such as XBRL instances (or DocBook files,
or Maven POM files, or any other XML dialect
described by schemas).

To that end, yaidom offers the SubtypeAwareElemApi
query API trait. Whereas the ElemApi trait offers
querying for child/descendant/descendant-or-self
elements, trait SubtypeAwareElemApi extends this to class
hierarchies (for XML dialects), offering querying for
child/descendant/descendant-or-self elements of specific
sub-types of the root class of the class hierarchy.

In this XBRL instance class hierarchy1 we can see this
action. Each part of an XBRL instance is of type
XbrliElem or a sub-type. Common sub-types are those
for contexts, units, item facts, tuple facts, and, of course,
XBRL instances themselves. Super-type XbrliElem mixes
in traits ScopedElemApi and SubtypeAwareElemApi. Trait
ScopedElemApi offers the most common yaidom element
query API, as we know, and trait SubtypeAwareElemApi
makes it easy to query for elements of specific types, with
little boilerplate. The latter is used internally in the code
of the XbrliElem class hierarchy, but can also be used in
client code, if need be.

For the remaining FRIS validations in this article, we
will use the XbrliElem class hierarchy.

Consider FRIS rule 2.1.10. It states that there is a
specific expected order of the child elements of the root
element. One way to code that is as follows:

// Assume xbrlInstance variable of type XbrlInstance

val remainingChildElems =
 xbrlInstance.findAllChildElems dropWhile {
 case e: SchemaRef => true
 case e => false
 } dropWhile {
 case e: LinkbaseRef => true
 case e => false
 } dropWhile {
 case e: RoleRef => true
 case e => false
 } dropWhile {
 case e: ArcroleRef => true
 case e => false
 } dropWhile {
 case e: XbrliContext => true
 case e => false
 } dropWhile {
 case e: XbrliUnit => true
 case e => false
 } dropWhile {
 case e: Fact => true
 case e => false
 } dropWhile {
 case e: FootnoteLink => true
 case e => false
 }

require(remainingChildElems.isEmpty)

Now consider FRIS rule 2.4.2 stating that all contexts
must be used. It is also checked that all context references
indeed refer to existing contexts. Note in this case how
friendly the XBRL instance model is compared to raw
XML elements:

val contextIds =
 xbrlInstance.allContextsById.keySet

val usedContextIds = xbrlInstance.findAllItems.
 map(_.contextRef).toSet

require(usedContextIds.subsetOf(contextIds))

// Oops, some contexts are not used, namely
//I-2004, D-2007-LI-ALL and I-2003
println(contextIds.diff(usedContextIds))

The next rule is more complex. FRIS rule 2.4.1 states
that S-equal contexts should not occur. S-equality
("structural equality") is defined in the Core XBRL
specification. A good implementation of S-equality
requires type information. Therefore Saxon-EE backed

Page 107 of 177

XML Processing with Scala and yaidom

http://dvreeze.github.io/code-snippets/xbrl-instances.html

1 EBPI http://www.ebpi.nl

yaidom wrappers would be a good choice. A very naive
approximation is given below:

def transformContextForSEqualityComparison(
 context: XbrliContext): resolved.Elem = {

 // Ignoring "normalization" of dates and
 // QNames, as well as dimension order etc.
 val elem = context.indexedElem.elem.copy(
 attributes = Vector())
 resolved.Elem(elem).
 coalesceAndNormalizeAllText.
 removeAllInterElementWhitespace
}

Then rule 2.4.1 applied to our XBRL instance is as
follows:

val contextsBySEqualityGroup =
 xbrlInstance.allContexts.groupBy(e =>
 transformContextForSEqualityComparison(e))

require(contextsBySEqualityGroup.size ==
 xbrlInstance.allContexts.size)

As we can see, the more complex the rules, the more we
profit from the fact that all code is Scala code, and that
there is no needed effort in bridging between Scala and
XSLT, for example. The Scala language, its Collections
API, and yaidom form a powerful combination.

Finally, consider FRIS rule 2.8.3, stating that
concepts are either top-level or nested in tuples, but not
both. Using the XBRL instance model, the code is
simple:

val topLevelConceptNames =
 xbrlInstance.allTopLevelFactsByEName.keySet

val nestedConceptNames =
 xbrlInstance.allTopLevelTuples.
 flatMap(_.findAllFacts).
 map(_.resolvedName).toSet

require(topLevelConceptNames.intersect(
 nestedConceptNames).isEmpty)

8. Conclusion

In this article, the yaidom Scala XML query library was
introduced. We used examples from XBRL. It turned out
that Scala, its Collections API, and the yaidom library
form a powerful precise XML processing stack. This stack
is even more powerful when using custom mature
yaidom backends as Saxon-EE. It also turned out that
yaidom makes it easy to support custom XML dialects
(such as XBRL instances), offering more type-safety and
leading to less boilerplate. The extensibility of yaidom (in
more than one way) is one of its strengths, along with its
precise namespace support and uniform precise element
query API (offered by multiple XML backends).

The FRIS rule examples show that a programming
language like Scala is a natural fit for implementing those
rules. Had we used XSLT or XQuery instead, how would
we easily have found unused namespaces, for example?
Moreover, how would we have supported custom XML
dialects in the same way that yaidom facilitates such
support?

The examples only used XBRL instances. These
instances are described by XBRL taxonomies. Such
taxonomies have to obey many rules as well. Taxonomies
typically span many files, and their validation is usually
much more complex than instance validation. The
advantages of using a Scala yaidom XML stack would
even be greater than for XBRL instances.

As a concluding remark, yaidom is used in
production code developed at EBPI1. Its usage in several
projects has certainly helped it mature. I want to thank
my colleagues Jan-Paul van der Velden, Andrea Desole,
Johan Walters and Nicholas Evans for their valuable
feedback on earlier versions of yaidom.

Bibliography

[1] XML Processing in Scala. Dino Fancellu and William Narmontas. XML London 2014.
doi:10.14337/XMLLondon14.Narmontas01

[2] Financial Reporting Instance Standards 1.0. XBRL Consortium.
http://www.xbrl.org/technical/guidance/FRIS-PWD-2004-11-14.htm

[3] Understanding Namespaces. Evan Lenz.
http://www.lenzconsulting.com/namespaces/

Page 108 of 177

XML Processing with Scala and yaidom

http://www.ebpi.nl
http://dx.doi.org/10.14337/XMLLondon14.Narmontas01
http://www.xbrl.org/technical/guidance/FRIS-PWD-2004-11-14.htm
http://www.lenzconsulting.com/namespaces/

Lizard
A Linked Data Publishing Platform

Andy Seaborne

Epimorphics

Abstract

Publishing data means delivering it to a wide and changing
variety of data consumers. Instead of defined, agreed use by
fixed applications, data is used in ways that the publisher
will find hard to predict as users find ingenious ways to use
and combine data. Data services don't do "9 to 5" and
publishing of the data must aim for high levels of available
service.

Yet the operation of data services will need to be resilient
to operational needs as well as updates. By looking at some
real data publishing services, we will see that while
hardware failures happen, the main causes of service
disruption are operational.

This paper describes a new, open source, RDF database
that addresses operation needs using fault tolerance systems
techniques to provide a scalable, consistent, and resilient
data publishing platform for RDF.

Keywords: SPARQL, RDF, Linked Data, Semantic Web,
High Availability

1. Introduction

When publishing data, there is no limit to the ways in
which the data is used. As the data is discovered and used
by new applications, the usage of the published material
changes over time. Data publishers who want to attract
these applications want to provide a high quality service
including 24x7 availability in order to encourage usage as
a trusted, reliable publishing service.

Experience running two public-facing data
publishing service shows that the most frequent causes of
machine interruption do not come from hardware faults
or software bugs. System administration is a much more
frequent cause but the availability requirements exclude
the idea of scheduled downtime. Sometimes, security
alerts need to be handled at very short notice.

A single server can not continue providing the
application-facing service. It requires more than one
machine, and that in turn complicates the service
operation. Yet that in turn introduces complexity in the
form of update to multiple copies of the data.

We describe a linked data publishing platform that
can provide 24x7 operation while at the same time
allowing machines to be brought in and out of service. It
provides consistent, robust update across the multiple
copies of the data.

2. Prior Experience with Data
Publishing Platforms

This section covers two services operating on Amazon
Web Services (AWS). They were built to provide
continuous operation using single application.
Experience from these informs the design of the Lizard
publish platform.

Each publishing service operates as a number of
identical replica application stacks, normally 2, behind a
load balancer. Each replica stack is itself a pair – a
application server providing a data explorer via HTML,
and a SPARQL database server. The stack also provides
query access to the database via the application layer.

One service is small, of the order of 10 million
triples, and updated several times a day in small
quantities, and the other is a larger database of 370
million triples, updated once a month. Both are public
facing services.

The main cause of system updates has been due to
administration tasks, either planned when conducting
routine updates including security updates, or unplanned
in the case of short-notice security issues, as in the case of
SSH Heartbleed. Customer contracts stipulate
maintaining the systems are up-to-date and penetration
testing covers issues encountered by the customer beyond
the minimum for the service.

Managing the system is achieved by exploiting the
"read mainly" nature of the services. Updates come via
different route, from the data owner, and not part of the
public facing service. Machines can be stopped by
holding up updates, taking a replica out of the load
balancer, performing system administration, and putting
back in the load balancer. The other replicas are updated
by repeating the process.

Another source of system change relates to changes in
usage patterns. A general data publishing service is

doi:10.14337/XMLLondon15.Seaborne01 Page 109 of 177

1 Apache Jena - http://jena.apache.org/

different to a database-backed web site because the
nature of queries to the underlying database are much
more varied. There isn't a controlled set of local
application queries that can be audited and tuned. Some
queries may involve powerful views of the data including
sorting and aggregation which are costly operations,
whether performed in the database or in the presentation
service. Some access patterns defeat caching techniques: a
web crawler does not visit the same page more then once
so caching of previously calculated pages has little
benefit. The major search engines operate multiple
machines to crawl a site and, even when each on it's own
is a tolerable load, having 4 or more search engines all
active at once has generated excessive load. In addition,
not all software respects web controls such as robots.txt
and "nofollow" link mark-up.

Such load increases can also arise by external events
such as publicity around new or greatly enhanced data
offerings. To meet this, new replicas may need to be
added to a running system, and removed later when load
subsides.

The administration tasks are scripted but they are
relying on the ability to hold back updates for a period of
time.

3. Advantages and Disadvantages

This approach has the advantage of not requiring the
majority of software to be modified for replicated use.
Updating the data is not coordinated to provide a
consistent view but because any request of generated
page, or SPARQL query, is only driven from one
database each request is seeing a consistent view. During
update, it is possible one replica is serving new data but
another is serving old data. The short update time makes
this acceptable for the class of data publishing involved.
Should a failure happen during updates, the task of bring
the system back to a consistent state is mainly manual
and the time during which the data is inconsistent is
longer.

So in addition to continuous operation, we would
like to have some transaction features for consistency and
robustness to make platform operation easier.

The last desirable feature is being able to flex the
system in terms of scale. For replicated separate systems,
scaling horizontally adapts to changes in the number of
requests being made of the overall platform. Given the
nature of new events such as publicity around new data
sources, being able to add new capacity, and remove it
later to reduce costs, is desirable.

4. Apache Jena

Apache Jena1 is an open source RDF system. It provides
an RDF database (TDB) with a complete
implementation of SPARQL 1.1 query [1] and update
[2] languages. It provides a singe-machine database server
accessed with the standard SPARQL protocols (query
[3], update and graph store [4] protocols). This is Apache
Jena Fuseki.

5. Storing RDF

In this section, we outline the single-machine design for
RDF storage and query processing in Apache Jena TDB.
This designed is extended to a multi-machine setup in
the next section.

An RDF Dataset is a default graph, and zero or more
named graphs. TDB stored these as a triples table, for the
default graph, and a quads table for the named graphs. It
can also use the dynamically computed union of all the
named graphs as the triple table instead of concrete
storage. We will discuss RDF triples and RDF graphs –
the same principles apply to RDF Datasets and quads
used to represent named graphs, a quad being an RDF
triple with an extra field to record the graph name.

TDB stores RDF terms (URIs, Literals, blank nodes)
using a dictionary. Each RDF term is allocated a fixed
length binary node id, and the representation of the
RDF term is stored in the dictionary using that fixed
length binary node id as a key.

A triple is a tuple of three RDF terms (subject,
predicate object) The same node id is used for every
occurrence of the same RDF term (URI, literal, blank
node) and matching SPARQL basic patterns is done by
node id. Incoming queries are translated to node id form
and the results mapped back to RDF terms in the results.

For certain value types, the node id is used to encode
the value within the identifier. This avoids the need to
look into the dictionary to retrieve the RDF term and
then convert it into a value for use in SPARQL FILTERs.
Encoding the value directly avoids this process and can
make a significant difference to performance. Values are
recorded, not lexical forms,; for integers 01 and +1, two
ways to write the lexical form of integer value 1, so they
become the same node id. If a value does not fit into a
node id, the RDF term is stored in the dictionary as
normal. Datatypes supported include the XSD datatypes
[5] integers, and the derived types, decimals, dateTime
and dates.

Indexes are used to used to store the triples, with the
default choice being SPO, POS, OSP, where the letters

Page 110 of 177

Lizard

http://jena.apache.org/

indicate the ordering. The SPO index can return all
tuples, all tuples starting with a specific S or all tuples
with specific SP; it can not efficiently return all tuples
with specific O and P but any S values.

The OSP index is little used in real world queries.
Because of caching effects, its presence affects loading
speed but does not influence query performance.

The indexes record all 3 parts of the triple tuple so
there is no need to additionally store the triple tuple
itself.

For example, if the triple is

?s rdf:type :Class

the POS index can be used, with a lookup of

 P=id(rdf:type) O=id(:Class) S=any

where id(..) is the node id of the given URI mapped by
the RDF Term dictionary.

TDB uses B+trees. A B+tree is a datastructure using
fixed sized blocks to hold a number of key- value pairs.
When storing triple tuples, the tupel forms the key and
there is no additional value part. The B+Tree algorithms
balance the tree so that the blocks are at least half full.

A B+tree keeps its key entries in a sorted ordered so
to answer all triple tuples matching "SP?", a lookup of
"SP-" (where "-" is the value 0, the first possible O node
id), then a short range scan until the first turtle that starts
with a different prefix SP is seen, where (P+1) is node id
treated as a number, +1.

6. Extending to a Cluster

The data for the RDF needs to be replicated for 24x7
availability. The SPARQL query engine itself does not
have any persistent state; the persistent state is all held in
the indexes and the RDF term dictionary. Replications
strategies for both are similar.

Considering the indexes, and starting from the design
of single-machine TDB, there are two main points at
which replication can be added. One is the interface to
the indexes (the B+Trees) and the other is at the storage
layer, replicating the blocks used to store the B+Tree.

The attraction of replicating blocks is that either a
replicated file storage solution or a general key- value
store could be used, using the block number as the key
and the block contents as the value. However, replicating
the blocks leads to any inefficient design that would limit
scalability because in any lookup, several blocks must be
traversed in a sequential manner, leading to several cross-
cluster operations, especially during the start-up period
when the server is started and caches have yet to fill up
properly. In addition, general key-value stores return the
whole of the block, yet only a part is needed for
searching so not only more network operations are
performed but also more data is transferred across the
network.

It is more efficient to replicated the indexes
themselves, so that a single cluster operation is involved
for a lookup and a stream of matching triple tuple
returned.

With N replicas, consistency is achieved if R replicas are
read for a rad operation and W replicas updated for a
write operation where R+W > N. When a read occurs
over R copies, at least one up to date write copy is
included. Because this is a read-dominated publishing
platform, the usual choice is R=1 and W=N. An effect of
this choice is that when an update is completed, there is

Page 111 of 177

Lizard

1 Apache Zookeeper - https://zookeeper.apache.org

no further replication to be done asynchronously,
making recovery simpler because there is no work done
as a a background backlog.

The main change in the query engine is to change the
join algorithms. On a single machine, the SPARQL
query engine when used with TDB, can use index joins.
This join algorithm has the advantage that it uses a fixed
amount of working space, regardless of the size of the
data being joined. Because TDB is often run in the same
JVM as the application, the fixed size workspace, and the
fact the query engine and the storage are in the same
JVM, means that the database engine does not
excessively compete for Java heap resources with
application code (file system caching is used extensively, ;
this is not part of the java heap space).

These assumptions are not valid on a cluster. It is a
single system and while possibly multiple queries at the
same time, all the system resources can be devoted to
SPARQL execution. The index join algorithm requires
multiple probes into one side of the data streams to be
joined, which in turn would result in multiple cross-
machine operations. Instead, Lizard uses pipeline hash
joins for matching SPARQL basic graph patterns.

7. Deployment

This design decomposes Lizard into a number services,
separated by a network connection: query engines, a
number of index replicas and a number of node
dictionaries. Each of these service instances can be placed
across a number of machines such that each machine has
only one copy of each replica type so that the loss of one
machine, whether a planned or unplanned, does not
make part of the database inaccessible.

A local balancer is used to provide a logical single
point of connection (round-robin-DNS can be used as
well). Apache Zookeeper1 is used to coordinate which
machines are in the cluster and to provide the cluster
wide locking to coordinate update transactions.

Small deployment might consistent of two machines,
with each machine having one copy of each service
instance. Updates are performed across both machines,
read requests can be performed by one machine.

A larger system might consist of different machines for
different components. Some query work loads require
significant amounts of CPU resources so separating
query servers from the data-storing index and dictionary
services ma be useful.

Page 112 of 177

Lizard

https://zookeeper.apache.org

8. Scale

Scale, to service increasing workloads, can be achieved by
adding more machines, as shown in the deployment
using 4 server machines. The Lizard design can form the
basis of a scalable store, reaching to larger datasets by

partitioning the data storage elements. For example: a
replicated index,with 3 shards, 2 copies of each shared,
mapped to 2 machines, might be:

Bibliography

[1] Steve Harris and Andy Seaborne. 21 March 2013. SPARQL 1.1 Query Language. World Wide Web Consortium
(W3C).
http://www.w3.org/TR/sparql11-query/

[2] Paul Gearon, Alexandre Passant, and Axel Polleres. 21 March 2013. SPARQL 1.1 Update. World Wide Web
Consortium (W3C).
http://www.w3.org/TR/sparql11-update/

[3] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and Elias Torres. 21 March 2013. SPARQL 1.1
Protocol. World Wide Web Consortium (W3C).
http://www.w3.org/TR/sparql11-protocol/

[4] Chimezie Ogbuji. 21 March 2013. SPARQL 1.1 Graph Store HTTP Protocol. World Wide Web Consortium
(W3C).
http://www.w3.org/TR/sparql11-http-rdf-update/

[5] Paul V Biron and Ashok Malhotra. 28 October 2004. XML Schema Part 2: Datatypes Second Edition. World
Wide Web Consortium (W3C).
http://www.w3.org/TR/xmlschema-2/

Page 113 of 177

Lizard

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/xmlschema-2/

Streamlining XML Authoring Workflows
Phil Fearon

DeltaXML

Abstract

When preparing XML content for publication, even small-
scale projects can involve many people at different stages in
the process; the process itself will often repeat several times. It
follows that an XML review and approval workflow should
allow everyone to contribute to the process at various stages;
this is often critical to the quality and timeliness of the end-
product.

This paper explores ideas on how XML document merge
features can allow contributors and reviewers to, when
necessary, work concurrently on content within an XML
authoring workflow. A 'proof of concept' application called
XMLFlow is used as a vehicle to demonstrate some of these
ideas; some detail on the design and implementation of this
proof of concept is also covered here.

1. Sequential and Concurrent
Editing Workflows

In its simplest form, there are two ways that updates can
be made to document content: sequentially or
concurrently. Sequential updates (where each contributor
updates content in turn) sit easily within a conventional
editing chain. With concurrent updates, several people
edit a copy of the content at the same time, a 'merge'
process is then required to incorporate all changes back
into a single copy.

Figure 1. Sequential updates: each contributor edits
the document in turn.

Figure 2. Concurrent updates: each contributor edits a
copy of the document in the same time-frame.

So which is the preferred way to update documents,
sequentially or concurrently? Sequential updates seem at
first to be the more obvious solution for many cases. This
approach does however impose significant restrictions
including:
• Requires a locking mechanism to prevent conflicting

changes being made to the same document.
• Contributors need network access to a central copy of

the document.
• If contributors are unavailable they hold up the entire

editing chain.
• The correct positioning of people within the editing

chain is often critical.
Given the above restrictions for sequential editing, even
when this is the preferred workflow, support for
occasional concurrent editing provides additional
flexibility when it is needed.

2. Current Systems

2.1. XML Authoring

In general, XML authoring systems provide good
support for sequential editing workflows, for example by
providing tracked changes for multiple authors and
document locking features. Few of these system however
provide specific support for concurrent working; one
possible reason for this is the perception that document
merge is time consuming and error prone. The counter
to this perception is that XML documents with well-
defined semantics are particularly suited to merging as
their formal structure minimizes potential conflict, this
also allows complex changes to be broken down into
parts that are much easier to understand and manage.

2.2. Software Development

With few examples of support for concurrent working in
XML authoring systems, it is useful to look in other areas
outside of this field. One example is in the 'branch and
merge' system used frequently as part of a software
development cycle. Here, version control systems such as
Git and Mercurial provide built in tools to support
development of code on different branches, these

doi:10.14337/XMLLondon15.Fearon01Page 114 of 177

branches can then be merged with each other or merged
back on to the main branch.

When developing the proof of concept described in
this paper, inspiration was sought from the merge tools
found in software version control systems. A decision was
made however (rightly or wrongly) to tackle the issue
from a new viewpoint; this was due both to differences in
the type of content being merged and perceived
differences in the typical preferences of end-users.
Another significant factor in this decision is that the goal
for the proof of concept is to allow up to ten documents
to be merged at a time, software merge tools are typically
restricted to just three versions of the code (including the
common ancestor), where side-by-side views are more
effective. A layout diagram for a typical code merge tool
is shown below:

Figure 3. The layout of a typical code merge tool using
side-by-side views

3. Proof of Concept Design

The proof of concept application, XMLFlow, was
developed to be an experimental front-end for rendering
the result of a document merge using DeltaXML's DITA
Merge product. It has however evolved to support a more
complete XML authoring workflow with the merge
capability built in.

With integrated document merge capability, this
application now also allows us to explore and
demonstrate options to support concurrent document
authoring workflows in a more general way. The aim was
to provide a solution that is fully functional so that all
parts of the workflow, except the actual editing, can be
tested. It was decided not to include any editing
capability as this allows us to focus on the merge, review
and approval part of the authoring workflow, it also
reduces development effort, and keeps the workflow
flexible. Files uploaded to XMLFlow are not encrypted
and are sent and retrieved over a standard HTTP
connection.

Note

XMLFlow's design is strongly influenced by
experiences learnt in the formal document review
process for enterprise-scale projects. Here, even minor
edits would need to be recorded and approved. In this
context, the absence of an editing capability in a review
and approval tool such as XMLFlow could actually be
seen as a benefit.

3.1. High-level Architecture

The application uses a client-server architecture, all
server-side functionality was implemented in Java as a
Java servlet; the 'client' is an HTML5/JavaScript single
page web application. The Saxon-CE XSLT 2.0 processor
is used on the client for all significant HTML and XML
transforms. This architecture meets the need for the
application to run on a wide variety of operating systems.

Figure 4. Breakdown of effort for development of the
proof of concept.

The server performs two key roles: 1) it provides a remote
file system for storing and retrieving files, and 2) it
provides the 'merge' service which invokes DeltaXML's
DITA Merge product. Apache Tomcat 8 is used as the
web application server that hosts the Java servlets. This,
in combination with other Apache libraries provides the
required multi-part HTTP POST and WebSocket
connectivity for the merge service

3.2. User Interface Style

For this type of application, effort spent on cosmetic
changes to the user interfaces should be minimised, yet
the look and feel must still be good enough to avoid
being a distraction. To help with this, the BootStrap CSS
framework was used, but with JavaScript event-handling
functionality removed - so XSLT-based event-handling
(using Saxon-CE's interactive extensions) could be used
instead. The user interface for this web app was designed

Page 115 of 177

Streamlining XML Authoring Workflows

from the outset to suit an Apple iPad tablet, desktop-
specific features are also included for cases when the app
is run on laptops or desktops with a hardware keyboard.

3.3. DITA XML Document Format

The principles demonstrated by XMLFlow apply to all
structured XML document formats. The DITA
document format is used here simply because the DITA
Merge product is integral to this app (running server-
side), and was DeltaXML's first product to support an n-
way merge (more are in the pipeline). The document
view in the proof of concept provides basic styling for
most but not all DITA elements in the DITA topic,
concept and reference document types.

3.4. Proof of Concept Workflow

The proof of concept is built around an XML authoring
workflow with three high-level phases: edit, review/
approve and publish. As already mentioned, the 'edit'
phase is outside scope here, the workflow therefore starts
with a step for retrieving updated copies of a baselined
document from each of the contributors. The basic steps
for the workflow are shown below:

Figure 5. Flow diagram for a typical XMLFlow
workflow

In this scenario, the 'document owner' initiates the
process by launching the XMLFlow web app in their
browser and selecting the files to load, either by
providing URLs or simple drag and drop.

Once all files are uploaded into the client, they are
shown in the Files list; here they can be reordered and
labelled with meaningful short names. Critically, the

baselined document must be located first in the file list,
this is because of the way n-way merge works: each
updated document is first compared with its 'common
ancestor', which is the 'baselined copy' in this case.

The document merge is started when the user presses
the 'Merge' button in XMLFlow. Once the merge
operation is complete (which may take a few seconds), a
'working merge' document is rendered in the document-
view, with changes from all contributors highlighted.

Now there is a working merge, the review/approval
phase can begin. The XMLFlow user can select 'Approve'
and 'Reject' modes, the corresponding action is then
performed when the user selects any change, this can be
in the document-view, the attribute changes list-view or
the content-changes list-view. Affected changes are
restyled to reflect whether they have been accepted or
rejected.

When all changes have been accepted or rejected the
working merge is ready for finalizing. The 'finalize'
process works on a copy of the last version of the
working merge, it uses approval data embedded in the
XML file to modify the content and attributes to reflect
the approval decisions. The embedded approval data is
then removed so that the finalized XML file is valid. This
file is suitable to be used as the baseline for a further
workflow. The working merge can also be kept so that
there is a record of the approval process, a critical
requirement in some situations.

Note

The term 'baseline' is used a number of times in this
document. This term is frequently used in
configuration management or project management
processes, but can also apply to more formal
publishing processes. In this context, a new 'baseline' is
created each time a set of significant changes for a
document are agreed at a certain stage in the life-cycle
of the document. A document may of course be part of
a larger project which will have its own baselines.

3.5. Identifying features in the workflow

To support a concurrent XML authoring workflow, the
XMLFlow GUI design reflects the following areas of
functionality that were identified:
• File management

• Upload - DITA input files or a working merge
• Label - add meaningful short labels for each file
• Reorder - sort files, with the baselined file first
• Store/Download - any file including working and
finalized merge files

Page 116 of 177

Streamlining XML Authoring Workflows

• Merge - create a working merge file for review/
approval

• Finalize - create a finalized version from the
working merge

• Reset - clear all files ready for another merge
• Document change review

• Show changes inline in a document view
• Show changes in vertical lists for:

• content
• attributes

• Support approval states
• Accept
• Reject
• Defer

3.6. Document-view design

The document view was by far the most challenging part
of the XMLFlow GUI design; a number of different
approaches were tried before settling on the current
solution. The document view is effectively an HTML div
element with content generated by a client-side XSLT
transform on the result of the merge operation. In the
relatively simple transform, XML document elements are
renamed to prevent conflict with HTML elements, new
attributes are also added to assist with CSS styling.

The problem here is to determine how to show the
different types of changes made by multiple users in a
single view - without overloading the end-user with too
much information. In an n-way merge, there are three
basic change types: 'add', 'delete' and 'modify'. A
'modify' type occurs when a word or phrase has been
changed by one or more contributors, if a modified word
or phrase has been deleted by another contributor this is
still regarded as a 'modify' with an empty-string as the
new value. Changes marked as 'modify' are presented as
a choice of two or more mutually exclusive options, with
selection of the baselined text version being the first
option.

Figure 6. A first attempt at the document view:
element tree and grid controls, with no WYSYWIG
styling

Figure 7. The current evolution of the document view:
element grid replaced by a simplified WYSYWIG view

Red, green and blue foreground text colors are used in
the document-view to indicate delete, add and modify
respectively. To distinguish between an element change
and a text change, square borders are added for elements
and round borders for text. Similarly, in the change list-
view, square and round icons indicate element changes
and text changes respectively. To help differentiate
between adds and deletes, the square borders for element
changes are dashed for deletes and supplemented by a
shadow for adds.

3.6.1. Nested changes

Nested changes occur when two or more contributors
add an element that is broadly similar in each case but
has minor changes within it. For example, we have a
nested change if 'anna' and 'ben' and 'chris' add a section
that aligns, but 'ben' deletes a paragraph within the
section, a further level of nesting occurs if 'chris' also
added a phrase within the paragraph.

In nested changes the baseline document (the
common ancestor) is no longer within the context.
Without this context, it cannot be determined whether a
nested change is an add or a delete, it could be either
depending on your viewpoint. In these cases, XMLFlow
takes the approach whereby a change type is never nested
within a similar change type, thus a change occurring
within an add is always marked as a delete and vice-versa.
This arbitrary typing of nested changes is undesirable,
but necessary without any further information about
why the same parent change was made by more than one
contributor.

3.6.2. Styling of content

The original DITA XML is transformed into HTML
span elements representing each original DITA XML
element, attributes are added to the span elements to
indicate their original type and allow them to be styled
via CSS rules. In this way, CSS rules for the attributes

Page 117 of 177

Streamlining XML Authoring Workflows

style tables, lists and headings and other block-level
types, inline formatting is also applied.

For this proof of concept advanced styling is not
included, for example, multi-column spans on table cells
are not rendered properly and conref element references
are indicated by a simple placeholder. A style filter is
normally applied to the view, when this is switched off,
content that is not normally rendered such as metadata
and DITA comments can be viewed.

Figure 8. Simple WYSYWIG styling for DITA is
provided through CSS rules

XMLFlow's CSS styling of inline text changes works by
exploiting attributes on wrapper elements that are part of
the DeltaV2 format output by the DITA Merge
component, this format is described later in this paper.

3.6.3. WYSYWIG Vs Code View

End-users often prefer a 'What You See Is What You Get'
(WYSYWIG) view to a raw XML view as this avoids the
clutter and distraction of lots an angle-brackets and
attributes. Sometimes however, it is necessary to see the
raw XML to fully understand the document structure;
ideally XMLFlow would include a code view, at this stage
it does not, but it does however reveal the XPaths for key
element types when the view 'filter' is switched off. An
element tree-view can also help with understanding XML
structure, this was present in an early prototype but
removed after feedback suggested it added too much
clutter for an end-user.

3.7. Content and attribute change lists

To supplement the document view, XMLFlow presents
two lists, one for attribute changes and one for content
changes; these share the same tabbed view as the files list
and are reached via tab-buttons immediately above them.
List items representing 'modify' changes (as opposed to
simple adds and deletes), are marked with an arrow to
indicate they can be expanded to show the list options.

3.8. Accept and Reject Modes

When XMLFlow is launched it is effectively in a 'Review'
mode. That is, when a document change is selected in
the document-view, the content changes-list or the
attribute changes-list, the change is simply highlighted
with information shown about the selected change in
other views. To switch to the 'Accept' or 'Reject' mode,
the corresponding button is pressed in the toolbar. A
single button press switches mode for a one-off operation
- two presses are required to make the mode 'stick' for all
further operations. An accept or reject on a change is
quickly backed-out from by pressing the change again.

A change is highlighted, both in the list-view and the
document-view to show whether it has been accepted or
rejected. In list-views, accepted changes are shown with a
red bar and a cross, rejected changes with a green bar and
a check-mark; for multi-choice changes (which can't be
rejected) the selected option is highlighted in blue and a
check-mark. In document views, borders are replaced by
bars or symbols for block-level and inline changes
respectively; text is hidden for accepted deletes or
rejected adds, text is shown for accepted adds or an
accepted multi-choice option.

3.8.1. User Experience

With a large number of document changes, it can be
tedious for the reviewer to go through and press on each
change, the use of modes means that only one press is
required for each change. This could be improved further
if a block of several changes in a list could be accepted or
rejected with a single click.

3.9. The Files Panel

All input and output files in XMLFlow are managed
through the files panel; this comprises a list of files at the
top and a control panel below. Input files are either drag
and dropped from the desktop into the files panel or
uploaded via a supplied URL.

Page 118 of 177

Streamlining XML Authoring Workflows

Figure 9. In the files panel, the control panel appears
below the files list

The labels bar is immediately above the tabbed panel
hosting the files panel tab. When the files panel is
selected, the labels bar becomes editable. Each label is
also shown in the corresponding file item in the files list,
along with the long filename.

Before starting a merge, at least three files are
required, the first must be the common ancester. All
input files within the list can be sorted and labelled.
Labels allow short meaningful names to be ascribed to
each file, these are also shown in the labels bar so that
labels are highlighted when a change associated with a
label is selected. Any label in the labels bar can also be
selected to highlight all changes associated with the
selected label.

All operations on files are managed through buttons
on the control panel. The 'Merge' button initiates a
merge operation on the remote server, because this
operation may take a few seconds, merge progress is
reported by highlighting a bar adjacent to each file item
in the list. Once the merge is complete a 'Working
Merge' file item is added to the files list and the merge
result shown in the document view, ready for review and
approval.

Pressing the 'Finalize' button produces a new
'Finalized DITA' item in the files list, when this file item
is selected, the finalized document can be seen in the
document-view. Once the finalize button is pressed it is
disabled until all files are reset. This is because if the user
carried on with the working merge, further finalize
operations are performed automatically each time the
'Finalized DITA' file item is selected.

The 'Upload', 'Store' and 'Download' buttons are for
managing files on the remote server. All stored files are

given a URL that includes a unique 'hard to guess'
number within the filename (e.g.
4392800660168831878), the URL appears in the header
bar so it can be easily copied to the clipboard; files can be
retreived at a later time by anyone who knows the URL.

4. Proof of Concept
Implementation

XMLFlow is a single-page web application, with
functionality split between the browser client and the
remote server. The server and client side implementation
is described in the following sections, for this paper the
focus is on the client.

4.1. Server

The Server's role is to provide a set of high-level services
for the client, no application-specific logic is embedded
in the server, allowing this to be used with an entirely
different front-end. The provided services are shown as
reqeusts in the server component diagram below:

The Apache Tomcat 8.0 web application server is used
for hosting the proof of concept server. All server side
functionality is coded in Java to allow easy integration
with the DeltaXML DITA Merge component which has
a Java API. The included Apache Commons FileUpload
component provides the required support for multi-file
requests from the client conforming to RFC 1867; this is
compatible with the HTML5 FormData API used in the
browser client.

The support for the 'Merge Request' is the most
significant feature of the server. This allows the client
application to make a single merge request that includes
all the files to be merged, along with a label for each file.

Because the Merge Request is handled by a standard
HTTP Servlet request, only one response can be made,
when the merge operation completes (or fails). A merge
operation on all the files can take several seconds, thus
another connection is therefore required to keep the
client informed of progress of the merge on each file. For
this purpose, a WebSocket connection is made by the

Page 119 of 177

Streamlining XML Authoring Workflows

client, the server side response is to invoke a special
handshake that binds the WebSocket connection with
the HTTP Session. Java running in the HTTP session
can now send notifications to the client while it is still
processing the merge and thus holding the HTTP
connection.

The simplified Java code below shows how, for each
uploaded file, methods are called on the
DitaConcurrentMerge class, the setAncestor method is
called for the first file, all further files are added to the
merge through the addVersion method call. A
WebSocket text message is sent to the client by a
sendMessage method call before and after call to the
DITA Merge component.

private void processFile(
 FileItem item,
 DitaConcurrentMerge ditaMerge) throws Exception {
 // the short file label used as
 // a version identifier
 String fieldName = item.getFieldName();
 String fileName = item.getName();

 String fileId = "file" + (uploadFileCount + 1);
 sendMessage("upload," + fileId + "," + fileName);
 File uploadedFile = File.createTempFile("merge-",
 "-" + fileName, uploadDir);
 item.write(uploadedFile);
 if(uploadFileCount == 0) {
 ditaMerge.setAncestor(uploadedFile, fieldName);
 } else {
 ditaMerge.addVersion(uploadedFile, fieldName);
 }
 sendMessage("add," + fileId + "," + fileName);
 uploadFileCount++;
}

4.2. Client

The XMLFlow client effectively comprises the browser,
JavaScript and XSLT 2.0 code, CSS styling and a single
HTML page. File handling, user-event handling, web-
layer communications and page-rendering are the key
areas of functionality, this is summarised in the diagram
below:

Figure 10. A component view of client-side features

4.2.1. File Management

Files management is used in XMLFlow for managing
XML documents that are to be merged, the 'working
merge' document, and the 'finalized' document. The
HTML5 File and FormData APIs are exploited to allow
files to be retrieved, stored locally and then sent as part of
a Merge request. File management functionality is coded
in JavaScript, simplified code for sending a Merge request
is shown below:

var mergeDocument = function () {

 // synchronously create a remote HTTP session and
 // bind this to a new WebSocket connection for
 // progress monitoring
 setupComms();

 // append each uploaded file along with its label
 // to a new FormData object
 var form = new FormData();
 var labels =
 document.getElementById("labels-group")
 .getElementsByTagName("input");
 for (var i = 0; i < rawFilename.length; i++) {
 var rawIndex = parseInt(
 listButtons[i].getAttribute("data-fileindex")
);
 form.append(
 labels[i].value, rawfileData[rawIndex],
 rawFilename[rawIndex]
);
 }
 // POST the updated FormData instance and set the
 // 'statechange' event handler function
 var oReq = new XMLHttpRequest();
 oReq.open("POST", reqMergeHttp, true);
 oReq.send(form);
 oReq.onreadystatechange =
 handleMergeStateChange(oReq);
};

The JavaScript above shows how, for each file to be
merged, the file label, the file object (rawFileData), and

Page 120 of 177

Streamlining XML Authoring Workflows

the filename are added to a FormData object. This
FormData object is then sent asynchronously via a POST
XMLHttpRequest to the remote server, a function is
assigned to handle the response. The first method call in
this code is setupComms, this creates a WebSocket
connection with the server and assigns a function to
handle WebSocket messages sent from the server.

4.2.2. Page Rendering

This applicaton is rendered within a single HTML web
page. The static page is effectively a skeleton to which
dynamically updated parts of the application are added
using XSLT. While standard XSLT normally transforms
an entire document, the Saxon-CE processor extends the
xsl:result-document to allow specified parts of the
HTML DOM to be updated instead. There are three
parts of the application that are updated in this way, the
content change list, the attribute change list and the
document view. The two change lists are updated using
the same XSLT sylesheet that contains two result-
document instructions, the document view is updated by
a separate XSLT stylesheet with just one result-document
instruction. Both XSLT transforms are invoked using
Saxon-CE's JavaScript API as soon as a response from a
Merge request is received.

4.2.3. Transforming a Merge Result

The result of a DITA Merge operation is a DITA
document that effectively combines all the input
documents into one. Where there are differences between
versions, document elements are annotated with
'deltaxml:deltaV2' attributes. Extra wrapper elements are
also added to allow differences in attributes and text
nodes to be represented in a lossless way; these are
namely 'deltaxml:textGroup', 'deltaxml:text' and
'deltaxml:attributes'.

Coding the XSLT was relatively straightforward once
the DeltaV2 format was understood. The deltaV2
attribute of an element combined with the deltaV2
attribute of its parent has all the information needed to
determine not only the type of change, but who made
the change. This attribute holds the labels for all the
documents that contain a match for that element. The
attributes labels are arranged to describe the equality
characteristics of the sub-tree of the element, they are
separated by '=' if they are part of the same 'equality
group', '!=' character-pairs are used to separate equality
groups. An example deltaV2 attribute value would be:
X=anna=ben!=chris=david.

An extract from a DeltaV2 formatted document is
shown below, the label 'X' is used to denote the

'common ancestor' version, the other labels are
'anna','ben','chris' and 'david'. This shows a p element
with an attribute that has been deleted by 'chris', we
know this is a deletion because the deltaV2 attribute for
the p element contains the label 'X' representing the
common ancestor. Within the text node, the word
'DeltaXML' is deleted by 'anna' and 'chris' in two places.
For each text deletion there is are two wrapper elements
deltaxml:textGroup and deltaxml:text The textGroup
element allows one or more text elements so that
modifications of a word or phrase can be shown as well
as additions and deletions.

<p deltaxml:deltaV2="X=ben=david!=anna=chris">
 <deltaxml:attributes
 deltaxml:deltaV2="X=anna=ben=david">
 <dxx:id xmlns:dxx=
"http://www.deltaxml.com/ns/xml-namespaced-attribute"
 deltaxml:deltaV2="X=anna=ben=david">
 <deltaxml:attributeValue
 deltaxml:deltaV2="X=anna=ben=david">
 legacy
 </deltaxml:attributeValue>
 </dxx:id>
 </deltaxml:attributes>Now, with
 <deltaxml:textGroup
 deltaxml:deltaV2="X=ben=david">
 <deltaxml:text deltaxml:deltaV2="X=ben=david">
 DeltaXML </deltaxml:text>
 </deltaxml:textGroup>DITA Merge, this job becomes
 much, much easier, because
 <deltaxml:textGroup
 deltaxml:deltaV2="X=ben=david">
 <deltaxml:text deltaxml:deltaV2="X=ben=david">
 DeltaXML
 </deltaxml:text>
 </deltaxml:textGroup>DITA Merge merges all the
 changes into a single document.
</p>

Part of the top-level XSLT template used to update the
attribute and content change lists is shown below, with
each xsl:result-document instruction updating a different
list. The referenced xsl:member-count variable is an
integer returned by a JavaScript extension function
(another Saxon-CE extension that treats function names
in a special namespace as native JavaScript functions). In
this specific case, using a user-defined JavaScript function
is not strictly necessary, but it serves well as an
illustration of how JavaScript can be exploited, note the
string() cast is used on the $deltv2 attribute argument

Page 121 of 177

Streamlining XML Authoring Workflows

because the JavaScript will not auto-cast attribute nodes
to strings.

<xsl:variable name="member-count" as="xs:integer"
select="count(js:getV2Members(string($deltav2)))"/>

<xsl:result-document href="#changes"
 method="replace-content">
 <xsl:apply-templates select="
 //deltaxml:textGroup |
 //*[not(self::deltaxml:*)]
 [exists(@deltaxml:deltaV2)
 and not(contains(@deltaxml:deltaV2, '!='))
 and count(tokenize(@deltaxml:deltaV2, '='))
 ne $member-count
 and not(parent::deltaxml:attributes)
 or (exists(@deltaxml:deltaV2)
 and count(tokenize(@deltaxml:deltaV2, '='))
 ne
 count(tokenize(
 parent::*/@deltaxml:deltaV2, '='))
 and not(parent::deltaxml:attributes))
 and exists(parent::*)]" mode="setchange"/>
</xsl:result-document>

<xsl:result-document href="#att-changes"
 method="replace-content">
 <xsl:apply-templates
 select="*" mode="set-element-att-change">
 <xsl:with-param name="location" select="''"/>
 </xsl:apply-templates>
</xsl:result-document>

4.2.4. Creating a Working Merge

The 'Working Merge' is the result of the merge
document with extra XML elements added at the start of
the document to hold information about each change,
and the approval data for each change (whether it has
been accepted or rejected). This document format is
designed so that the document merge and the current
merge state can be stored remotely and reloaded at any
time. When it is reloaded the embedded approval data
for each change is used to update the changes lists and
the document views in the XMLFlow page.

An example of the extra embedded elements in the
working merge is shown below. Attribute and element
changes are kept separate in their own respective
deltaxml:attribute-updates and deltaxml:updates wrapper

elements; this keeps the XSLT transforms simple as this
is the way changes are viewed in XMLFlow.

<deltaxml:updates>
 <deltaxml:update index="1" change="add"
 data-accept="yes"
 data-descriptor="add"
 data-dgroup="add"/>
 <deltaxml:update index="2" change="elementAdd"
 data-accept="no"
 data-descriptor=""
 data-dgroup="elementAdd"/>
 <deltaxml:update index="3" change="replace"
 data-descriptor="replace"
 data-dgroup="modify"
 option="1"/>
 <deltaxml:update index="4" change="elementDelete"
 data-accept="no"/>
 <deltaxml:update index="5" change="add"/>
</deltaxml:updates>
<deltaxml:attribute-updates>
 <deltaxml:update index="1" change="elementAdd"
 data-accept="yes"/>
 <deltaxml:update index="2" change="modify"
 data-accept="yes"
 data-dgroup="modify"
 option="2"/>
 <deltaxml:update index="3" change="elementAdd"/>
</deltaxml:attribute-updates>

Note

The 'deltaxml' prefix is bound to the standard
DeltaXML namespace, ideally a different namespace
would be used, but an early decision was made to
minimize the number of namespaces due to XML
serialization issues encountered in the iOS
implementation of Safari running on the iPad. A
custom XML serializer was eventually implemented in
JavaScript to deal with namespace issues.

4.2.5. Creating a Finalized Merge

The 'Finalized Merge' takes the working merge and uses
the approval data to remove or add elements, attributes
or parts of text nodes to produce a complete and valid
DITA document. To ensure validity, the approval data is
removed; in more formal review cases it is therefore
prudent to keep a copy of the last working merge also,
this is a record of whose changes were accepted or
rejected.

Page 122 of 177

Streamlining XML Authoring Workflows

4.2.6. Handling User Events

Using Saxon-CE's interactive extensions, XSLT templates
with special mode attributes that match the event type
handle most user events in the browser. This works
reasonably well even for the iPad because touchstart and
touchend events are supported by Saxon-CE's interactive
extensions. There were however problems associated with
scrolling panels for the iPad, an element might only be
touched for the purpose of grabbing the entire panel to
scroll. Here it was necessary to add some low-level
JavaScript to intercept certain touch start events and only
rethrow them if a corresponding touch end event
happened within a certain interval. Other techniques
tried meant there was a noticeable delay between the user
touching an element and the user interface being
updated to reflect the change. Note that event handling
varies between different mobile platforms but event
handling has only been specialised for the iPad.

4.3. A Document Merge Scenario

Having described how the main features of the client and
server are used to perform a document merge, it is time
to look at the flow of information between client and
server for a single merge operation. The sequence
diagram below shows the information flow in
diagrammatic form.

The scenario begins with the user adding files for the
merge through the user interface, these files are stored as
objects in the File Manager. The process ends after the
DeltaXML merge component has completed the merge,
with the result sent back as the response to an HTTP
request (via Remote Comms), the File Manager adds this
result to its set of files, and finally the file is rendered in
the user interface (via XSLT).

Figure 11. A simplified sequence diagram for a typical merge operation

One thing the diagram above illustrates is that the
'Messaging' component that wraps a WebSocket
connection does add a degree of complexity because of
the 'Register' method required as part of the initial
connection handshake with the HTTP session.

5. Conclusions

The proof of concept, though restricted in certain areas
of functionality still demonstrates the potential for XML
document merge (and thus concurrent working) within
an authoring workflow. Changes made concurrently to
different copies of an XML document by a number of

Page 123 of 177

Streamlining XML Authoring Workflows

contributors can be explained to the user in an
understandable way. Moreover, by using 'approval
modes' the process of accepting, rejecting and deferring
changes, can be performed relatively effortlessly.

In practice, the publication process and authoring
workflow is affected and determined by such a wide
variety of factors that it would be very difficult to claim
that all processes could be streamlined by adding support
for concurrent working. However, we should at least
consider the software development process, where branch
and merge has been an intrinsic part of version control
for many years now.

This paper describes how DeltaXML's DITA Merge
component was used by the proof of concept to gather
all information required by a merge into a single DITA
document augmented with 'DeltaV2' attributes and
elements. Currently, XMLFlow uses this format directly
to create the document-view and change-lists; with the
benefit of hindsight, it would have simplified the XSLT

to first convert the output to a form that characterised
the XML so each change was described in terms of the
change type and the change 'owner(s)'. This first 'analysis
stage' XSLT could have been run server side also which
would help reduce the load for resource-limited mobile
devices like iPads. The drawback to a first 'analysis stage'
is that, for nested changes, special care would be needed
to qualify the type according to its context.

The XMLFlow design makes extensive use of client-
side XSLT, reducing significantly the JavaScript skills
needed to develop XMLFlow. The declarative nature of
XSLT also means that when the design changed
considerably, changes to XSLT still had to be made in a
considered way; there was thus less potential for the code
structure to degenerate significantly with each design
change. This makes a good case for using client-side
XSLT 2.0 (with interactive extensions) for rapid
development of a proof of concept, especially when
XSLT developer resources are already available.

Page 124 of 177

Streamlining XML Authoring Workflows

1 eXist XQuery extension modules were counted by examining the eXist source code at https://github.com/eXist-db/exist/tree/eXist-2.2
2 MarkLogic XQuery extension modules were counted by examining the MarkLogic documentation at https://docs.marklogic.com/all

Implementation of Portable EXPath Extension
Functions

Adam Retter

Evolved Binary
<adam@evolvedbinary.com>

Abstract

Various XPDLs (XPath Derived Languages) offer many
high-level abstractions which should enable us to write
portable code for standards compliant processors.
Unfortunately the reality is that even moderately complex
applications often need to call additional functions which
are non-standard and typically implementation provided.
These implementation provided extension functions reduce
both the portability and applicability of code written using
standard XPDLs. This paper examines the relevant existing
body of work and proposes a novel approach to the
implementation of portable extension functions for XPDLs.

Keywords: XQuery, Portability, EXPath, Haxe

1. Introduction

High-level XML processing/programming languages
such as XQuery, XSLT, XProc and XForms have long
held the promise of being able to write portable code that
can execute on any W3C compliant implementation.
Unfortunately the specification of these languages leave
several issues to be "implementation defined"; Typically a
pragmatic necessity, most often occurring where the
language must interact with a lower-level interface, e.g.
performing I/O or integrating with the environment of
the host system.

If we put to one-side the potential "implementation
defined" incompatibilities, which in reality are often few
and can likely be worked around, there is another issue
which hinders the creation of portable code, and that is
the issue of implementation provided extension
functions. XQuery, XSLT, XProc and XForms are all
built atop XPath, which defines a Standard Library in the
form of the F+O specification (XPath and XQuery
Functions and Operators). XQuery 3.0 and XSLT 3.0

provide F+O 3.0 [1], and whilst XProc 1.0 and XForms
2.0 provide the older F+O 2.0 [2] it is most likely that
new versions of those specifications will also adopt F+O
3.0.

Whilst F+O 3.0 offers some 164 distinct functions
and 71 operators, it is predominantly focused on
manipulating XML, JSON and text, unfortunately for
creating complex processes or applications with XPDLs
(XPath Derived Languages) e.g XQuery, XSLT, XProc
and XForms, these functions by themselves are not
enough. To fill this gap, many implementations have
provided their own modules of extension functions to
their users; for instance eXist 2.2 provides some 53
modules 1 of extension functions for XQuery, and
similarly MarkLogic 8 provides some 55 modules 2 of
extension functions for XQuery.

The aim of this paper is that through examining the
existing approaches to portable extension functions for
XPDLs, an new approach is developed for their
implementation which should enable them to be reused
by any XPDL processor with the minimum of effort.

1.1. Extension Function Costs

Initially these extension functions are most welcome as
they enable the user to quickly and easily perform
additional operations which would be impossible (or
costly) to implement in an XPDL. Unfortunately over
time these extension functions add a burden with regards
to portability [3] [4], which typically manifests itself in
two distinct ways: directly and indirectly.

1.1.1. Directly

--- Restricting User Freedom

The use of proprietary implementation extension
functions can adversely restrict the ability of a user to
freely move between implementations or reuse their

doi:10.14337/XMLLondon15.Retter01 Page 125 of 177

https://github.com/eXist-db/exist/tree/eXist-2.2
https://docs.marklogic.com/all
mailto:adam@evolvedbinary.com

1 https://github.com/wolfgangmm/exide revision 07207a2 (12 April 2015)
2 https://github.com/apb2006/graphxq revision 0b19756 (8 March 2015)
3 https://github.com/xquery/xproc.xq revision f0f0697 (13 December 2014)
4 https://github.com/robwhitby/xray revision dc03243 (25 April 2015)
5 https://github.com/eXist-db/exist/tree/develop/src/org/exist/xquery/lib/xqsuite revision c32784a (5 May 2015)

existing code across implementations. An examination of
several Open Source projects (eXide1, graphxq2,
xproc.xq3, xray4 and XQSuite5) which are implemented
in XQuery reveals that the impact of this is typically a

function of the size of the code base as illustrated in
Figure 1, and the variety of extension functions that have
been used as illustrated in Figure 2 and Figure 3.

Figure 1. External Function Calls / Lines of Code

Page 126 of 177

Implementation of Portable EXPath Extension Functions

https://github.com/wolfgangmm/exide
https://github.com/apb2006/graphxq
https://github.com/xquery/xproc.xq
https://github.com/robwhitby/xray
https://github.com/eXist-db/exist/tree/develop/src/org/exist/xquery/lib/xqsuite

Figure 2. Total Function Calls

Figure 3. Distinct Function Calls

Page 127 of 177

Implementation of Portable EXPath Extension Functions

1 The XQMVC projects' attempt at supporting both MarkLogic and eXist XQuery processors - https://code.google.com/p/xqmvc/source/
browse/#svn%2Fbranches%2Fdiversify%2Fsystem%2Fprocessor%2Fimpl

The most extreme example of this impact is often felt by
XQuery framework providers (e.g. XRay and xproc.xq,
xqmvc1, etc.) who often have to attempt to abstract out
various implementation extension functions to be able to
provide frameworks which will work on more than one
implementation. We therefore conclude that
implementation specific extension functions restrict
freedom by impairing code reuse.

1.1.2. Indirectly

--- Fragmenting the Community

In comparison to the C++ or Java communities, the
XPDL communities are considerably smaller. The
TIOBE Programming Community Index [5] for May
2015 shows that Java is the most popular programming
language and that C++ is third, no XPDL languages
appear in the top 100. Likewise, the PYPL Index [6] for
May 2015, shows Java and C++ to hold first and fifth
positions respectively, with no XPDL languages
appearing in the top 16. The Redmonk Programming
Language Ratings [7] for January 2015 place Java in
second and C++ in joint fifth position in terms of
popularity rank across StackOverflow and GitHub. From
the plot produced by Redmonk we can infer that in
comparison XSLT has ~57% and ~77% of the popularity
rank on GitHub and Stack Overflow respectively, whilst
XQuery has just ~14% and ~50%.

The last 10 years has produced an exponential growth
in Open Source projects; Deshpande and Riehle reported
in 2008 [8] from analysing statistics for Open Source
projects over the previous 10 years that Open Source
growth was doubling about every 14 months. With
recent social coding services such as GitHub and
BitBucket and physical events facilitated by meetup.com
and others, there is likely a much greater tendency to
publish even small snippets of code or utilities as open
source for others to reuse.

However, when publishing XPDL code projects, if
those projects depend on implementation specific
extension functions, then it is often non-trivial for a user
of a differing implementation to adapt the code. Even if
a user can adapt the code to their implementation, if they
then wish to improve it, the ability to contribute these
changes back upstream is also impaired as the code bases
have most likely diverged; As such further forking is
implied. We conclude from this that implementation
specific extension functions further fragment the XPDL
communities into smaller implementation specific sub-
communities by restricting portability and code sharing.

2. Prior Art

This paper is not the first work to look at improving the
portability of XPDLs. In this section, previous efforts in
the area of improving the portability of extension
functions within one or more XPDLs are examined.

2.1. EXSLT

The EXSLT project [9] which first appeared in March
2001, at the time focused on extension functions and
elements for XSLT 1.0. Arguably, XSLT 1.0 had a very
limited standard library provided by the core function
library of XPath 1.0 [10], with just 27 functions,
augmented with 7 additional functions. EXSLT
recognised that much of the XSLT community required
additional extension functions and elements and that it
would be desirable if such functions and elements were
the same across all XSLT implementations to ensure the
portability of XSLT code. EXSLT specified a set of 8
modules which include extension functions allowing
XSLT developers to write portable code for tasks that
were not covered by the XSLT 1.0 specification. EXSLT
itself did not provide an implementation of the
functions, rather it tightly defined the XSLT signatures
and operational expectations and constraints of its
extension functions. Any vendor may choose to
implement the EXSLT modules within their XSLT
implementation, however the standards set out by the
EXSLT project ensure that their invocation and outcome
must be the same across all implementations.

The last update to EXSLT was in October 2003, and
whilst still used by many XSLT developers its relevance
has decreased since the release of XSLT 2.0 [11] which
expanded its standard library by adopting F+O 2.0
which provides 114 functions and 71 operators, many of
which were likely inspired by EXSLT. The utility of
EXSLT will likely be further reduced by the upcoming
release of XSLT 3.0 which adopts F+O 3.0.

2.2. XSLT 1.1

XSLT 1.1 [12] of which the last public working draft was
published in August 2001 (although the first working
draft appeared in December 2000), had the stated
primary goal to “improve stylesheet portability”, and
included a new and comprehensive mechanism for
working with extension functions in XSLT.

XSLT 1.1 like XSLT 1.0 permits the use of extension
functions which are implementation defined and whose
presence is testable through the use of the fn: function-

Page 128 of 177

Implementation of Portable EXPath Extension Functions

https://code.google.com/p/xqmvc/source/browse/#svn%2Fbranches%2Fdiversify%2Fsystem%2Fprocessor%2Fimpl
https://code.google.com/p/xqmvc/source/browse/#svn%2Fbranches%2Fdiversify%2Fsystem%2Fprocessor%2Fimpl

available function. However, XSLT 1.1 went much
further than its predecessor by introducing the
xsl:script element which made possible the
implementation of an extension function within the XSL
document itself either directly in program code or by
URI reference. When two distinct programming
languages interact, there is always the issue of type
mapping, to solve this XSLT 1.1 specified explicit
DOM2 core model and argument type mappings for
ECMAScript, JavaScript and Java. Extension function
implementation was not limited to just ECMAScript,
JavaScript or Java, however bindings and mappings for
other languages were considered outside of the scope of
XSLT 1.1 and were left to be implementation defined.

Providing a user of XSLT 1.1 had used extension
functions implemented in either ECMAScript, JavaScript
or Java, and those functions were either implemented
inside an xsl:script element or available from a
resolvable URI on the Web, then it was entirely possible
to consume and/or create portable extension functions
for XSLT.

The addition of xsl:script in XSLT 1.1 was highly
controversial [13] with opponents on both sides of the
debate [14][15][16]. Unfortunately, before XSLT 1.1 was
finished, it was considered unworkable for several reasons
by the W3C XSLT Working Group [17], and was
permanently suspended to be superseded by XSLT 2.0
[11]. XSLT 2.0 adds little more than XSLT 1.0 in the
area of extension functions and altogether abandons the
type mapping from XSLT 1.1, clearly stating that: “The
details of such type conversions are outside the scope of
this specification”.

2.3. FunctX

FunctX [18] released by Priscilla Walmsley in July 2006
provides a library of over 150 useful common functions
for users of XQuery and XSLT. The purpose of this
library is to remove the need for users to each implement
their own approaches to common tasks and to provide a
code set that beginners could learn from.

FunctX provides two implementations, one in
XQuery 1.0 and the other in XSLT 2.0; neither require
any implementation specific extensions and as such are
entirely portable and useable with any W3C compliant
XQuery or XSLT processor.

The availability of FunctX has almost certainly
reduced the amount of duplicated effort that otherwise
would have been spent by developers working with
XPDLs and also removes the temptation for vendors to
provide proprietary alternatives to assist their users.

2.4. EXQuery

The EXQuery project [19] which started in October
2008 as a collaborative community effort set out with the
initial goal of raising awareness of the portability
problems that could result from the use of non-standard
vendor extensions in XQuery. Focused solely on XQuery,
the non-standard extensions which could causes issues
were set out as including extension functions, indexing
definitions, collections, full-text search and the URI
schemes used for the XPath fn:doc and fn:collection
functions.

The EXQuery project firstly approached the problem
of non-standard implementation specific extension
functions for XQuery, with the desire to define standard
function signatures and behaviour for similar XQuery
functions which appeared across several
implementations.

The EXQuery project shortly abandoned its work on
defining standard function signatures for XQuery
extension modules in favour of the EXPath project (see
Section 2.5, “EXPath”) which appeared in 2009, instead
focusing on XQuery specific portability issues like server-
side scripting resulting in RESTXQ [4].

The EXQuery project goes further than just defining
standards documents that define intention and behaviour
of a specific system, it also provides source code for a
common implementation that may be adopted as the
base for any implementation [20]; Although currently
limited to Java the project has also expressed interest in
producing C++ implementations.

2.5. EXPath

The EXPath project [21] started in January 2009 whilst
independent had many similar goals to the EXQuery
project. Critically, with regards to extension functions, it
is recognised that defining standards for these at the
lower XPath level as opposed to the XQuery or XSLT
level would make them more widely applicable to any
XPDL.

The EXPath project provides two types of
specification for XPDLs, the first looks at the broader
ecosystem of delivering XPDL applications (e.g.
Application Packaging and Web), whilst the second and
more widely adopted, focuses on defining extension
function modules. It is this second specification type of
extension function modules that are of interest to this
paper.

The EXPath project to date has released three
specifications for standard extension modules for XPDLs:
Binary Data Handling, File System API and HTTP
Client. In addition, at the time of writing there are

Page 129 of 177

Implementation of Portable EXPath Extension Functions

another five extension module specifications under
development which focus on: File Compression,
Cryptography, Geospatial and NoSQL database access.
The EXPath project like the EXSLT project focuses on
defining function signatures and behaviour, albeit at the
XPath as opposed to the XSLT level; again the goal being
that any vendor may implement an extension module
standard and that users will benefit from code portability
across all implementations that support the EXPath
specifications.

Whilst the EXPath project has predominantly
focused on defining standards documents that specify the
intention and behaviour of a number of modules of
related XPath extension functions, there have been some
related efforts [22][23][24] to produce common
implementation code for JVM (Java Virtual Machine)
based implementations.

3. Analysis

The review of prior art in Section 2, “Prior Art”, uncovers
three distinct approaches to reduce the impact of non-
portable extension functions in XPDLs:
1. Function Standardisation

Specifying function libraries and the exact
behaviour of those functions so that vendors may each
implement the same functions. EXSLT, EXQuery and
EXPath all take this approach, although EXQuery and
EXPath also have some support for reducing the
overhead of implementing (for the JVM) by
providing common code.

2. Function Distributions
Providing libraries of ready-to-use common

functions that are implemented in a language known
to every implementation. This is the approach taken
by FunctX, whose implementations are provided in
pure XQuery or XSLT.

3. Implementation Type Mapping
Tightly defining the function interface and type

mapping between the host language and the extension
function language. This is the approach taken by
XSLT 1.1, which when restricting implementation to
ECMAScript, JavaScript or Java, would have enabled
the creation and use of libraries of portable extension
functions for XSLT. Arguably XSLT 1.1 also overlaps
with the Function Distributions approach as it allows
the implementation of the extension function to be
embedded within the XSLT itself.

Function Standardisation is a great start, but without a
majority of significant implementations [25], adoption is
likely to remain a problem. Implementation can be
assisted by reducing the overhead for vendors to achieve

this, one such mechanism is providing common code;
however, this must be inclusive to languages other than
those atop the JVM (See Section 3.2, “XPDL
Implementation Survey”).

Ignoring source-level interoperability for the
moment, one issue with providing common code is that
each implementation almost certainly has a different type
system and approach to representing the XDM [26]
types (amongst others). The Implementation Type
Mapping approach taken by XSLT 1.1 demonstrates an
interesting mechanism for solving this by explicitly laying
out a type model and mappings from XSLT to the
implementation language. Both the EXQuery and
EXPath projects have also made embryonic attempts at
defining mappings for XDM types, however both are
restricted to the JVM through their use of Scala [27] and
Java [28] respectively.

Function Distributions of Standardised Functions is
the ultimate goal; The ability to distribute extension
functions for XPDLs that will interoperate with any
implementation. However, without Implementation
Type Mapping and standard interfaces it is certainly
impossible that an implementation of an XPDL
extension function would work with an unknown
vendors XPDL implementation.

Implementation Type Mapping should be considered
as the foundation layer for any form of interoperability
between an XPDL extension function and varying XPDL
implementations. Without this every implementation of
an XPDL extension function for a specific XPDL
platform would require re-implementation.

If we want to solve the problem of portable extension
functions for XPDLs then it would seem that we must
adopt a layered approach where we combine aspects of all
three existing approaches:
1. An Implementation Type mapping needs to be

created which is either at a level of abstraction that is
not specific to any particular implementation
language or can be losslessly implemented in a specific
language, yet is still specific enough to constrain
implementations to extension function standard
specifications.

Function Standardisation for extension functions
needs to take place at the XPath level so as to ensure
that the functions are applicable to the widest range of
XPDLs.

Standardised Functions need to be implemented
according to an Implementation Type Mapping to
form a Function Distribution, but in a language that
allows them to be distributed in either source or
binary form for any vendor implementation regardless
of platform.

Page 130 of 177

Implementation of Portable EXPath Extension Functions

Figure 4. Layered Approach to Portable XPDL
Extension Functions

3.1. Commonality of EXPath Standardised
Extension Functions and Implementation
Type Mapping

Whilst the EXPath project has provided definitions for
several modules of Standardised Functions for XPDL
extension functions, there has been little work by EXPath
or others [29] in reducing the duplication of effort across
vendors who wish to implement these functions, i.e. by
exploring Implementation Type Mapping.

Consider the signature of the file:exists function
(as shown in Example 1, “file:exists function signature”)
which is just one of the Standardised Functions from the
EXPath File Module [30].

Example 1. file:exists function signature

file:exists($path as xs:string) as xs:boolean

When we examine the three known implementations of
this for BaseX 8.1.1 [31], eXist 2.2 [32] and Saxon
9.6.0.5 [33] we find that each implementation is very
similar; Each implements a host interface which
represents an XPDL function, and within that
implements a host function which has access to the
arguments and context of the XPDL function call. A
simplified representation of the interfaces of these
processors is extracted:

Example 2. BaseX Extension Function Interface

interface StandardFunc {
 Item item(QueryContext qc, InputInfo ii)
 throws QueryException;
}

Example 3. eXist Extension Function Interface

interface BasicFunction {
 Sequence eval(Sequence[] args,
 Sequence contextSequence)
 throws XPathException;
}

Example 4. Saxon Extension Function Interface

interface ExtensionFunctionCall {
 SequenceIterator call(
 SequenceIterator[] arguments,
 XPathContext context) throws XPathException;
}

Whilst there is currently no non-Java implementation of
the EXPath File Module, if we examine a similarly simple
function such as XPath's fn:year-from-date in XQilla
[34] (a C++ implementation) then we can again extract a
simplified function interface:

Example 5. XQilla Function Interface

class XQFunction {
 public:
 Sequence createSequence(DynamicContext*
 context, int flags=0) const;
};

The similarity of these interfaces leads us to conclude
that there is further room for common abstraction and
that specifying a standard Implementation Type
Mapping and interfaces could lead to a reduction in
duplicated effort for implementers of these EXPath
extension functions and therefore any XPDL extension
functions.

3.2. XPDL Implementation Survey

To achieve the broadest appeal between implementers of
XPDL extension functions, it cannot be assumed that
primary support for Java, ECMAScript or JavaScript in
itself will be acceptable to the larger community; As
partially demonstrated by the failure of XSLT 1.1 (see
Section 2.2, “XSLT 1.1”). Therefore, any
Implementation Type Mapping or Function Distribution

Page 131 of 177

Implementation of Portable EXPath Extension Functions

should be applicable to any platform and most likely not
just limited to the JVM [27][28]. To inform how such a
Mapping or Distribution may be implemented, we
should first understand the variety of source languages of

existing XPDL processors. The results of a survey of
XPDL processors is presented in Table 1, “Survey of
XPDL Implementations”.

Table 1. Survey of XPDL Implementations

C C++ Haskell Java JavaScript .NET Objective-C Pascal

libxml2[a]
Berkley DBXML
(libxquery-devel)
[a][b]

Haskell
XML
Toolbox[a]

Altova Raptor
XML[a][b][c]

Frameless[a]

[c]
Exselt[a][c]

(F#) GDataXML[a] Xidel[a]

[b]

libxslt[c]
Intel SOA
Expressway
XSLT[c]

HXQ[a][b] Apache
VXQuery[b]

Saxon/
CE[c][d]

.NET
Standard
Library
XmlNode[a]

NSXML[a][b]

[c]

Saxon/
C[c][d] MarkLogic[a][b][c] BaseX[a][b] xpath

NPM[a]
XMLPrime[a]

[b][c] (C#)
Panthro[a][b]

 pugixml[a]
DataDirect
XQuery[b] XQIB[b] xsltc[c] (C#)

 QtXmlPatterns[a]

[b][c]
EMC
Documentum[a]

[b][c]

 Sedna[a][b] eXist-db[a][b][c]

 Sablotron[a][c] GNU Qexo[a][b]

[c]

 TinyXPath[a]

IBM WebSphere
Application
Server Feature
Pack for XML[a]

[b][c]

 Xalan-C++[a][c] Qizx[a][b][c]

 XQilla[a][b] Saxon[a][b][c]

 Zorba[a][b][c] Xalan-J[a][c]

[a] Implements XPath
[b] Implements XQuery
[c] Implements XSLT
[d] Source-level port of Saxon from Java

The survey was produced from aggregating the W3C
XML Query list of implementations [35], the EXPath
CG list of XPath engines [36] and relevant Google
searches. The aggregate list was then reduced to those
implementations for which information was still available
and up-to-date. The list of programming languages for
the survey was chosen based on the available

implementations, and the native language of that
implementation; For example with the Go programming
language the approach appears to be to call xsltproc [37]
(a wrapper around libxslt which itself is implemented in
C), and the common approach from Python seems to be
to use the lxml python wrapper [38] for libxml2 and
libxslt (both themselves implemented in C).

Page 132 of 177

Implementation of Portable EXPath Extension Functions

From the survey it is clear that there is no lack of
native programming language implementations of XPDL
processors. The majority of implementations are written
in Java and C++, which could likely be justified by the
size of the C++ and Java communities (as briefly
discussed in Section 1.1.2, “Indirectly”).

4. Portable XPDL Extension
Function Implementation

From an analysis of the current state of the art in regard
to extension functions for XPDLs it can be determined
that if we want to reduce the effort to implement a
standardised extension function then we need to provide
an Implementation Type Mapping; This allows the
implementer of a standardised extension function to
code to a standard interface without worrying about
vendor specifics. However, such an Implementation Type
Mapping needs to take into account the implementation
language of the vendors XPDL processor, and this could
potentially lead to an issue of fanout with many similar
Implementation Type Mappings, one for each
implementation language, which is far from ideal.

In addition, we have seen that providing common
code can help to reduce the effort which is duplicated by
each vendor implementing the same XPDL extension
functions. Unfortunately this further compounds the
fanout issue, as it would be very time consuming to
provide common implementation code for each XPDL
extension function in every known XPDL platform
implementation language.

4.1. Implementation Portability

Ideally we would like to be able to specify a single
Implementation Type Mapping and implement any
XPDL extension function just once according to that
mapping and have it execute with any vendors XPDL
implementation.

Sun Microsystems coined the phrase “Write Once,
Run Anywhere” (WORA) around 1996 in relation to
Java [39]. Java is a high-level language which avoids
platform specific implementation details by compiling to
byte-code which is then executed by a virtual machine.
The ability to distribute an XPDL extension function as
byte-code has several attractions, such as the user not
having to compile any code. However, the promise is
somewhat shallow as executing Java requires a JVM to be
installed on the target platform, without that the byte-
code cannot be executed. For those vendors whose
implementations are themselves not written in Java, they
could still execute an XPDL extension function written

in Java via JNI (Java Native Interface), however it may
not be desirable to also force their users to install a JVM
on their systems. A WORA experience for XPDL
extension functions could eliminate the fanout cost of
implementation, however Java is not suitable for all
implementations.

If we can't achieve WORA we could instead consider
falling back to a WOCA (Write Once, Compile
Anywhere) approach where we distribute the
Implementation Type Mapping and any common
implementation source code in a single language that can
be compiled on any platform. At first, C or C++ would
seem a suitable choice for WOCA due to the fact that
many XPDL processors are implemented in C or C++
and any XPDL processor implemented in Java could call
a C or C++ implementation of an XPDL extension
function via JNI. Through SWIG [40] we could also
make any C or C++ XPDL extension function applicable
to XPDL processors implemented in many other
languages. Whilst C and C++ have many desirable
properties, such as instruction set portability, compiler
availability, and interoperability, the code is often highly
hardware (e.g. big-endian vs little-endian), Operating
System specific (e.g. Win32 API vs Posix API) and
library specific (e.g Std vs Boost vs Qt etc), thus
imposing a great deal of constraints to actually achieve
WOCA; Therefore we would most likely still require
several C or C++ variants for different systems.

Having identified issues with both, WORA where we
would distribute a compiled intermediate byte-code for a
VM (Virtual Machine), and WOCA where we would
distribute source code which could be compiled to
machine code, we are naturally led to investigate Source-
to-source compilation. Source-to-source compilation
allows us to take source code expressed in one language
and translate it into a different target language.
Regardless of the language of our initial source code,
based on the results of our survey (see Table 1, “Survey of
XPDL Implementations”) we know that we would need
to generate code for at least C++ and Java targets.

An examination of the available source-to-source
compilers leads us to the Haxe Cross-platform Toolkit
which fits our requirements well as it has targets for C++,
C#, Java and JavaScript amongst others [41], with targets
in development for C and LLVM [42]. Haxe uses a single
source language also called Haxe which is similar to
ECMAScript but with influences from ActionScript and
C#. The Haxe toolkit also provides a cross-target
standard library for the Haxe language. With Haxe it
seems entirely possible that we can entirely eliminate the
fanout issue of implementation by: 1) specifying an
Implementation Type Mapping between XDM and the
Haxe Language and 2) going further than providing

Page 133 of 177

Implementation of Portable EXPath Extension Functions

common code for the implementation of an XPDL
extension function, instead implement the entire
function according to the Implementation Type
Mapping in the Haxe language itself. The vendor of an
XPDL processor could then take the Haxe code and
compile it to the implementation language of their
processor to produce a distribution of standardised
extension functions; This role could also perhaps also be
taken by an intermediary such as the EXPath project.

4.2. Implementation Type Mapping for Haxe

We have developed a partial Implementation Type
Mapping between XDM and Haxe (the source code is
available from the EXQuery GitHub repository [43])
that provides enough functionality to allow
implementation of a single EXPath extension function:
the file:exists function (as discussed in Section 3.1,
“Commonality of EXPath Standardised Extension
Functions and Implementation Type Mapping”). In
addition to implementing Type Mappings for the XDM,
we also need to implement interfaces to map the XPath
concept of calling a function and passing arguments.

To produce interfaces for mapping the concept of an
XPDL extension function, which is effectively an
externally declared function in terms of the XPath
specification, we need to understand both how a
function is declared and subsequently called. A function
call in XPath 3.0 [44]is made up of the several constructs
expressed in EBNF (Extended Backus-Naur Form) as
reproduced in Example 6, “XPath 3.0 Function Call
EBNF”.

Example 6. XPath 3.0 Function Call EBNF

FunctionCall ::= EQName ArgumentList
ArgumentList ::= "(" (Argument ("," Argument)*)? ")"

XPath only specifies how to call a function, it does not
specify how to define a function, so here we have opted
to follow the XQuery 3.0 specification which does
specify how to define a function [45]. A function
definition in XQuery 3.0 is made up of the EBNF
constructs as reproduced in Example 7, “XQuery 3.0
Function Declaration EBNF”.

Example 7. XQuery 3.0 Function Declaration EBNF

FunctionDecl ::= "function" EQName "(" ParamList? ")"
 ("as" SequenceType)? (FunctionBody | "external")
ParamList ::= Param ("," Param)*
Param ::= "$" EQName TypeDeclaration?
FunctionBody ::= EnclosedExpr

TypeDeclaration ::= "as" SequenceType
SequenceType ::= ("empty-sequence" "(" ")") | (ItemType OccurrenceIndicator?)
OccurrenceIndicator ::= "?" | "*" | "+"

EQName ::= QName | URIQualifiedName

As our XPDL extension functions will always be external
in nature, we can transform the FunctionDecl construct,
to extract a FunctionSignature. As our functions are
always external we can also ignore the FunctionBody
construct as this will instead be implemented in Haxe
code. As our extension functions are always the target of
a function call, we can reduce EQName to QName. All of the
other constructs can be translated into interfaces for our
Implementation Type Mapping to the Haxe language.

Page 134 of 177

Implementation of Portable EXPath Extension Functions

Example 8. Function Type Mapping for Haxe

package xpdl.extension.xpath;

interface Function {
 public function signature() : FunctionSignature;
 public function eval(
 arguments: Array<Argument>,
 context: Context) : Sequence;
}

class FunctionSignature {
 var name: QName;
 var returnType: SequenceType;
 var paramLists: Array<Array<Param>>;

 public function new(name, returnType, paramLists)
 {
 this.name = name;
 this.returnType = returnType;
 this.paramLists = paramLists;
 }
}

Example 8, “Function Type Mapping for Haxe” shows
part of our Implementation Type Mapping for functions
(full code in Appendix A, Function Type Mapping in
Haxe). The mapping is direct enough that anyone with a
knowledge of the relevant EBNF constructs of XPath and
XQuery can understand the simplicity of the function
type mapping between an XPDL extension function and
Haxe.

Yet, being able to specify the interface for a function
is not enough; we also need to create Implementation
Type Mappings for the XDM types. Whilst ultimately
we need to map all XDM types, within this paper we
focus exclusively on the types required for our partial
implementation, i.e. those types needed by the function
signature of the file:exists function (see Example 1,
“file:exists function signature”).

The signature of file:exists shows how we only
need to create type mappings for xs:string and
xs:boolean to appropriate Haxe types. We take the
approach to encapsulate the Haxe types inside
representations of the XDM types, as we believe that this
will provide greater flexibility for future changes.

Example 9. Haxe Implementation Type Mapping for
xs:string and xs:boolean

package xpdl.xdm;

import xpdl.HaxeTypes.HString;

interface Item {
 public function stringValue() : xpdl.xdm.String;
}

interface AnyType {
}

interface AnyAtomicType extends Item extends AnyType
{
}

class Boolean implements AnyAtomicType {
 var value: Bool;

 public function new(value) {
 this.value = value;
 }

 public function stringValue() {
 return new xpdl.xdm.String(Std.string(value));
 }

 public function haxe() {
 return value;
 }
}

class String implements AnyAtomicType {
 var value: HString;

 public function new(value) {
 this.value = value;
 }

 public function stringValue() {
 return this;
 }

 public function haxe() {
 return value;
 }
}

There is certainly an argument concerning whether we
should actually implement the xs:string and xs:boolean
XDM types in Haxe by providing classes, or whether we
should simply provide interfaces for a vendor to
implement. Further research through a survey of vendor
requirements would be required to answer this
definitively. For the purposes of this paper, classes have
been implemented for these basic atomic types.

Page 135 of 177

Implementation of Portable EXPath Extension Functions

4.3. Implementation of a portable file:exists

Given the function type mapping and Implementation
Type Mapping that we have defined in Section 4.2,
“Implementation Type Mapping for Haxe” we can now
implement our first truly portable XPDL extension
function by making use of Haxe.

Example 10. Implementation of the file:exists

function in Haxe

class ExistsFunction implements Function {
 private static var sig = new FunctionSignature(
 new QName(
 "exists",
 "http://expath.org/ns/file",
 "file"),

 new SequenceType(
 Some(new ItemOccurrence(Boolean))),
 [
 [new Param(new QName("path"),
 new SequenceType(Some(
 new ItemOccurrence(
 xpdl.xdm.Item.String))))
]
]
);

 public function new() {}

 public function signature() {
 return sig;
 }

 public function eval(
 arguments : Array<Argument>,
 context: Context)
 {
 var path = arguments[0].getArgument().
 iterator().next().
 stringValue().haxe();
 var exists = FileSystem.exists(path);
 return new ArraySequence([
 new Boolean(exists)]);
 }
}

Example 10, “Implementation of the file:exists

function in Haxe” shows the main concern of our
implementation of file:exists (full code in Appendix B,
file:exists implementation in Haxe).

4.4. XPDL Processor Vendor Implementation

We have defined both an Implementation Type Mapping
for XDM and associated interfaces for functions in the
Haxe language, and subsequently created an

implementation of an XPDL Extension Function, the
EXPath File Module's file:exists function in Haxe
written for the type mapping and interfaces. However,
such an XPDL extension function implementation is still
not useful without vendor support, as the Haxe code
must be compiled to the XPDL processors
implementation language and made available to the
XPDL from the processor.

As a proof-of-concept we have compiled the Haxe
code to both Java source and byte code using the Haxe
compiler and modified eXist-db to support XPDL
Extension Functions (the source code is available from
the eXist GitHub repository [46]). Modifying eXist to
recognise any XPDL Extension Function Module and
make its functions available as extension functions in
XQuery was achieved in approximately 300 lines of Java
code; For the partial implementation, only support for
the XDM types xs:string and xs:boolean was required,
but we recognise that the amount of code required will
increase as further XDM types are mapped.

Whilst modifying eXist to support XPDL Extension
Function Modules, we recognised that there were several
different approaches that could be taken to implement a
mapping between eXists own XDM model and our Haxe
XDM model. These approaches, whilst not exhaustive,
will most likely also apply to other XPDL processors, and
so we briefly enumerate them here for reference:
1. Mapping of Haxe XDM types to eXist XDM types

and vice-versa. This could be achieved either statically
or dynamically, or through a combination of both
approaches. A static implementation would be coded
in source, whereas a dynamic mapping would be
generated as needed at runtime.

2. Modify eXists XDM classes to implement the Haxe
XDM interfaces. This would allow us a single XDM
model and we could transparently pass eXists XDM
types into the Haxe compiled functions.

3. Inversion of Responsibility, using byte-code
generation at runtime to have the Haxe XDM
interfaces implement the eXist XDM interfaces. This
would make the Haxe XDM model compatible with
the eXist XDM model, so that Haxe XDM types
could be used transparently by eXist.

For expediency in creating the proof-of-concept
modifications in eXist, we used a static mapping of
XDM types in combination with a dynamic mapping of
functions. For the dynamic mapping of functions we
used byte-code generation to generate classes at runtime
to bridge between eXist's concept of an extension
function and our Haxe XPDL extension function.

Page 136 of 177

Implementation of Portable EXPath Extension Functions

5. Summary and Conclusion

Having explicitly laid out the issues with portability of
XPDLs in regard to non-standard extension functions
(see Section 1, “Introduction”), we have reviewed both
the past and current works on improving the status-quo
(see Section 2, “Prior Art”), and performed a critical
analysis of these approaches (see Section 3, “Analysis”).
From our critical analysis we have identified three
common approaches to improving portability: Function
Standardisation, Function Distributions and
Implementation Type Mappings. To resolve the issue of
portability with respect to extension functions for XPDL
users, we argue that there have to be solutions in place
for all three approaches and that these must work
together holistically.

Function Standardisation is already well supported by
the EXPath project, a community oriented organisation
which is vendor agnostic and has already proven itself
capable of coordinating stakeholders to define modules
of common XPDL extension functions and their
behaviour.

Function Distributions require implementations of
extension functions which they can then make available.
These extension functions themselves however need to be
portable, so that the resultant XPDL code that uses them
is also portable. Arguably the FunctX distribution was
successful because its extension functions were portable,
as they were written in XSLT and XQuery, making them
useable on any vendors XQuery or XSLT processor. For
more complex extension functions which cannot be
expressed in an XPDL, a portable Implementation Type
Mapping is a required enabler to creating Function
Distributions.

We have presented a solution for a portable
Implementation Type Mapping through the use of
source-to-source compilation (section Section 4.2,
“Implementation Type Mapping for Haxe”), and
implemented what we believe to be the first truly portal
extension function for an XPDL whilst using a non-
XPDL to implement the function (section Section 4.3,
“Implementation of a portable file:exists”). Further,
we have created a proof-of-concept by integrated support
for the Implementation Type Mapping into a real-world
XPDL processor (section Section 4.4, “XPDL Processor
Vendor Implementation”).

The use of Haxe for source-to-source compilation is
an interesting and novel approach towards solving the

issue of portable extension functions for XPDLs. Whilst
it does not eliminate the need of some effort by XPDL
processor vendors to support it, it greatly reduces the
work to a one-off exercise to support a portable
Implementation Type Mapping. In this manner an
XPDL extension function written once in Haxe, when
compiled will work on any XPDL processor (in a target
language supported by Haxe) which implements the
Implementation Type Mapping. For authors of portable
XPDL extension functions, rather than just creating a
standardisation of a function module through the
EXPath project and waiting for each vendor to
implement this, they can now also write a single
implementation which can be adopted quickly by the
widest possible audience.

5.1. Future Work

The Implementation Type Mapping and the proof-of-
concept currently only implement the basic XDM types
required for this paper, a full XDM Implementation
Type Mapping in Haxe is desirable and would likely
provide new insights into creating a portable
Implementation Type Mapping.

The target code generated by the Haxe compiler can
be somewhat verbose and even confusing to the
consuming developer. It is possible to tune the code
generation by tightly controlling DCE (Dead Code
Elimination) and native vs reflective generation. The use
of various Haxe language annotations should be
investigated to achieve the generation of cleaner target
code.

The options for implementation approach discussed
in Section 4.4, “XPDL Processor Vendor
Implementation” are likely coupled to the observation at
the end of Section 4.3, “Implementation of a portable
file:exists” over how concrete the XDM
Implementation Type Mapping should be. Further
research is required in this area, likely informed by
creating more proof-of-concept integrations with several
other XPDL processors.

Whilst Haxe does not favour Java as a target above
any other, a non-Java proof-of-concept would reinforce
our argument that Haxe allows us to create a portable
implementation. A C++ integration for the Zorba
XQuery processor could perhaps serve as a suitable
reinforcement.

Page 137 of 177

Implementation of Portable EXPath Extension Functions

A. Function Type Mapping in Haxe

package xpdl.extension.xpath;

interface Function {
 public function signature() : FunctionSignature;
 public function eval(arguments: Array<Argument>, context: Context) : Sequence;
}

interface Context {
}

class FunctionSignature {
 var name: QName;
 var returnType: SequenceType;
 var paramLists: Array<Array<Param>>;

 public function new(name, returnType, paramLists) {
 this.name = name;
 this.returnType = returnType;
 this.paramLists = paramLists;
 }
}

class QName {
 public static var NULL_NS_URI = "";
 public static var DEFAULT_NS_PREFIX = "";

 var localPart : String;
 var namespaceUri(default, null) : String;
 var prefix(default, null) : String;

 public function new(localPart, ?namespaceUri, ?prefix) {
 this.localPart = localPart;
 this.namespaceUri = (namespaceUri == null) ? NULL_NS_URI : namespaceUri;
 this.prefix = (prefix == null) ? DEFAULT_NS_PREFIX : prefix;
 }
}

class SequenceType {
 var type: Option<ItemOccurrence>; //None indicates empty-sequence()

 public function new(type) {
 this.type = type;
 }
}

class ItemOccurrence {
 var itemType: Class<Item>;
 var occurrenceIndicator: OccurrenceIndicator;

 public function new(itemType, ?occurenceIndicator) {
 this.itemType = itemType;
 this.occurrenceIndicator = (occurrenceIndicator == null) ?
 OccurrenceIndicator.ONE : occurrenceIndicator;
 }
}

enum OccurrenceIndicator {
 ZERO_OR_ONE; // ?

Page 138 of 177

Implementation of Portable EXPath Extension Functions

 ONE; // implementation detail
 ONE_OR_MORE; // +
 ZERO_OR_MORE; // *
}

class Param {
 var name: QName;
 var type: SequenceType;

 public function new(name, type) {
 this.name = name;
 this.type = type;
 }
}

interface Argument {
 public function getArgument() : Sequence;
}

interface Module {
 public function name() : String;
 public function description() : String;
 public function functions() : List<Class<Function>>;
}

B. file:exists implementation in Haxe

package example.expath.file;

import xpdl.extension.Module;
import xpdl.extension.xpath.*;
import xpdl.extension.xpath.SequenceType.ItemOccurrence;
import xpdl.xdm.Sequence;
import xpdl.xdm.Item.Item;
import xpdl.xdm.Item.Boolean;
import sys.FileSystem;

class ExistsFunction implements Function {

 private static var sig = new FunctionSignature(
 new QName("exists", FileModule.NAMESPACE, FileModule.PREFIX),
 new SequenceType(Some(new ItemOccurrence(Boolean))),
 [
 [new Param(new QName("path"), new SequenceType(Some(new ItemOccurrence(xpdl.xdm.Item.String))))]
]
);

 public function new() {}

 public function signature() {
 return sig;
 }

 public function eval(arguments : Array<Argument>, context: Context) {
 var path = arguments[0].getArgument().iterator().next().stringValue().haxe();
 var exists = FileSystem.exists(path);
 return new ArraySequence([new Boolean(exists)]);
 }
}

Page 139 of 177

Implementation of Portable EXPath Extension Functions

class ArraySequence implements Sequence {
 var items: Array<Item>;

 public function new(items: Array<Item>) {
 this.items = items;
 }

 public function iterator() {
 return new ArraySequenceIterator(items.iterator());
 }
}

class ArraySequenceIterator implements xpdl.support.Iterator<Item> {
 var it: Iterator<Item>;

 public function new(it) {
 this.it = it;
 }

 public function hasNext() {
 return it.hasNext();
 }

 public function next() {
 return it.next();
 }
}

class FileModule implements Module {
 @final public static var NAMESPACE = "http://expath.org/ns/file";
 @final public static var PREFIX = "file";

 public function name() {
 return "FileModule.hx";
 }

 public function description() {
 return "Haxe implementation of the EXPath File Module";
 }

 public function functions() : List<Class<Function>> {
 var lst = new List<Class<Function>>();
 lst.add(ExistsFunction);
 return lst;
 }
}

Bibliography

[1] XPath and XQuery Functions and Operators 3.0. W3C. 8 April 2014.
http://www.w3.org/TR/xpath-functions-30/

[2] XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition). W3C. 14 December 2010.
http://www.w3.org/TR/xpath-functions/

[3] Unifying XSLT Extensions. xml.com. Leigh Dodds. 29 March 2000.
http://www.xml.com/pub/a/2000/03/29/deviant/index.html

Page 140 of 177

Implementation of Portable EXPath Extension Functions

http://www.w3.org/TR/xpath-functions-30/
http://www.w3.org/TR/xpath-functions/
http://www.xml.com/pub/a/2000/03/29/deviant/index.html

[4] RESTful XQuery. Standardised XQuery 3.0 Annotations for REST. XML Prague. . XML Prague. Adam Retter.
12 February 2012.
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf

[5] TIOBE Programming Community Index. TIOBE Software. May 2015.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[6] PYPL PopularitY of Programming Language Index. Pierre Carbonnelle. May 2015.
http://pypl.github.io/PYPL.html

[7] Redmonk Programming Language Ratings. RedMonk. January 2015.
https://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/

[8] The Total Growth of Open Source. Amit Deshpande and Dirk Riehle. SAP Research, SAP Labs LLC. The Fourth
Conference on Open Source Systems (OSS 2008). . Springer Verlag. 197-209. 2008.

[9] The EXSLT Project.
http://www.exslt.org

[10] XML Path Language (XPath) Version 1.0. W3C. 16 November 1999.
http://www.w3.org/TR/xpath/

[11] XSL Transformations (XSLT) Version 2.0. W3C. 23 January 2007.
http://www.w3.org/TR/xslt20/

[12] XSL Transformations (XSLT) Version 1.1. W3C. 24 August 2001.
http://www.w3.org/TR/xslt11/

[13] XSLT Extensions Revisited. xml.com. Leigh Dodds. 14 February 2001.
http://www.xml.com/pub/a/2001/02/14/deviant.html

[14] Re: [xsl] XSLT 1.1 comments. W3C xsl-editors Mailing List. Michael Kay. 11 February 2001.
https://lists.w3.org/Archives/Public/xsl-editors/2001JanMar/0087.html

[15] Re: [xsl] XSLT 1.1 comments. xsl-list Mailing List. Steve Muench. 12 February 2001.
http://markmail.org/message/5fpk5gecmslzepdy

[16] Petition to withdraw xsl:script from XSLT 1.1. xml-dev Mailing List. Uche Ogbuji. 1 March 2001.
http://markmail.org/thread/tquj4ozsax3pjkm2

[17] Minutes of the Face-to-face meeting of the W3C XQuery Working Group in Bangkok. W3C XQuery Working
Group. January 2001.
https://lists.w3.org/Archives/Member/w3c-xsl-wg/2001Feb/0083.html

[18] FunctX. Datypic. Priscilla Walmsley. July 2006.
http://www.functx.com

[19] EXQuery. Collaboratively Defining Open Standards for Portable XQuery Applications. EXQuery. October
2008.
http://www.exquery.org

[20] EXQuery Common Implementation Source Code. The EXQuery Project.
https://github.com/exquery/exquery

[21] EXPath. Collaboratively Defining Open Standards for Portable XPath Extensions. EXPath. January 2009.
http://www.expath.org

[22] EXPath HTTP Client Module Common Implementation Source Code. Florent Georges.
https://github.com/fgeorges/expath-http-client-java

[23] EXPath File Module Common Implementation Source Code. The EXQuery Project. Adam Retter.
https://github.com/exquery/exquery/tree/master/expath-file-module

[24] EXPath File Module Common Implementation Source Code. Florent Georges.
https://github.com/fgeorges/expath-file-java

[25] Implementations of EXPath Modules. W3C EXPath Community Group. 8 May 2015.
https://www.w3.org/community/expath/wiki/Modules#Implementation

Page 141 of 177

Implementation of Portable EXPath Extension Functions

http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://pypl.github.io/PYPL.html
https://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
http://www.exslt.org
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt11/
http://www.xml.com/pub/a/2001/02/14/deviant.html
https://lists.w3.org/Archives/Public/xsl-editors/2001JanMar/0087.html
http://markmail.org/message/5fpk5gecmslzepdy
http://markmail.org/thread/tquj4ozsax3pjkm2
https://lists.w3.org/Archives/Member/w3c-xsl-wg/2001Feb/0083.html
http://www.functx.com
http://www.exquery.org
https://github.com/exquery/exquery
http://www.expath.org
https://github.com/fgeorges/expath-http-client-java
https://github.com/exquery/exquery/tree/master/expath-file-module
https://github.com/fgeorges/expath-file-java
https://www.w3.org/community/expath/wiki/Modules#Implementation

[26] XQuery and XPath Data Model 3.0. W3C. 8 April 2014.
http://www.w3.org/TR/xpath-datamodel-30/

[27] API for XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition). The EXQuery Project. Adam Retter.
12 February 2015.
https://github.com/exquery/exquery/tree/xdm-model/xdm

[28] XML Model for Java. The EXPath Project. Florent Georges. 6 January 2015.
https://github.com/expath/tools-java

[29] Minutes of Face-to-face meeting of the W3C EXPath Community Group in Prague. W3C EXPath Community
Group. 12 February 2015.
https://lists.w3.org/Archives/Public/public-expath/2015Feb/0005.html

[30] File Module 1.0. W3C EXPath Community Group. 20 February 2015.
http://expath.org/spec/file

[31] BaseX 8.1.1 implementation of EXPath file:exists function. BaseX. 9 January 2015.
https://github.com/BaseXdb/basex/blob/8.1.1/basex-core/src/main/java/org/basex/query/func/file/
FileExists.java

[32] eXist implementation of EXPath file:exists function. Adam Retter. 21 February 2015.
https://github.com/adamretter/exist-expath-file-module/blob/master/src/main/scala/org/exist/expath/module/
file/FileModule.scala

[33] Saxon implementation of EXPath file:exists function. Florent Georges. 16 January 2015.
https://github.com/fgeorges/expath-file-java/blob/master/file-saxon/src/org/expath/file/saxon/props/Exists.java

[34] XQilla implementation of XPath fn:date-from-year function. XQilla. 16 November 2011.
http://xqilla.hg.sourceforge.net/hgweb/xqilla/xqilla/file/6468e5681607/include/xqilla/functions/
FunctionYearFromDate.hpp

[35] W3C XML Query. Implementations. W3C XQuery Working Group.
http://www.w3.org/XML/Query/#implementation

[36] W3C EXPath Community Group Wiki. XPath Engines. W3C EXPath Community Group. 8 May 2015.
https://www.w3.org/community/expath/wiki/Engine

[37] Using XSLT with Go. William Kennedy. 3 November 2013.
http://www.goinggo.net/2013/11/using-xslt-with-go.html

[38] lxml. XML Toolkit for Python.
http://lxml.de/

[39] Write once, run anywhere. Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Write_once,_run_anywhere

[40] SWIG. Simplified Wrapper and Interface Generator.
http://www.swig.org/

[41] Haxe Compiler Targets.
http://haxe.org/documentation/introduction/compiler-targets.html

[42] Experimental C and LLVM Targets for Haxe.
https://github.com/waneck/haxe-genc

[43] Source code for Implementation Type Mapping of XPDL Extension Functions in Haxe. The EXQuery Project.
Adam Retter. 12 May 2015.
https://github.com/exquery/xpdl-extension-lib

[44] XML Path Language (XPath) 3.0. Static Function Calls. W3C. 8 April 2014.
http://www.w3.org/TR/xpath-30/#id-function-call

[45] XQuery 3.0: An XML Query Language. Function Declaration. W3C. 8 April 2014.
http://www.w3.org/TR/xquery-30/#FunctionDecln

[46] Source code of XPDL Extension Functions integration with eXist. Adam Retter. 12 May 2015.
https://github.com/eXist-db/exist/tree/xpdl-extensions/src/org/exist/xpdl

Page 142 of 177

Implementation of Portable EXPath Extension Functions

http://www.w3.org/TR/xpath-datamodel-30/
https://github.com/exquery/exquery/tree/xdm-model/xdm
https://github.com/expath/tools-java
https://lists.w3.org/Archives/Public/public-expath/2015Feb/0005.html
http://expath.org/spec/file
https://github.com/BaseXdb/basex/blob/8.1.1/basex-core/src/main/java/org/basex/query/func/file/FileExists.java
https://github.com/BaseXdb/basex/blob/8.1.1/basex-core/src/main/java/org/basex/query/func/file/FileExists.java
https://github.com/adamretter/exist-expath-file-module/blob/master/src/main/scala/org/exist/expath/module/file/FileModule.scala
https://github.com/adamretter/exist-expath-file-module/blob/master/src/main/scala/org/exist/expath/module/file/FileModule.scala
https://github.com/fgeorges/expath-file-java/blob/master/file-saxon/src/org/expath/file/saxon/props/Exists.java
http://xqilla.hg.sourceforge.net/hgweb/xqilla/xqilla/file/6468e5681607/include/xqilla/functions/FunctionYearFromDate.hpp
http://xqilla.hg.sourceforge.net/hgweb/xqilla/xqilla/file/6468e5681607/include/xqilla/functions/FunctionYearFromDate.hpp
http://www.w3.org/XML/Query/#implementation
https://www.w3.org/community/expath/wiki/Engine
http://www.goinggo.net/2013/11/using-xslt-with-go.html
http://lxml.de/
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
http://www.swig.org/
http://haxe.org/documentation/introduction/compiler-targets.html
https://github.com/waneck/haxe-genc
https://github.com/exquery/xpdl-extension-lib
http://www.w3.org/TR/xpath-30/#id-function-call
http://www.w3.org/TR/xquery-30/#FunctionDecln
https://github.com/eXist-db/exist/tree/xpdl-extensions/src/org/exist/xpdl

1 Section 5.1.4 Inheritance, in Extensible Stylesheet Language (XSL) Version 1.1 [1]
2 Section 5.9 Expressions, in Extensible Stylesheet Language (XSL) Version 1.1 [1]
3 http://www.oxygenxml.com/
4 http://xep.xattic.com/xep/resources/validators/folint/folint.xsl

Validating XSL-FO with Relax NG and
Schematron

Tony Graham

Antenna House, Inc.
<tgraham@antenna.co.jp>

<tony@antennahouse.com>

Abstract

XSL-FO defies conventional validation, so much so that it
hasn’t been done successfully before now. This paper describes
a combination of hand-written and auto-generated Relax
NG plus hand-written and auto-generated Schematron that
can validate XSL-FO markup. The project is available on
GitHub at https://github.com/AntennaHouse/focheck

Keywords: XSL-FO, Relax NG, Schematron

1. Introduction

XSL-FO documents are typically generated as the result
of an XSLT transformation and are rarely edited by hand.
However, validating generated XSL-FO markup is useful
as a check of the correctness of the transformation. Also,
people do edit XSL-FO by hand either when prototyping
the XSL-FO markup that will later be generated using
XSLT or when debugging generated XSL-FO. Being able
to validate the XSL-FO in an XML editor helps in both
scenarios.
Validating XSL-FO is not easy because:
• Constraints in the definitions of FOs are hard or

impossible to express in structure-checking schema
languages.

• Some FOs can appear almost anywhere in an XSL-FO
document but, equally, cannot appear where they are
not allowed.

• The properties of an FO are expressed in the XML as
attributes of the XML element representing the FO,
but inherited properties1 are allowed to appear on any
FO, not just on the FOs for which they are defined.

• While the XSL 1.1 Recommendation [1] defines the
allowed values of properties, most properties can
contain expressions in the expression language2 that is
defined in the spec, so determining the correctness of

an attribute in the XML initially requires evaluating
it.

A schema for XSL-FO was in the requirements for XSL
2.0 [2], but the design of XSL was shaped by the
requirements of formatting rather than any requirement
to conform to a schema language. The result has been
that XSL-FO was hard to validate except by running it
through an FO formatter. Systems for checking the
formatted result exist [3] [4], but they require usable
input.

Schemas for XSL-FO do exist, including several from
RenderX [5] and the schema that is provided by the
oXygen XML Editor3, but they do not cover XSL 1.1,
they each cut corners in their models for element
content, and they do not properly evaluate property
value expressions. Also, none of them cover the
numerous extensions supported by Antenna House AH
Formatter.

One of the validation methods tried by RenderX but
noted as longer used [5] is a validator written in XSLT4.
A 2004 paper [6] by Alexander Peshkov of RenderX
describes the XSLT approach as powerful but requiring
more resources than, for example, DTD validation and
also not being suitable for “visual XSL-FO editors or
document builders.” That paper then describes a Relax
NG schema that includes a limited ability to handle
property value expressions.

The approach taken by Antenna House combines
Relax NG and Schematron for detailed validation of the
XSL-FO. The Relax NG handles structural validation
and is, we believe, more correct than pre-existing
schemas. The Schematron handles the additional
constraints that cannot be expressed in Relax NG. The
Schematron parses property value expressions using an
XSLT-based parser generated by the REx parser generator
[7] plus an XSLT library for reducing the parse tree to
XSL-FO datatypes.

doi:10.14337/XMLLondon15.Graham01 Page 143 of 177

http://www.w3.org/TR/xsl/#inheritance
http://www.w3.org/TR/xsl/#d0e5032
http://www.oxygenxml.com/
http://xep.xattic.com/xep/resources/validators/folint/folint.xsl
mailto:tgraham@antenna.co.jp
mailto:tony@antennahouse.com
https://github.com/AntennaHouse/focheck

1 Oxygen add-on hosted on GitHub - http://inasmuch.as/2013/10/23/oxygen-add-on-hosted-on-github/
2 http://www.w3.org/TR/2006/REC-xsl11-20061205/xslspec.xml
3 6.2 Formatting Object Content, in Extensible Stylesheet Language (XSL) Version 1.1 [1]

The Relax NG and Schematron is available on
GitHub (https://github.com/AntennaHouse/focheck)
and you can download an oXygen add-on framework for
XSL-FO validation directly from the GitHub page1.

We also considered wiring the Schematron directly to
the expression parser built into an FO formatter through
XSLT extension functions. However, doing the
interfacing would have been a non-trivial task, plus the
Antenna House AH Formatter is a native application on
each platform and wouldn’t be as portable as purely-
XSLT Schematron.

2. Why Relax NG?

Three features of Relax NG made it the best choice for
the schema:
• Non-deterministic content models
• Easy extensibility by redefining or extending patterns
• Ability to interleave elements in content models

3. Why Relax NG Compact Syntax?

The schema is written in Relax NG compact syntax and
then converted into the XML syntax for use with
oXygen. It is not written directly in the XML syntax for
multiple reasons:
• It was easy to write and check the initial patterns that

would be replicated by the programmatically
generated schema.

• Relax NG compact syntax closely matches the syntax
of the content models in the spec, which made it
easier to include them in the generated schema.

• Reading the generated schema to check it is easier
with the compact syntax than with the XML syntax.

• The handwritten parts, including the schema module
defining Antenna House extensions, were only ever
going to be written in the compact syntax.

4. Generating the Relax NG and
Schematron

The bulk of the FO portion of the Relax NG and
Schematron is generated by transforming the XML
source2 for the XSL 1.1 Recommendation using XSLT.
The XML is consistent enough for this to be feasible: it’s
not the first time that I’ve generated code from the XML,
nor am I the only person to have done it.

5. Validating FOs

At first glance, this seems quite straightforward to do
using Relax NG: the content models are in the spec,
where every FO is in a separate div3 element and the
FO’s content model is easy to identify:

1 <div3 id="fo_block">
2 <head>fo:block</head>
3
4 <p>
5 <emph>Common Usage:</emph>
6 </p>
7
8 <p>The fo:block formatting object is commonly
9 used for formatting paragraphs, titles,
10 headlines, figure and table captions, etc.</p>
11 ...
12 <p>
13 <emph>Contents:</emph>
14 </p>
15 <eg xml:space="preserve">
16 (#PCDATA|<loc href="#inline.fo.list"
17 xlink:type="simple"
18 xlink:show="replace" xlink:actuate="onRequest"
19 xmlns:xlink="http://www.w3.org/1999/xlink">%inline;
 </loc>|<loc
20 href="#block.fo.list" xlink:type="simple"
21 xlink:show="replace"
22 xlink:actuate="onRequest"
23 xmlns:xlink="http://www.w3.org/1999/xlink">%block;
 </loc>)*
24 </eg>
25
26 <p>In addition this formatting object may have a
27 sequence of zero or more fo:markers as its initial
28 children, optionally followed by an
29 fo:initial-property-set.</p>

The %inline; and %block; behave like parameter entities
in a DTD, though there isn’t a DTD, and their
expansions are given in the text of the
Recommendation3:

Page 144 of 177

Validating XSL-FO with Relax NG and Schematron

http://inasmuch.as/2013/10/23/oxygen-add-on-hosted-on-github/
http://www.w3.org/TR/2006/REC-xsl11-20061205/xslspec.xml
http://www.w3.org/TR/xsl/#d0e6532
https://github.com/AntennaHouse/focheck

1 Section 6.12.3 fo:footnote, in Extensible Stylesheet Language (XSL) Version 1.1 [1]

The parameter entity, "%block;" in the
content models below, contains the
following formatting objects:
 block
 block-container
 table-and-caption
 table list-block
The parameter entity, "%inline;" in the
content models below, contains the
following formatting objects:
 bidi-override
 character
 external-graphic
 instream-foreign-object
 inline
 inline-container
 leader
 page-number
 page-number-citation
 page-number-citation-last
 scaling-value-citation
 basic-link
 multi-toggle
 index-page-citation-list

So far, so good; the corresponding Relax NG pattern
generated for fo:block looks like:

fo_block.model =
 (text|inline.fo.list|block.fo.list)*

where inline.fo.list and block.fo.list are defined in
literal text that is included in the generated schema.

However, the XSL 1.1 Recommendation defines
neutral and out-of-line classes of FOs that can appear
anywhere where #PCDATA, %inline; or %block; is allowed
in FO content models (although additional constraints
apply). Handling those simply required matching on
#PCDATA, %inline;, or %block; in the content models in
the spec. The generated pattern for fo:block then
becomes:

fo_block.model =
 (text|inline.fo.list|block.fo.list |
 neutral.fo.list)* &
 (inline.out-of-line.fo.list)*

The neutral and out-of-line FO classes were also in
XSL 1.0. XSL 1.1 added fo:change-bar-begin and
fo:change-bar-end as point FOs that “may be used
anywhere as a descendant of fo:flow or fo:static-content”
[FOC]. Since that couldn’t be handled by just looking at

either the FO or its content model, the XSLT contains a
list of FOs to which to not add the point FOs:

<xsl:variable name="no-point-fos"
 select="'root layout-master-set declarations
bookmark-tree page-sequence page-sequence-wrapper
color-profile title folio-prefix folio-suffix
simple-page-master page-sequence-master flow-map
single-page-master-reference
repeatable-page-master-reference
repeatable-page-master-alternatives
conditional-page-master-reference region-body
region-before region-after region-start
region-end flow-assignment flow-source-list
flow-target-list flow-name-specifier
region-name-specifier'" as="xs:string"/>

<xsl:variable
 name="no-point-fo-list"
 select="tokenize($no-point-fos, '\s+')"
 as="xs:string+"/>

such that every FO not in the list will allow fo:change-
bar-begin and fo:change-bar-end, so the model for
fo:block becomes:

fo_block.model =
 (((text|inline.fo.list|block.fo.list |
 neutral.fo.list)* &
 (inline.out-of-line.fo.list)*) &
 (point.fo.list)*)

But there’s also the additional constraints about allowing
fo:marker and fo:initial-property-set as initial
children of an fo:block. This is handled adding those
elements to content models only where the significant
“zero or more fo:markers” or “optionally followed by an
fo:initial-property-set” text occurs in the FO’s definition.
The complete, and completely auto-generated, model for
fo:block is:

fo_block.model =
 fo_marker*,
 fo_initial-property-set?,
 (((text|inline.fo.list|block.fo.list |
 neutral.fo.list)* &
 (inline.out-of-line.fo.list)*) &
 (point.fo.list)*)

fo:block is actually a quite straightforward FO to
validate. fo:footnote1, for example, would appear to be
even easier, since its content model is:

(inline,footnote-body)

The neutral and out-of-line FOs don’t apply, but the
point FOs do, so the generated model is:

fo_footnote.model =
 ((fo_inline,fo_footnote-body) &
 (point.fo.list)*)

Page 145 of 177

Validating XSL-FO with Relax NG and Schematron

http://www.w3.org/TR/xsl/#fo_footnote

1 Section 6.13.7 fo:retrieve-table-marker, in Extensible Stylesheet Language (XSL) Version 1.1 [1]

If only it was that simple. There are additional
constraints in the text of the XSL 1.1 Recommendation:

It is an error if the fo:footnote occurs as a
descendant of a flow that is not assigned to
one or more region-body regions, or of an
fo:block-container that generates absolutely
positioned areas...

...
An fo:footnote is not permitted to have

an fo:float, fo:footnote, or fo:marker as a
descendant.

Additionally, an fo:footnote is not
permitted to have as a descendant an
fo:block-container that generates an
absolutely positioned area.

From its content model, fo:retrieve-table-marker1

(added in XSL 1.1) would appear to be even simpler:

EMPTY

producing:

fo_retrieve-table-marker.model = (empty)

but it has its own constraints:

An fo:retrieve-table-marker is only
permitted as the descendant of an fo:table-
header or fo:table-footer or as a child of
fo:table in a position where fo:table-header
or fo:table-footer is permitted.

These are the sorts of constraints that can’t be expressed
in Relax NG (except by exploding the size of the schema
through making separate versions of every FO that can
appear in each constrained context) but that are well
suited to Schematron. There aren’t enough of these
constraints that are expressed in a consistent way for it to
be worthwhile autogenerating them, so they have to be
written by hand. For example, this is the fo:retrieve-
table-marker constraint as a Schematron rule:

<rule context="fo:retrieve-table-marker">
 <assert test="
exists(ancestor::fo:table-header) or
exists(ancestor::fo:table-footer) or
(exists(parent::fo:table) and
 empty(preceding-sibling::fo:table-body) and
 empty(following-sibling::fo:table-column))">An
 fo:retrieve-table-marker is only permitted as
 the descendant of an fo:table-header or
 fo:table-footer or as a child of fo:table in a
 position where fo:table-header or
 fo:table-footer is permitted.</assert>
</rule>

6. Validating properties

Generating Relax NG patterns for the properties is
straightforward. The XML for each FO includes a list of
its allowed properties or groups of properties. For
example, for fo:footnote[fo-footnote]:

<p>
 <emph>The following properties apply to this
 formatting object:</emph>
</p>
<slist>
 <sitem>
 <specref ref="common-accessibility-properties"/>
 </sitem>
 <sitem>
 <specref ref="id"/>
 </sitem>
 <sitem>
 <specref ref="index-class"/>
 </sitem>
 <sitem>
 <specref ref="index-key"/>
 </sitem>
</slist>

Here, the specref/@ref refers either to a div2 containing
the div3 for multiple properties or to a div3 for a
property. The div2 each generate a named pattern, so the
pattern for the properties of fo:footnote is:

fo_footnote.attlist =
 common-accessibility-properties,
 id,
 index-class,
 index-key

where common-accessibility-properties is:

common-accessibility-properties =
 source-document,
 role

Because, as stated previously, the properties are evaluated
as expressions, each property is generated in the Relax
NG as containing only text. For example, for the column-
count property:

column-count =
 ## <number> | inherit
 attribute column-count { text }?

where ## begins an annotation that is the property’s
allowed value as extracted from the XML for the XSL 1.1
spec (and, similarly, annotations for FOs are also
extracted from the spec). The annotations appear in
oXygen as tool-tips, as shown in Figure 1, “Tool-tip in
oXygen”.

Page 146 of 177

Validating XSL-FO with Relax NG and Schematron

http://www.w3.org/TR/xsl/#fo_retrieve-table-marker

1 Section 5.11 Property Datatypes, in Extensible Stylesheet Language (XSL) Version 1.1 [1]
2 http://www.bottlecaps.de/rex/xpath20.ebnf

Figure 1. Tool-tip in oXygen

Whether or not a particular property is required for an
FO is not easy to automatically determine from the XML
for the XSL 1.1 spec, so that is enforced by the
Schematron, not by the Relax NG.

Some properties values are described in terms of
compound datatypes1, which are expressed in the XML
as multiple attributes. For example a "space-before"
property may be specified as:

space-before.minimum="2.0pt"
space-before.optimum="3.0pt"
space-before.maximum="4.0pt"
space-before.precedence="0"
space-before.conditionality="discard"

so properties that may have a value that is a compound
datatype each generate multiple attribute definitions. For
example:

space-before =
 ## <space> | inherit
 attribute space-before { text }?,
 attribute space-before.minimum { text }?,
 attribute space-before.optimum { text }?,
 attribute space-before.maximum { text }?,
 attribute space-before.precedence { text }?,
 attribute space-before.conditionality { text }?

As stated previously, property values are evaluated using a
parser generated by the REx parser generator [7]. The
productions in the XSL 1.1 spec[expressions] were mostly
suitable for feeding to REx, although it took a lot of
making modifications based on the grammar for XPath
2.02 that is provided on the REx website to get a
functioning parser.

Running the parser on a property value expression
produces markup corresponding to the productions in

the grammar. For example, for “-1 - -2”, the expression
parser produces:

<Expression>
 <Expr>
 <AdditiveExpr>
 <MultiplicativeExpr>
 <UnaryExpr>
 <TOKEN>-</TOKEN>
 <UnaryExpr>
 <PrimaryExpr>
 <Numeric>
 <AbsoluteNumeric>
 <AbsoluteLength>
 <Number>1</Number>
 </AbsoluteLength>
 </AbsoluteNumeric>
 </Numeric>
 </PrimaryExpr>
 </UnaryExpr>
 </UnaryExpr>
 </MultiplicativeExpr>
 <TOKEN>-</TOKEN>
 <MultiplicativeExpr>
 <UnaryExpr>
 <TOKEN>-</TOKEN>
 <UnaryExpr>
 <PrimaryExpr>
 <Numeric>
 <AbsoluteNumeric>
 <AbsoluteLength>
 <Number>2</Number>
 </AbsoluteLength>
 </AbsoluteNumeric>
 </Numeric>
 </PrimaryExpr>
 </UnaryExpr>
 </UnaryExpr>
 </MultiplicativeExpr>
 </AdditiveExpr>
 </Expr>
 <EOF/>
</Expression>

This, obviously, has little resemblance to an XSL-FO
datatype. The Schematron uses a handwritten parser-
runner.xsl library that runs the expression parser and
(mostly) reduces the elements for the grammar
productions into elements representing XSL-FO
datatypes. For example, this is the current

Page 147 of 177

Validating XSL-FO with Relax NG and Schematron

http://www.w3.org/TR/xsl/#datatype
http://www.bottlecaps.de/rex/xpath20.ebnf

1 Section 7.4 Additional CSS Datatypes, in Extensible Stylesheet Language (XSL) Version 1.1 [1]

implementation of the function for the AdditiveExpr
element:

<xsl:function name="ahf:AdditiveExpr"
 as="element()">
 <xsl:param name="parse-tree" as="element()*"/>

 <xsl:variable name="term1" as="element()"
 select="ahf:reduce-tree(
 $parse-tree/MultiplicativeExpr[1])"/>

 <xsl:choose>
 <xsl:when test="count(
 $parse-tree/MultiplicativeExpr) = 1">
 <xsl:sequence select="$term1"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence
 select="ahf:nextAdditiveExpr($term1,
$parse-tree/MultiplicativeExpr[position() > 1])"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:function>

The parser-runner.xsl is implemented solely using
xsl:function because of problems with oXygen’s
Schematron support when using xsl:apply-templates:
with an earlier version that did use xsl:apply-templates
on the Expression element, oXygen reported the context
for Schematron errors as the line in the parser XSLT
where the Expression element was created, not as the line
in the XSL-FO document where the property expression
occurred. Using only xsl:function works well enough
that it was not necessary to delve further into why this
was happening.

The result returned from the parser-runner.xsl for
“-1 - -2” is:

<Number value="1" is-positive="yes" is-zero="no"/>

Expression evaluation is used in three Schematron
phases:
• Automatically generated Schematron rules that report

syntax errors and incorrect datatypes.
• Handwritten Schematron rules for the additional

constraints in the XSL 1.1 Recommendation.
• Handwritten Schematron rules for Antenna House

extensions.
For example, the value of the column-count property is
defined as “<number> | inherit”, but the definition of
<number> for column-count is:

<number>
A positive integer. If a non-positive or

non-integer value is provided, the value will
be rounded to the nearest integer value
greater than or equal to 1.

The automatically generated rule for column-count is:

<rule context="fo:*/@column-count">
 <let name="expression"
 value="ahf:parser-runner(.)"/>

 <assert test="local-name($expression) =
('Number', 'EnumerationToken', 'ERROR', 'Object')">
'column-count' should be Number, EnumerationToken.
'<value-of select="."/>' is a <value-of
select="local-name($expression)"/>.</assert>

 <report test="$expression instance of
element(EnumerationToken) and
 not($expression/@token = ('inherit'))">
 Enumeration token is: '<value-of
 select="$expression/@token"/>'.
 Token should be 'inherit'.</report>

 <report test="local-name($expression) =
 'ERROR'">Syntax error:
 'column-count="<value-of select="."/>"'</report>
</rule>

and the manually generated rule is:

<rule context="fo:*/@column-count"
 role="column-count">
 <let name="expression"
 value="ahf:parser-runner(.)"/>

 <report test="local-name($expression) = 'Number'
 and (exists($expression/@is-positive) and
 $expression/@is-positive eq 'no' or
 $expression/@is-zero = 'yes' or
 exists($expression/@value) and
 not($expression/@value castable as xs:integer))"
 role="column-count">Warning: @column-count should
be a positive integer. The FO formatter will
round a non-positive or non-integer value to the
nearest integer value greater than or equal to 1.
 </report>
</rule>

Note that the expression evaluation stops short of
evaluating the inherited value. Also, a <Number> might
not have a @value; for example, if it is the result of
‘evaluating’ an XSL-FO function that isn’t fully
implemented in parser-runner.xsl.

Some of the property value definitions need to be
expanded1 into multiple enumeration tokens or XSL-FO
datatypes before generating the Schematron for checking

Page 148 of 177

Validating XSL-FO with Relax NG and Schematron

http://www.w3.org/TR/xsl/#cssdatat

1 Section 7.8.15 "border-start-width", in Extensible Stylesheet Language (XSL) Version 1.1 [1]
2 http://www.antennahouse.com/CSSInfo/extension.html
3 http://www.antennahouse.com/CSSInfo/float-extension.html
4 http://www.antennahouse.com/CSSInfo/ruby-extension.html

a property’s value. For example, the value of the border-
start-width property1 is defined as:

<border-width> | <length-conditional> | inherit

but <border-width> is considered a ‘notational
shorthand’ in XSL 1.1[cssdat], so the value to be checked
for expands to:

thin | medium | thick | <length> |
<length-conditional> | inherit

although only the presence or absence of attributes for
border-start-width.length or border-start-

width.conditionality would determine whether a length
value for border-start-width is a <length> or a <length-
conditional>.

7. Antenna House extensions

Antenna House AH Formatter [8] implements a number
of extensions234 to the XSL 1.1 Recommendation to
provide improvements to the formatted output.
Validation of AH Formatter extensions is also
implemented using a combination of Relax NG and
Schematron.

The documentation for the AH Formatter extensions
is in XML, as you would expect. However, it’s not in a
format that’s useful for automating the connections
between extensions and applicable FOs and properties,
so the Relax NG and Schematron both needed to be
handwritten.

The modules for the AH Formatter extensions use the
Relax NG include pattern to include the schema for
XSL-FO and merge it with the definitions of the

extensions. The shortened schema module below
demonstrates this:

default namespace axf =
"http://www.antennahouse.com/names/XSL/Extensions"
namespace fo = "http://www.w3.org/1999/XSL/Format"

include "fo.rnc" {

http://www.antennahouse.com/product/ahf60/docs/
#ahf-ext.html#fo.change-bar-begin
fo_change-bar-begin.model =
 (fo_float?)

http://www.antennahouse.com/product/ahf60/docs/
#ahf-ext.html#axf.document-info
fo_root.model =
 ((axf_document-info*,
 fo_layout-master-set,
 axf_document-info*,
 fo_declarations?,
 axf_document-info*,
 fo_bookmark-tree?,
 axf_document-info*,
 (fo_page-sequence|
 fo_page-sequence-wrapper)+))

}

http://www.antennahouse.com/product/ahf60/docs/
#ahf-ext.html#axf.document-info
axf_document-info =
 element axf:document-info {
 attribute name {
('document-title' | 'subject' | 'author' |
'author-title' | 'description-writer' | 'keywords' |
'copyright-status' | 'copyright-notice' |
'copyright-info-url' | 'xmp' | 'pagemode' |
'pagelayout' | 'hidetoolbar' | 'hidemenubar' |
'hidewindowui' | 'fitwindow' | 'centerwindow' |
'displaydoctitle' | 'openaction')},
 attribute value { text },
 empty
}

common-border-padding-and-background-properties &=
 axf_border-radius,
 axf_border-top-right-radius

axf_border-radius =
 attribute axf:border-radius { text }?
axf_border-top-right-radius =
 attribute axf:border-top-right-radius { text }?

This module includes fo.rnc. The definitions of
fo_change-bar-begin.model and fo_root.model redefine
and override the corresponding definitions in fo.rnc.

Page 149 of 177

Validating XSL-FO with Relax NG and Schematron

http://www.w3.org/TR/xsl/#border-start-width
http://www.antennahouse.com/CSSInfo/extension.html
http://www.antennahouse.com/CSSInfo/float-extension.html
http://www.antennahouse.com/CSSInfo/ruby-extension.html

1 https://code.google.com/p/xspec/
2 https://github.com/MenteaXML/stf

Conversely, the definition of common-border-padding-

and-background-properties that is outside the include
interleaves the axf_border-radius and axf_border-top-
right-radius patterns with the existing common-border-
padding-and-background-properties defined in fo.rnc to
add additional optional attributes to any FO defined by
the XSL 1.1 spec to already have the common border,
padding, and background properties.

The definitions of axf_document-info, axf_border-
radius, and axf_border-top-right-radius have to be
outside the include pattern. It would be an error to put
any of them inside the include since there are no
corresponding definitions in fo.rnc that they would
override.

8. Putting it all together - the onion
and the string

The Relax NG schema resembles an onion: the outer
layer is axf.rnc with the definitions and redefinitions for
the Antenna House extensions. The next layer, which is
included by axf.rnc is the auto-generated definitions
that interleave the inheritable Antenna House extension
properties with the properties that are defined for each
FO. That includes the auto-generated module with
definitions for the XSL 1.1 inherited properties, which in
turn includes the inner layer that is the autogenerated
definitions for the FOs and their properties.

The Relax NG compact syntax schema is also
converted into Relax NG XML syntax for use with
oXygen (since oXygen does not support schema-directed
editing using a compact syntax schema) and into W3C
XML Schema for use with other editors. As noted
previously, the annotations in the schema, which were
extracted from the XML for the XSL 1.1 spec, are
presented as tool-tips when editing an FO document
with oXygen.

The Schematron is written as multiple phases strung
together. With a Schematron implementation that
supports progressive validation by executing each phase
in order of its appearance, this will lead to progressively
more refined error checking. The phases are:
• Handwritten rules for FO constraints that aren’t

captured by the Relax NG.
• Autogenerated rules for checking property values for

syntax errors and correct datatypes.

• Handwritten rules for extra constraints on property
values, such as the rule that column-count should be a
positive integer.

• Handwritten rules for the Antenna House extensions.
There is an oXygen framework file that refers to both the
Relax NG and the Schematron so that oXygen can
automatically validate FO files using them. The
framework is available as a downloadable add-on for
oXygen.

You can also validate FO files from the command-
line using the validate target from the build-

focheck.xml Ant build file.

9. Testing

There are multiple levels of testing of the Relax NG and
Schematron.

At the lowest level, the parser-runner.xsl XSLT
library is tested using XSpec1 tests, for example:

<x:scenario label="AdditiveExpr">
 <x:call function="axf:parser-runner"/>
 <!-- ... -->
 <x:scenario label="-1 - -2">
 <x:call>
 <x:param name="input"
 select="'-1 - -2'"
 as="xs:string"/>
 </x:call>
 <x:expect label="is a number">
 <Number value="1" is-positive="yes"
 is-zero="no"/>
 </x:expect>
 </x:scenario>
</x:scenario>

At the next highest level, the Schematron is tested using
stf2:

<?stf column-count:1 ?>
<fo:retrieve-table-marker column-count="-1"
 xmlns:fo="http://www.w3.org/1999/XSL/Format" />

Finally, complete documents will be validated using both
Relax NG and Schematron using the validate Ant task.

10. Need for speed

The bottleneck for the validation is obviously going to be
executing the XSLT for the Schematron validation and,
in particular, the expression parser.

Page 150 of 177

Validating XSL-FO with Relax NG and Schematron

https://code.google.com/p/xspec/
https://github.com/MenteaXML/stf

1 http://www.saxonica.com/documentation/index.html#!using-xsl/compiling
2 http://www.saxonica.com/documentation/index.html#!extensions/attributes/memo-function
3 http://www.oxygenxml.com/doc/ug-editor/#topics/validation-actions-in-user-interface.html
4 Section 7.31.13 "font", in the Extensible Stylesheet Language (XSL) Version 1.1 Specification [1]

Saxon has dropped the ability to compile stylesheets1,
but the non-free versions of Saxon can memorise values
returned by functions2. oXygen uses Saxon EE when
running Schematron, so any property value is only
evaluated once, no matter how many times it appears in
the document. Additionally, oXygen also caches the
schema used to validate a document3, and oXygen
Support have confirmed that this includes caching a
Schematron validator, so the memorised property
expression values are available across documents.

The REx parser generator [7] is able to generate a
parser as a Saxon extension function. It should, therefore,
be possible to optionally include the compiled extension
function in the classpath for Saxon and make the ‘parser
runner’ library use the compiled extension function if it
is available and to fallback to the XSLT parser when the
function is unavailable. However, using Saxon extension
functions with Schematron validation is not a common
use-case, so it is not possible with oXygen 17 to just add
the Jar file for an extension function to an oXygen
framework and have it be used when validating
Schematron. Using the extension function currently
requires registering the extension function in the default
Saxon configuration in the oXygen preferences. Since
that can't be done just by downloading the oXygen add-
on, it's not currently part of focheck.

11. Future improvements

A necessary improvement is adding to and improving the
handwritten parts of the Relax NG and Schematron. The

constraints in the XSL 1.1 spec are spread through much
of the spec, and some of the details require careful
reading. For example, the Schematron rule for column-
count was modified after re-reading the definition while
writing this paper. Getting the Relax NG and
Schematron to be complete and correct is an ongoing
and iterative process. Pull requests on the GitHub project
will be appreciated.

The current expression parser cannot evaluate some
of the shorthand properties, such as font4, that were
borrowed from CSS2. Handling those will require either
writing custom XSLT or generating a different parser
using REx.

12. Conclusion

Validating XSL-FO documents can be useful when
debugging generated XSL-FO documents and when
prototyping XSL-FO by hand in an XML editor. The
XSL-FO validation from Antenna House available on
GitHub uses Relax NG, Schematron, and an XSLT-based
property expression parser to provide unprecedented
accuracy when validating XSL-FO documents.
Thanks go to the folks at Oxygen XML Editor Support
for helping with some of the issues encountered when
developing focheck.

Bibliography

[1] Extensible Stylesheet Language (XSL) Version 1.1. 05 December 2006. Anders Berglund. World Wide Web
Consortium (W3C).
http://www.w3.org/TR/xsl11/

[2] Extensible Stylesheet Language (XSL) Requirements Version 2.0. 11.5 Schema for XSL-FO. World Wide Web
Consortium (W3C).
http://www.w3.org/TR/xslfo20-req/#N67198

[3] A Visual Comparison Approach to Automated Regression Testing. Celina Huang. In Conference Proceedings of
XML London 2014. June 7-8, 2014.
doi:10.14337/XMLLondon14.Huang01

[4] xmlroff. Tony Graham.
https://github.com/xmlroff/xmlroff/tree/master/testing

[5] Validators by RenderX. RenderX Inc..
http://www.renderx.com/tools/validators.html

Page 151 of 177

Validating XSL-FO with Relax NG and Schematron

http://www.saxonica.com/documentation/index.html#!using-xsl/compiling
http://www.saxonica.com/documentation/index.html#!extensions/attributes/memo-function
http://www.oxygenxml.com/doc/ug-editor/#topics/validation-actions-in-user-interface.html
http://www.w3.org/TR/xsl/#font
http://www.w3.org/TR/xsl11/
http://www.w3.org/TR/xslfo20-req/#N67198
http://dx.doi.org/10.14337/XMLLondon14.Huang01
https://github.com/xmlroff/xmlroff/tree/master/testing
http://www.renderx.com/tools/validators.html

[6] Relax NG schema for XSL-FO. Alexander Peshkov. XML Europe 2004. 18 - 21 April 2004. Amsterdam,
Netherlands.
http://xep.xattic.com/xep/resources/validators/xmleurope2004-peshkov.pdf

[7] REx Parser Generator. Gunther Rademacher.
http://www.bottlecaps.de/rex/

[8] Antenna House Formatter V6. Antenna House Inc..
http://www.antennahouse.com/product/ahf60/ahf6top.htm

Page 152 of 177

Validating XSL-FO with Relax NG and Schematron

http://xep.xattic.com/xep/resources/validators/xmleurope2004-peshkov.pdf
http://www.bottlecaps.de/rex/
http://www.antennahouse.com/product/ahf60/ahf6top.htm

The application of Schematron schemas to
word-processing documents

Document validation in a non-structured environment

Andrew Sales

Andrew Sales Digital Publishing Limited
<andrew@andrewsales.com>

Abstract

This paper will present Schematron as a portable, standards-
based alternative to macros, demonstrating how it can be
integrated into a word-processing template to alert authors
and editors directly to content problems during capture.

It will demonstrate how business rules can be applied to
a word-processing document held in one of the standard
word-processing XML file formats using an ISO Schematron
schema. These rules will comprise typical Schematron
validation activity. Further, it will be shown how errors
found in the document can be successfully merged back in
situ into the original document, so that an editor can
address the problem so located within the originating editing
environment.

Keywords: Schematron, validation, OOXML, ODF

1. Background

As traditional print-based publishing has made the
transition into the digital age, a convention has
developed in some quarters of capturing or even
typesetting content using word-processing applications.

These can present a convenient route to publication
in the many instances where content derives (in the form
of author manuscript) from the same word-processing
package. It is also a relatively cheap and efficient one,
demanding the now basic and widespread skills of styling
a document to achieve the desired appearance.

As a result, typesetting workflows consuming these
documents still exist, template-based workflows designed
to capture structured data are still in place, and for some
publishers large quantities of legacy data persist in word-
processing formats only and require migration to XML
to meet modern production demands.

2. Quality

During the long period (for some) of moving to a digital-
first workflow, with publication of a single source of
structured data in various renditions, it has become
apparent to such publishers that the quality of their
content no longer only resides in the appearance of the
rendered product, but also in the quality of the data
capture itself. The quality question has shifted from
“Does my product look right?” to “Is my source markup
sufficiently rich to service the outputs I wish to
produce?” When generating XML markup from a word-
processing source, the inevitable corollary is whether the
document has been styled appropriately to drive good-
quality data capture.

Consistently-applied styles are needed, which can be
facilitated in part by a well-designed template. Badly-
applied styles will, understandably enough, produce less
than optimal results.

3. Approaches

The requirement to apply business rules to styled
documents is not new. This was often done using macros
to interrogate the underlying object model before
Microsoft Office (OOXML) [1] and Open Office (ODF)
[2] began exposing their respective file formats as XML.
With the word-processing document now available as
XML, other, native-XML validation approaches are
viable and indeed attractive.

3.1. The case for Schematron

There are several benefits to preferring Schematron:
• compatibility of a native XML technology with the

OOXML/ODF XML formats;
• the output validation format (SVRL [3]) can be used

for onward analysis/processing;
• the technologist can concentrate on writing

constraints using XPath (perhaps also re-using

doi:10.14337/XMLLondon15.Sales01 Page 153 of 177

mailto:andrew@andrewsales.com

favourite libraries or shared Schematron rulesets),
rather than bespoke macro code;

• there is some scope for targeting different flavours of
word-processing XML (with a little work);

• it is an international standard, whose de facto
reference implementation is written in XSLT.

4. Types of rule

Let us look at some samples of common types of business
rule expressed as Schematron constraints. The format to
be constrained in this instance is WordprocessingML.

The natural-language business rule is given first,
followed in each case by a Schematron implementation.

Note

These and other ISO Schematron examples omit the
Schematron namespace for brevity. An XSLT 2.0
implementation is also assumed.

4.1. Unexpected styles

"All paragraph styles in the body of the document must
be a member of a controlled list of styles."

<pattern id="unexpected-para-style">
<let name="allowed-para-styles"
 value=
 "('articlehead', 'bodytext', 'bibhead', 'bib')"/>
<rule context="w:p[not(parent::w:ftr)
and not(parent::w:footnote)
and not(parent::w:endnote)][w:r]">
<report
test="not(w:pPr/w:pStyle/@w:val =
 $allowed-para-styles)">
unexpected para style
 '<value-of select="w:pPr/w:pStyle/@w:val"/>';
expected one of:
 <value-of select="$allowed-para-styles"/>
</report>
</rule>
</pattern>

4.2. Unexpected sequence of styles

"The first bibliographic citation must be immediately
preceded by a bibliography heading."

<pattern id="missing-bib-heading">
<rule
context="w:p[w:pPr/w:pStyle/@w:val='bib']
[not(preceding::w:p[w:pPr/w:pStyle/@w:val
 = 'bib'])]">
 <assert
 test="preceding::w:p[w:pPr/w:pStyle/@w:val
 = 'bibhead']">
 no bibliography heading found
 </assert>
</rule>
</pattern>

4.3. Formatting of datatypes, e.g. dates

"A date in a bibliographic citation must conform to the
format YYYY-MM-DD."

<pattern id="bad-date">
<rule
 context="w:r[w:rPr/w:rStyle/@w:val='bibdate']">
 <assert test=". castable as xs:date">
 text styled as 'bibdate' must be in the format
 'YYYY-MM-DD';
 got '<value-of select="."/>'</assert>
</rule>
</pattern>

4.4. Co-occurrence constraints

"Every citation reference must have a corresponding
citation number in the bibliography."

<pattern id="broken-citation-link">
<let name="citation-refs"
 value="//w:r[w:rPr/w:rStyle/@w:val='bibref']"/>
<rule context="w:r[w:rPr/w:rStyle/@w:val
 = 'bibnum']">
 <assert test=". = $citation-refs">
 could not find a citation reference to this
 citation:
 '<value-of select="."/>'</assert>
</rule>
</pattern>

These examples show that it is possible to express a range
of constraints usefully with Schematron on
WordprocessingML documents, just as it is on other
types of XML document, provided that:
1. the expected disposition of styles supplies enough

meaning to enable those constraints to be created in
the first place; and

2. enough styling has been applied to produce sensible
validation output.

Page 154 of 177

The application of Schematron schemas to word-processing documents

These are important, if obvious, limitations: a document
whose contents have, for instance, a single default style
applied to them will not be very amenable to this kind of
validation.

5. Error reporting and visualisation

Word-processing packages are by nature presentation-
driven, so it makes sense to display the problems found

within the original document for editorial convenience
where possible.

The image below shows an approach to achieving
this, starting with the original document at top left and
proceeding clockwise until the final step, where the
original document is the input document for the final
transformation.

Figure 1. Annotating word-processing documents with Schematron errors

Word-
processing

XML
SVRLSchematron

XSLT
Auto-

generated
XSLT

Annotated
word-

processing
XML

Assuming a document containing errors which we have
obtained from Schematron as an SVRL report, let us
look at this process in more detail.

5.1. SVRL

We can take advantage of SVRL's failed-assert and
successful-report elements, whose location attribute
contains an XPath locator to the node at fault, e.g.

<svrl:failed-assert test=". castable as xs:date"
 location="/*:wordDocument[namespace-uri()=
 'http://schemas.microsoft.com/office/word/2003/wordml'][1]
 /*:body[namespace-uri()='http://schemas.microsoft.com/office/word/2003/wordml'][1]
 /*:sect[namespace-uri()='http://schemas.microsoft.com/office/word/2003/auxHint'][1]
 /*:sub-section[namespace-uri()='http://schemas.microsoft.com/office/word/2003/auxHint'][1]
 /*:sub-section[namespace-uri()='http://schemas.microsoft.com/office/word/2003/auxHint'][1]
 /*:p[namespace-uri()='http://schemas.microsoft.com/office/word/2003/wordml'][4]
 /*:r[namespace-uri()='http://schemas.microsoft.com/office/word/2003/wordml'][4]">
 <svrl:text>text styled as 'bibdate' must be in the format 'YYYY-MM-DD'; got 'February 2015'</svrl:text>
</svrl:failed-assert>

Page 155 of 177

The application of Schematron schemas to word-processing documents

1 ODF uses a similar approach with its office:annotation and office:annotation-end.

5.2. Auto-generated XSLT

From the XPaths supplied in SVRL, XSLT can be
automatically generated to perform an identity transform
to flag up errors in the original document.

The resulting, auto-generated XSLT contains an
xsl:key matching each locator, whose paths are
simplified so that each step contains a QName (the key
name here is the ID of the respective SVRL failed-
assert or successful-report):

<xsl:key name="d1e44" use="generate-id()"
 match="/w:wordDocument[1]/w:body[1]/wx:sect[1]/
 wx:sub-section[1]/wx:sub-section[1]/w:p[4]/
 w:r[4]"/>

This enables (in WordprocessingML) the insertion of
start and end comment elements around the location of
the problem1 (w:p for paragraphs and w:r inline), and the
text of the error message as the comment's content:

<xsl:template match="w:p">
<xsl:variable name="id" select="generate-id(.)"/>
<xsl:variable name="pos"
select="count(preceding::*)
 + count(ancestor-or-self::*)"/>

 <!--*COMMENT START MARKERS*-->
 <xsl:for-each select="key('d1e44', $id)">
 <xsl:call-template name="annotation">
 <xsl:with-param name="att-name"
 select="'Word.Comment.Start'"/>
 <xsl:with-param name="att-value"
 select="$pos"/>
 </xsl:call-template>
 </xsl:for-each>
 <!-- a further for-each select='key(...)'
 here for each error found -->
 <w:p>
 <xsl:apply-templates select="*"/>

 <!--*COMMENT END MARKERS*-->
 <xsl:for-each select="key('d1e44', $id)">
 <xsl:call-template name="annotation">
 <xsl:with-param name="att-name"
 select="'Word.Comment.End'"/>
 <xsl:with-param name="att-value"
 select="$pos"/>
 </xsl:call-template>
 </xsl:for-each>
 <!-- a further for-each select='key(...)'
 here for each error found -->

 <!--*COMMENT CONTENT*-->
 <xsl:for-each select="key('d1e44', $id)">
 <xsl:call-template name="insert-comment">
 <xsl:with-param name="id"
 select="$pos"/>
 <xsl:with-param name="message"

 select="'text styled as
"bibdate" must be in the format
"YYYY-MM-DD" got
"February 2015"'"/>
 </xsl:call-template>
 </xsl:for-each>
 </w:p>
</xsl:template>

<!--the same approach also applies to any w:r
 elements-->

<xsl:template name="annotation">
 <xsl:param name="att-name"/>
 <xsl:param name="att-value"/>
 <aml:annotation>
 <xsl:attribute name="w:type">
 <xsl:value-of select="$att-name"/>
 </xsl:attribute>
 <xsl:attribute name="aml:id">
 <xsl:value-of select="$att-value"/>
 </xsl:attribute>
 </aml:annotation>
</xsl:template>

<!-- N.B. template named 'insert-comment'
 omitted; see its output in the following section
-->

This XSLT has clearly not been finessed for elegance or
efficiency. Templates matching the error XPath locators
are a more natural choice; another alternative would be
to use an extension functions to evaluate the XPaths
reported in SVRL.

Page 156 of 177

The application of Schematron schemas to word-processing documents

5.3. Annotated source document

When the automatically-generated XSLT is run on the
original document, an annotated analogue of the source
results.

The WordprocessingML contains for example this
markup for each error identified using Schematron:

<!-- comment start marker -->
<aml:annotation w:type="Word.Comment.Start"
 aml:id="650"/>
<!-- original text where problem located: -->
<w:r>
 <w:rPr>
 <w:rStyle w:val="bibdate"/>
 </w:rPr>
 <w:t>February 2015</w:t>
</w:r>
<!-- comment end marker -->
<aml:annotation w:type="Word.Comment.End"
 aml:id="650"/>
<!-- comment content
 (i.e. Schematron error message) -->
<w:r>
 <w:rPr>
 <w:rStyle w:val="CommentReference"/>
 </w:rPr>
 <aml:annotation
 aml:author="QA" w:type="Word.Comment"
 w:initials="QA"
 aml:id="650"
 aml:createdate="2015-05-06T16:33:59.801+01:00">
 <aml:content>
 <w:p>
 <w:pPr>
 <w:pStyle w:val="CommentText"/>
 </w:pPr>
 <w:r>
 <w:rPr>
 <w:rStyle w:val="CommentReference"/>
 </w:rPr>
 <w:annotationRef/>
 </w:r>
 <w:r>
 <w:t>text styled as "bibdate" must be
 in the format "YYYY-MM-DD";
 got "February 2015"</w:t>
 </w:r>
 </w:p>
 </aml:content>
 </aml:annotation>
</w:r>

Using comments represents a relatively non-invasive way
of inserting error information into the original. In both
OOXML and ODF they reside in a different namespace
from the "true" content of the document, with the added
advantage that an editor can cycle through the errors
using the application's in-built review tools.

5.4. Visualisation

The Word rendition then contains comments flagging up
each error:

Page 157 of 177

The application of Schematron schemas to word-processing documents

Figure 2. Word rendition of Schematron errors as comments

A limitation is that the error must "hang off" something
that is visible in the rendered document. For example, a
rule that stipulates a particular paragraph style must be
present may have the element representing the document
body as its context – something which is not visible
when rendered. In these cases, the Schematron rule/
@context should be adjusted so that e.g. the first
paragraph in the document is targeted. Alternatively,
such rules can be post-processed at the SVRL stage to use
renderable locations.

6. Simplification

Writing XPath-based Schematron rules for flat structures
is reasonably tedious work: in document-based XML the
structure broadly reflects the meaning of the content,
whereas a word-processing document is essentially a
presentation-focused succession of (paragraph and
character) styles, tables and other objects.

Some options are available to make this task less
onerous.

6.1. Abstraction

Abstract patterns and rules are a well-known way of
maximising re-use in Schematron.

In this context, because of the "flat" structure of the
documents, many of the constraints apply to
relationships on the preceding and following axes, and so
these can be abstracted to make conveniently reusable
rules. For instance, the business rule "The first

bibliographic citation must be immediately preceded by a
bibliography heading" may become:

<pattern id="expected-preceding-style"
 abstract="true">
 <rule context="w:p[w:pPr/w:pStyle/@w:val
 = $context-style]
 [not(preceding::w:p[w:pPr/w:pStyle/@w:val
 = $context-style])]">
 <assert test="preceding::w:p
 [w:pPr/w:pStyle/@w:val
 = $expected-preceding-style]">
 first occurrence of style
'<value-of select="$context-style"/>' has no
preceding style '<value-of
select="$expected-preceding-style"/>'
 </assert>
 </rule>
</pattern>

<pattern id="missing-bib-heading"
 is-a="expected-preceding-style">
 <param name="context-style" value="'bib'"/>
 <param name="expected-preceding-style"
 value="'bibhead'"/>
</pattern>

where the abstracted rule can be used for any such case,
and the concrete rule simply passes the relevant style
names as parameters.

Using this technique can result in a ruleset with
surprisingly few unabstracted rules.

Page 158 of 177

The application of Schematron schemas to word-processing documents

1 In fact, it is much more similar in markup style to ODF.

6.2. Simplified source

Another approach is to simplify the source format prior
to Schematron validation. OOXML in particular is

verbose and benefits from this treatment. Consider this
simplification of an OOXML document, made using
XSLT.

<doc>
 <sect>
 <p style="articlehead">The application of Schematron schemas to word-processing
 documents</p>
 <p style="bodytext">As traditional print-based publishing has made the transition into the
 digital age, a convention has developed in some quarters of capturing or even
 typesetting content using word-processing applications.</p>

 <!-- lots more here... -->

 <p style="heading 2">References</p>
 <p style="bib">[1]
 <url address="http://www.ecma-international.org/publications/standards/Ecma-376.htm"
 >http://www.ecma-international.org/publications/standards/Ecma-376.htm</url>.
 Retrieved 2015-03-08.</p>
 <p style="bib">[2]
 <url address="https://www.oasis-open.org/standards"
 >https://www.oasis-open.org/standards#opendocumentv1.2</url>. Retrieved 2015-03-08.</p>
 <p style="bib">[3] Francis Cave, Francis Cave Digital
 Publishing: a style schema for word-processing documents; personal communication,
 February 2015.</p>
 <p style="footer">Andrew Sales Digital Publishing Limited 8th March 2015</p>
 </sect>
</doc>

Here the document structure is boiled down to its
essence1. Built-in inline formatting (bold, italic,
hyperlinks etc.) is simplified. Schematron rules can be
expressed more succinctly because namespaces have been
removed and paragraph and run properties shifted into
attribute values.

For example, the date datatype rule above can now
become:

<pattern id="bad-date-simplified">
 <rule context="span[@style='bibdate']">
 <assert test=". castable as xs:date">
text styled as 'bibdate' must be in the format
'YYYY-MM-DD'; got '<value-of select="."/>'
 </assert>
 </rule>
</pattern>

The additional, simplifying step of course means that we
are at one remove from the original and no longer have
access to the location of the original problem if we are to
display that error in situ when rendered.

Page 159 of 177

The application of Schematron schemas to word-processing documents

This can be overcome by storing the XPaths to the original nodes, here as the first processing instruction child of
the simplified node (extra whitespace for readability):

<p style="bodytext">
 <?src-xpath-loc /w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-section[1]/w:p[6]?>
The requirement to apply business rules to styled documents is not new. This was often done
using macros to interrogate the underlying object model before Microsoft Office (OOXML)

 <?src-xpath-loc /w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-section[1]/w:p[6]/w:r[2]?>[1]
and Open Office (ODF)
 <?src-xpath-loc /w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-section[1]/w:p[6]/w:r[4]?>[2]
began exposing their respective file formats as XML. With the word-processing document
being edited now available as XML, other, native-XML validation approaches are viable
and indeed attractive.</p>

A further complication is that the auto-generated
annotating stylesheet must now retrieve these XPaths, by
looking them up based on the SVRL XPaths pointing to
locations in the simplified markup.

Using simplified source markup also introduces the
possibility of making Schematron rules more format-
agnostic. If OOXML and ODF can be simplified and
aligned to conform to the same model using XSLT, rules
can be written in an interchangeable way. This does
ignore the logical differences between the two formats,
but if your business rules target something specific to one
format, you would probably write rules targeting that
format anyway.

7. Further simplification

Even with these kinds of simplification available to ease
the task, we are basically still writing rules to validate
documents. A more natural fit for a "conventional" XML
document would be a schema. Can a domain-specific
language be derived for word-processing documents, to
express their expected structure more declaratively?

Some work has also been done to derive an XML-
based schema for a document’s expected disposition of
styles [4]. The schema is authored in RELAX NG and
specifies the allowed structures for a document (it is
based on OOXML only so far) at an abstract level. An
instance valid to this schema therefore specifies in
schema-like language (it looks similar in some respects to
RELAX NG itself, having occurrence indicators and
group/sequence structures, but with document-specific
enhancements) the expected pseudo-structure of a word-
processing document. For instance, a simplistic "style
schema" for an extended abstract might be:

<StyleSchema
xmlns="http://ns.franciscave.com/styleschema">
 <Start>
 <Document>
 <Ref name="articlehead"/>
 <OneOrMore>
 <Ref name="bodytext"/>
 </OneOrMore>
 <Optional>
 <Group>
 <Ref name="bibhead"/>
 <OneOrMore>
 <Ref name="bib"/>
 </OneOrMore>
 </Group>
 </Optional>
 </Document>
 </Start>
 <Define name="articlehead">
 <Para styleID="articlehead"/>
 </Define>
 <Define name="bodytext">
 <Para styleID="bodytext"/>
 </Define>
 <Define name="bibhead">
 <Para styleID="bibhead"/>
 </Define>
</StyleSchema>

This is a more declarative way to express what is
expected, and looks familiar from the schema-writing
perspective. Start defines the starting point for a
validator, and Document contains the structures allowed in
a document valid to this schema.

Page 160 of 177

The application of Schematron schemas to word-processing documents

Element Para specifies the style name expected at this
point, through its styleID attribute. This element's
content model is given in the RELAX NG schema as:

<element name="Para">
 <zeroOrMore>
 <choice>
 <ref name="Drawing"/>
 <ref name="DocProperty"/>
 <ref name="Text"/>
 <ref name="Tab"/>
 <ref name="Bookmark"/>
 <ref name="Comment"/>
 <ref name="ParaAnyOf"/>
 </choice>
 </zeroOrMore>
 <attribute name="styleID">
 <text/>
 </attribute>
</element>

therefore the expected content of the paragraph can also
be specified at this level. For instance, to say that the
bibliography heading should always be "References":

<Define name="bibhead">
 <Para styleID="bibhead">
 <Text>References</Text>
 </Para>
</Define>

Text also has the styleID attribute available, so it is also
possible to specify expected inline styles.

Apart from the declarative strengths of a schema
language, this approach also has the potential to specify
the expected content of a document in a format-agnostic
way (i.e. independent of the OOXML or ODF dialect
used). A notable limitation is that there is no facility
currently to express datatypes.

7.1. Auto-generated Schematron

It is also possible to go some way in using XSLT to
generate the kind of Schematron rules we started out
with.

The first implied rule in the style schema above is that
the first style in the document should be "articlehead".
Consider the following naive XSLT:

<!-- Ref in first position in Document -->
<xsl:template match="sts:Document/sts:Ref[1]">
<sch:pattern id="{local-name()}-
 {count(preceding::sts:Ref)}">
<sch:rule context="w:body//w:p
 [not(preceding::w:p[ancestor::w:body])]">
<!-- first para in body -->
<sch:let name="style-name"
 value="w:pPr/w:pStyle/@w:val"/>
<sch:assert test='$style-name = {@name}"'>
 expected first para to be styled
'<xsl:value-of select="@name"/>'; got
 '<sch:value-of select="$style-name"/>'
</sch:assert>
<xsl:choose>
<xsl:when test="following-sibling::*[1]
 [self::sts:OneOrMore]">
<xsl:variable name="next-style"
 select="following-sibling::*[1]/sts:Ref"/>
<sch:assert
 test="following::*[1][self::w:p]
 /w:pPr/w:pStyle/@w:val = {$next-style/@name}">
expected style
 '<xsl:value-of select="$next-style/@name"/>'; got
 '<sch:value-of select="."/>'</sch:assert>
</xsl:when>
<!-- etc. -->
</xsl:choose>
</sch:rule>
</sch:pattern>
</xsl:template>

With the caveat that this is part of an early stage of a
work-in-progress, and targets only a simple subset of
what the style schema can express, there is potential at
least to author some of the constraints more declaratively
and generate Schematron rules automatically to express
these checks. The output is as follows:

<pattern id="Ref-0">
 <rule
 context="w:body//w:p[not(preceding::w:p[
 ancestor::w:body])]">
 <let name="style-name"
 value="w:pPr/w:pStyle/@w:val"/>
 <assert test="$style-name =
 'articlehead'">expected first para to
 be styled 'articlehead'; got
 '<value-of select="$style-name"/>'</assert>
 <assert test="following::*[1][self::w:p]
/w:pPr/w:pStyle/@w:val = 'bodytext'">expected style
'bodytext'; got '<value-of select="."/>'
 </assert>
 </rule>
</pattern>

Page 161 of 177

The application of Schematron schemas to word-processing documents

8. Further applications

The OOXML and ODF families of schemas of course
cover a wider variety of office documents than just word-
processing ones.

Business rules could apply to many of these with a
strong textual component, from the relatively simple –
ensuring every slide in a presentation bears the corporate
logo – to verifying the consistency and integrity of
spreadsheets.

Because spreadsheets are often used in a way that
overloads their original, intended purpose, e.g. to track
or specify requirements, or capture a report from an
automated process, much importance can be invested in
them and their maintenance. Like other valuable
(perhaps curated) documents, they may require
validation beyond the in-built tools of Excel and Calc.

It is possible to validate spreadsheets and present
faults as annotations to the user at render-time in much
the same way as for word-processing XML.

Example 1. The comment model in SpreadsheetML

<Cell>
 <Data ss:Type="String">bad data</Data>
 <Comment ss:Author="Author">
 <ss:Data xmlns="http://www.w3.org/TR/REC-html40">

 <Font html:Face="Tahoma" x:Family="Swiss"
 html:Size="8"
 html:Color="#000000">Author:

 <Font html:Face="Tahoma" x:Family="Swiss"
 html:Size="8"
 html:Color="#000000"
 >
a problem here
 </ss:Data>
 </Comment>
</Cell>

This is a trivial example, but shows how the commenting
style differs from WordprocessingML: the Comment is a
wrapper element, since a single comment can only
appear within a single cell, and HTML can be used to
style its text.

At some point, however, particularly if many business
rules are used to layer validation onto the spreadsheet,
the question is whether a spreadsheet is still an
appropriate choice for capturing the information in the
first place.

9. Conclusion

When data quality matters and XML is captured in a
non-native XML environment, tools like Schematron
can still be used to interrogate underlying XML formats.
Business rules expressed as Schematron can be written
laboriously in full, or with some effort abstracted at the
rule or the content level. A further abstraction to create a
DSL for word-processing styles is useful in this respect,
and it is possible to get some of the way towards
validating a document against such a schema, again using
Schematron, this time generated automatically.

It is often beneficial to present data errors to authors
and editors unfamiliar with XML in a more accessible
way. Schematron, along with some XSLT, enables the
presentation of these errors in the context of the original
document. It would be interesting to see applications of
this technique to other types of office document.

Bibliography

[1] Office Open XML. Microsoft Corporation. ECMA.
[2] Open Document Format. OASIS. OASIS.
[3] Schematron Validation Reporting Language. ISO/IEC. ISO/IEC 19757-3:2006.
[4] A style schema for word-processing documents. Francis Cave. February 2015. Personal communication.

Page 162 of 177

The application of Schematron schemas to word-processing documents

http://www.ecma-international.org/publications/standards/Ecma-376.htm
https://www.oasis-open.org/standards#opendocumentv1.2
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

XML Interfaces to the Internet of Things with
XForms
Steven Pemberton

CWI, Amsterdam

Abstract

The internet of things is predicated on tiny, cheap, lower
power computers being embedded in devices everywhere.
However such tiny devices by definition have very little
memory and computing power available to support user
interfaces or extended servers, and so the user interface needs
to be distributed over the network.

This paper describes techniques using standard
technologies based on XML for creating remote user-
interfaces for the Internet of Things.

1. Introduction

Moore's Law is alive and well; to use the quote attributed
to Mark Twain, the reports of its death have been greatly
exaggerated. This year the 50th anniversary of Moore's
Law was celebrated, which means since Moore's original
paper was published, there have been 33⅓ iterations of
the law, which represents an improvement factor of ten
thousand million since 1965.

As an excellent test point of Moore's Law's
continuation, in February this year, almost exactly three
years after the announcement of the first version, version
2 of the Raspberry Pi computer was announced. Moore's
Law leads us to expect that every eighteen months you
can get twice as many components per unit of surface
area on an integrated circuit at the same price. (Note
that, for instance, it doesn't say anything about expected
clock speeds of computers). Since three years is exactly
two cycles of Moore's Law, does the new Raspberry Pi
deliver a four-fold improvement? Well, it is reportedly six
times faster, has four times as many cores, four times as
much memory, and twice as many USB ports as the
original, all for the same price. Moore's Law has
apparently done some pretty good work.

Moore's Law has three parameters apart from time:
price, size, and number of components. Hold any one of
these constant, and the other two can vary accordingly.
So apart from a Raspberry Pi that is the same price and
size, but is better endowed, you can also reduce the price
and size to get a less-powerful but nevertheless functional

computer. This has been observable since the
introduction of the first commercial computers in the
50's: with each order-of-magnitude decrease in price of
computers, a new generation of computers has emerged,
that gets used in a different sort of way. In the 50's you
had mainframes that cost of the order of millions, in the
60's and 70's, minicomputers, of the order of 100,000;
in the 70's and 80's, workstations, of the order of
10,000, and then starting in the early 80's the first home
computers and laptops, in the order of thousands. Now
we have netbooks and tablets of the order of hundreds,
and an emerging class of computers, like the Arduino
and the Raspberry Pi that cost of the order of tens (and
since we're talking orders of magnitude, it doesn't matter
if we're talking dollars, pounds, or euros, since they are
all roughly of the same value).

Figure 1. Arduino

Recently the first computers of the order of one unit of
currency have been appearing, such as the Arduino mini
shown in Figure 1, “Arduino”.

2. User Interfaces for Devices

One of the unanticipated successes of HTML was in its
adoption for controlling devices with embedded
computers, such as home wifi routers. To make an
adjustment to such a device, you direct your browser to
the IP address the device is running from, and a small
webserver on the device serves up webpages to you, that
allow you to fill in values, and submit them to change
the workings of the device.

doi:10.14337/XMLLondon15.Pemberton01 Page 163 of 177

1 Nest API Reference - https://developer.nest.com/documentation/api-reference

However, the form-filling facilities of HTML are rather
meager: you can fill in values, and submit them, but
there is little checking possible on the client side,
imposing a duty on the server to check values, and
construct error pages that are sent back to the client
asking for values to be corrected should they be wrong.

However, the tiny computers that are and will be
embedded and form part of the internet of things
typically have memory in kilobytes, not megabytes, and
certainly don't have the power to run a webserver that
can serve and interpret webpages; therefore a different
approach is called for.

One way is for the devices to serve up just the data of
the parameters, and accept new values for them, so that
the values can be injected into a remote interface served
from elsewhere.

3. XForms

One technology suitable for just such usage, XForms, is a
standard developed at W3C [1]. XForms is a technology
that was originally designed for improving the handling
of forms on the web. It has two essential parts. The first
part is the model, that specifies details of the data being
collected, where it comes from, its structure, and
constraints; it allows combining data from several
sources, and submitting data to different places.

The second part of XForms is the user interface, that
displays values, and specifies controls for collection,
modification, and submission of the data described, in a
device-independent way.

XForms has already been used for a number of years
to control devices in this way at many petrol stations in

the USA. Each device, storage tank, petrol pump, cash
register, and so on, contains a simple server that delivers
its data as XML instances. XForms interfaces are then
used to read and combine these values, and update
control values (for instance the price of fuel being
displayed on pumps and charged at tills).

4. Example: A Thermostat

As an example of how it could be used, Nest, a well-
known producer of internet thermostats, has published
the data-model interface to its devices1. A simple
interface to this could look like this:

<model>
 <instance id="thermostat"
 resource="http://thermostat.local/"/>
 <bind ref="ambient_temperature_c"
 type="decimal" readonly="true()"/>
 <bind ref="target_temperature_c"
 type="decimal"/>
 <bind ref="target_temperature_f" type="decimal"
 calculate="../target_temperature_c*9 div 5+32"/>
 <submission
 resource="http://thermostat.local/data"
 method="put" replace="instance"/>
</model>

Here we see an instance that contains the data obtained
from the thermostat, and three binds that assign
properties to the data, in this case types, the property
that the ambient temperature value is read-only, and a
calculation that relates the values of the target
temperature in Fahrenheit and Celsius, which ensures
that whenever the Celsius value is changed, the
Fahrenheit value automatically changes with it.

The submission element specifies where the data is to
be submitted, and what to do with the reply, in this case
that it is data that replaces the instance values.

A nice feature of this is that even if Nest changes the
data structure returned by the thermostat, as long as the
names of the elements used here remain the same, this
interface will continue to work.

5. Display Values

For a user interface for the thermostat, we need some
extra local data values. In particular we want to offer the
user the choice between Fahrenheit and Celsius in a
single control. For this we need to add an extra instance
to the model for the display values:

Page 164 of 177

XML Interfaces to the Internet of Things with XForms

https://developer.nest.com/documentation/api-reference

<instance id="display">
 <data xmlns="">
 <temperature/>
 <target>20</target>
 <scale>C</scale>
 </data>
</instance>
<bind ref="instance('display')/temperature"
 type="decimal"
 calculate="if(../scale='C', instance('thermostat')/ambient_temperature_c,
 instance('thermostat')/ambient_temperature_c * 9 div 5 + 32"/>
<bind ref="target" type="decimal"/>

Here we specify that the displayed temperature is related
to the data from the device, but with a conversion if the
user chooses for the Fahrenheit scale. Similarly, we have
to add a relation back to the thermostat instance, so that
the input required temperature is converted to Celsius if
necessary:

<bind
 ref="instance('thermostat')/target_temperature_c"
 calculate="if(instance('display')/scale='C',
 instance('display')/target,
 (instance('display')/target - 32) *
 5 div 9")/>

6. The User Interface

XForms controls are specified in a device independent
manner, that only describes what they are meant to
achieve (for instance "pick one value from this list") and
not how to do it (using radio buttons, using drop-downs
etc.) This makes it easier to adapt the interface to
different devices, screen sizes, etc., while still allowing the
use of specific interfaces, such as radio buttons, via style
sheets. For instance, to specify a control that allows the
user to chose the temperature scale, we specify

<select1 ref="instance('display')/scale"
 label="Scale">
 <item label="°C" value="C"/>
 <item label="°F" value="F"/>
</select1>

This specification allows several different possible
controls, for instance as a drop-down, or using radio
buttons, depending on style-sheet options:

Similarly, the range control specifies an input for a
number, that allows different styling options, such as
nudge buttons, a slider, or a dial; a step attribute specifies
the granularity of the changes:

<range ref="instance('display')/target" step="0.5"
 start="0" end="30"/>

Of course, these start and end values are in Celsius, and
we want to specify the limits in terms of the scale used.
However, any attribute can have a calculated value, using
attribute value templates:

<range ref="instance('display')/target" step="0.5"
 start="{instance('display')/start}"
 end="{instance('display')/end}"/>

and add these values to the display instance:

<instance id="display">
 <data xmlns="">
 <temperature/>
 <target>20</target>
 <start/>
 <end/>
 <scale>C</scale>
 </data>
</instance>
<bind ref="instance('display')/start"
 calculate="if(../scale='C', 0, 32"/>
<bind ref="instance('display')/end"
 calculate="if(../scale='C', 30, 90"/>

Page 165 of 177

XML Interfaces to the Internet of Things with XForms

7. Submitting Data

Normally in a form-based interface, there is an explicit
[submit] button or similar that indicates you are ready
with the data and want to submit it to be used.

For instance, in XForms, you would typically have
details about where the data is to be submitted, in the
form of a submission element in the model, as above:

<submission resource="http://thermostat.local/data"
 method="put" replace="instance"/>

This specifies the URL that the data is to be submitted
to, the method to be used (PUT in this case), and what
to do with the result. In the case of the thermostat, the
state of the internal values are returned again, and these
are just used to overwrite the values in the instance.

Then in the user interface, there would be a submit
control, that initiates the submission, normally displayed
as a clickable button:

<submit label="Submit"/>

However, typically in a direct-manipulation style
interface such as a thermometer, there is no moment that
you explicitly submit the data: it just happens. To effect
this in XForms, the submission has to be done
automatically. This can be done by using the standard
event mechanism inherited in XForms from DOM-based
systems [2], and using XML Events [3] to listen for
events, and react to them.

One of the events that XForms generates is the
xforms-value-changed event, which is generated
everytime a value is changed in an instance by a control.
There are several ways of specifying this, but the most
direct is to include, as a child of the control, an action
that responds to the event:

<range ref="instance('display')/target" step="0.5"
 start="{instance('display')/start}"
 end="{instance('display')/end}">
 <action ev:event="xforms-value-changed">
 <send/>
 </action>
</range>

This says that whenever the <range> control receives the
xforms-value-changed event because the bound value has
been changed, then the <send/> action is initiated, which
causes the submission to do its work. When an <action>

element only has one child like this, then it can be
contracted:

<range ref="instance('display')/target" step="0.5"
 start="{instance('display')/start}"
 end="{instance('display')/end}">
 <send ev:event="xforms-value-changed"/>
</range>

8. Polling

As a result of submitting data as shown above, the
thermostat returns the current values in its internal state,
including the currently measured temperature, which
then gets displayed.

Of course, you want to continue to display the
current temperature, even if the user hasn't changed
anything via the interface. To achieve this, the data has to
be periodically polled. This can be done also using the
event mechanism, by listening for timing events: at start
up you initiate a timer, and then listen for the event to go
off. When it goes off, you respond, and then re-initiate
the timer:

<action ev:event="my-timer">
 <send/>
 <dispatch name="my-timer" delay="20000"
 targetid="parent"/>
</action>

This <action/> element can go anywhere, as long as its
parent element has id 'parent' (as named in this case) .
The delay is specified in milliseconds, so in this case,
every 20 seconds the thermostat is polled for its current
values.

The only other thing that has to be done is to start off
the initial timer, by listening for the xforms-ready event,
which is dispatched when an XForm starts up:

<action ev:event="xforms-ready">
 <dispatch name="my-timer" delay="20000"
 targetid="parent"/>
</action>

As in the earlier case, this can be shortened:

<dispatch ev:event="xforms-ready" name="my-timer"
 delay="20000" targetid="parent"/>

Since the xforms-ready event is dispatched to the <model>
element, this <dispatch/> element should be a direct

Page 166 of 177

XML Interfaces to the Internet of Things with XForms

child of it, and since it doesn't matter where the other
action is placed, it can also be placed there:

<model id="model">
 ...
 <dispatch ev:event="xforms-ready" name="my-timer"
 delay="20000" targetid="model"/>
 <action ev:event="my-timer">
 <send/>
 <dispatch name="my-timer" delay="20000"
 targetid="model"/>
 </action>
</model>

Of course, the delay value doesn't have to be hard-wired
like this, but can also be stored in an instance, and
accessed from there:

<model id="model">
 ...
 <dispatch ev:event="xforms-ready" name="my-timer"
 delay="{instance('display')/poll-interval}"
 targetid="model"/>
 <action ev:event="my-timer">
 <send/>
 <dispatch name="my-timer"
 delay="{instance('display')/poll-interval}"
 targetid="model"/>
 </action>
</model>

9. Repetition

In many applications, there can be a variable number of
values for a particular field; for instance in a router, there
can be several rules for firewall exceptions. Traditionally
an interface is used that offers several blank entries to be
filled in. However XForms offers a dynamic control that
grows and shrinks with the number of entries, and allows
entries to be added and deleted:

<repeat ref="firewall/rules" label="Exceptions">
 <output ref="./port" label="Port"/>
 <output ref="./url" label="URL" />
</repeat>

10. Multilingual Interfaces

Every XForms control has a label. Of course, it is good to
be able to offer an interface in the language of the user.
Attribute value templates make this almost trivially easy:
you create an instance to hold the messages and labels:

<instance id="label"
 resource="http://example.com/labels-en.xml" />

which can have a structure like:

<labels lang="en">
 <submit>Submit</submit>
 <help>Help</help>
 <scale>Scale</scale>
 ...
</label>

and then reference these in the controls:

<select1 ref="instance('display')/scale"
 label="{instance('label')/scale}"> ...

Changing the language is then a simple case of having a
control that selects the language wanted:

<select1 ref="instance('lang')/language"
 label="{instance('label')/language}"> ...

and when an xforms-value-changed happens on this
control, the value chosen can be submitted, and the
labels instance replaced with the returned instance.

These also has the advantage that lables are not hard-
wired in the application, and can be updated on the fly.
And of course the languages available can also be
provided by an external instance, so that new languages
can be added on the fly.

11. Experience

XForms has been used in many projects connecting to
devices, including some very large projects of many
person-years. Experience has repeatedly shown that the
time needed to implement such projects is about one
tenth of equivalent projects done using traditional
programming methods. This advantage can largely be
ascribed to the declarative nature of XForms, so that
much administrative code that is normally needed in
programs is not needed in XForms, since the system
ensures that invariants are kept up to date.

12. Specifications and
implementations

The current official version of XForms is XForms 1.1 [4],
though XForms 2.0 is in preparation and close to
completion [5]. There are several implementations
available, that work both server-side and client-side, both
commercial and open-source. There is a tutorial [6] and a
quick reference [7] available.

Page 167 of 177

XML Interfaces to the Internet of Things with XForms

References

[1] Micah Dubinko, Leigh Klotz, Roland Merrick, and T. V. Raman. XForms 1.0. World Wide Web Consortium
(W3C). 14 October 2003.
http://www.w3.org/TR/2003/REC-xforms-20031014/

[2] Tom Pixley. Document Object Model (DOM) Level 2 Events Specification. World Wide Web Consortium (W3C).
13 November, 2000.
http://www.w3.org/TR/DOM-Level-2-Events/

[3] Shane McCarron, Steven Pemberton, and T. V. Raman. XML Events. An Events Syntax for XML. World Wide
Web Consortium (W3C). 14 October 2003.
http://www.w3.org/TR/2003/REC-xml-events-20031014/

[4] John Boyer. XForms 1.1. World Wide Web Consortium (W3C). 20 October 2009.
http://www.w3.org/TR/xforms/

[5] John Boyer, Erik Bruchez, Leigh Klotz, Steven Pemberton, and Nick Van den Bleeken. XForms 2.0. World Wide
Web Consortium (W3C).
http://www.w3.org/MarkUp/Forms/wiki/XForms_2.0

[6] Steven Pemberton. XForms for HTML Authors. World Wide Web Consortium (W3C). 27 August 2010.
http://www.w3.org/MarkUp/Forms/2010/xforms11-for-html-authors/

[7] Steven Pemberton. XForms 1.1 Quick Reference. World Wide Web Consortium (W3C). 29 November 2010.
http://www.w3.org/MarkUp/Forms/2010/xforms11-qr.html

Page 168 of 177

XML Interfaces to the Internet of Things with XForms

http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/2003/REC-xml-events-20031014/
http://www.w3.org/TR/xforms/
http://www.w3.org/MarkUp/Forms/wiki/XForms_2.0
http://www.w3.org/MarkUp/Forms/2010/xforms11-for-html-authors/
http://www.w3.org/MarkUp/Forms/2010/xforms11-qr.html

1 Perl - http://en.wikipedia.org/wiki/Perl
2 sed - http://unixhelp.ed.ac.uk/CGI/man-cgi?sed
3 awk - http://unixhelp.ed.ac.uk/CGI/man-cgi?awk

Diaries of a desperate XProc Hacker
Managing XProc dependencies with depify

James Fuller

MarkLogic
<jim.fuller@marklogic.com>

Abstract

XProc [1] is a powerful language providing a facade over
many XML technologies which can make managing that
'surface area' difficult. XProc v1.0 also presents difficulties to
the new user as it has a learning curve which forces
developers to learn many concepts before they can be
productive in the language.

This paper identifies some of the sources of despair for
todays Desperate XML Hacker illustrates how XProc and
depify [2], a modest package manager for XProc, can help
make developing and maintaining XProc development
easier.

Keywords: XML, XProc, XML Calabash, depify

1. Overview

For years in Perl, being known as a D.P.H. (desperate
Perl Hacker) was a badge of honour of sorts but looking
back I am not certain this ever carried over to the XML
domain.

Granted XML may have the odd idiom (ex.
Muenchian Method[6]) but many of the core
technologies are just too complex a powertool to fit into
the concise one liners we see in the healthy flora that
grew up around Perl1 (with sed2, awk3, and friends)

That’s not to say that the same kind of clever, smart
and efficient solutions are not possible, it’s just that they
tend to occur in a different form and level then a dense
and opaque one liner.

What this paper’s focus is on is the Desperate XML
Hacker’s similar plight, where acts of desperation are
employed when building, maintaining and creating
software solutions that solve real problems.

Figure 1. obligatory XKCD [3] comic

The term ‘Desperate’ is derived from the latin dēspērātus
which has a number of definitions;
• Being filled with, or in a state of despair; hopeless. I

was so desperate at one point, I even went to see a
loan shark.

• Without regard to danger or safety; reckless; furious.a
desperate effort

• Beyond hope; causing despair; extremely perilous;
irretrievable. a desperate disease; desperate fortune

• Extreme, in a bad sense; outrageous.
• Extremely intense. wikipedia definition

Wikitionary definition of 'Desperatus' [4]
These definitions apply to a D.X.H. employing acts

of desperation in trying to get something working.
Seemingly bright, creative and smart programmers will
try ‘anything’ to transition from some current problem
state, however reckless or outrageous at the most intense
hopeless and perilous times.

We introduce how XProc can transform a D.X.H.
into a Delighted XProc Hacker (sic) and illustrate

doi:10.14337/XMLLondon15.Fuller01 Page 169 of 177

http://en.wikipedia.org/wiki/Perl
http://unixhelp.ed.ac.uk/CGI/man-cgi?sed
http://unixhelp.ed.ac.uk/CGI/man-cgi?awk
mailto:jim.fuller@marklogic.com

1 GNU make - http://www.gnu.org/software/make/
2 Apache ANT - http://en.wikipedia.org/wiki/Apache_Ant

concepts and related tools (like depify package
management) which serve to reduce an XML developers
despair.

1.1. Why XProc

XML developers use a hodge podge of tools to control
and orchestrate XML processing, such as;
• Shell scripting (bash, etc)
• Build tools (ant, make, etc)
• XSLT
• XML databases (via stored proc eg. XQuery)
• Code (main class, SAX pipelines, etc …)

Providing a simplified execution entry point is a good
thing for users of a solution though all of the above
approaches have trade offs to consider.

Here are some adhoc observations of the most
common forms of despair motivating an XML developer
to choose any of the above solutions to control their
XML processing.

1.1.1. Adoption of a large set of dependencies and
software

One informal measure of a programmer’s desperation is
by the number of dependencies they are willing to inherit
into their project.

In the Perl world, there are plenty of examples of
desperation on display when you install a single innocent
module with CPAN, only to watch in horror as it pulls
down a few hundred other CPAN modules with each of
those modules in turn pulling down ever more
dependencies.

I do not claim to have a solution to minimise
dependencies in your software but if your language
requires a lot of third party libraries and modules just to
be useful, then you need to ask yourself if the language is
significantly abstracted to model and solve problems that
interest you.

While it is impossible to define a static limit to the
number of dependencies, clearly a developer should
manage dependencies logically and strive to keep them to
an absolute minimum.

Modern package management systems provides
developers the means to tame dependencies but
paradoxically this same capability makes it easy to accrete
dependencies.

1.1.2. Not the right tool for the job

Using software not fit for purpose is a common desperate
means to an end.

The canonical example is the usage of GNU make1

with Makefiles to control processing which has a distinct
whiff of desperation just for the fact that GNU make is a
build tool and should not find itself as any part of your
runtime solution.

Make’s sweet siren call of recursive Makefile
processing and conditional execution based on a file’s
timestamp value may seem reasonable at the time but
problems quickly mount up. GNU make chatty output
(where in unix ‘silence is golden’ is the golden rule) can
unnerve users. However there are larger issues, for
example, timestamps may seem like a great way to
conditionally process files but can be unreliable at scale
(yes time can go backwards).

Similarly, bending existing XML technologies, like
XSLT or XQuery, to control your solution’s processing
presents many challenges. Any non-trivial processing
scenario comes with requirements that these technologies
were never meant to handle and you will end up doing
contortions to address the gaps in functionality.

1.1.3. Java invocation adds a layer of abstraction

The java stack provides a mature and robust set of XML
capabilities though often we see solutions created with
Java that must take care of the ‘feed and care for’ of the
Java VM. Users of a solution developed with Java must
know how to invoke the underlying technology from
Java with attendant Java Main method, properties, jvm
switches and classpath.

The benefit of reuse with Java outweighs most of the
negatives, though if you want users to be able to cleanly
and quickly use your XML processing solution one needs
to provide an entry point which is easy to invoke,
abstracting away the complexity of the invocation itself
while providing sufficient configurability.

Often tools used during development, such as Java
build tool Apache Ant2, provide end users a good enough
‘run wrapper’. Apache Ant is a wonderful example of a
tool applied far beyond its original intended purpose
though clearly it’s less then ideal to use a build tool to
achieve this.

1.1.4. Hard to maintain

Makefiles or shell scripting have always been difficult to
maintain but what if we consider some higher order
scripting language (Python, etc).

Page 170 of 177

Diaries of a desperate XProc Hacker

http://www.gnu.org/software/make/
http://en.wikipedia.org/wiki/Apache_Ant

1 Node Package Manager - https://www.npmjs.com/
2 Maven Central Repository - http://search.maven.org/
3 Bower - http://bower.io/

Faster code development is made possible with
scripting languages because they take care of complex
sundries such as memory management and garbage
collection but with power comes well-known sacrifices
like slower runtime performance.

Using a scripting language provides XML developers
with great flexibility though also comes with a few
enigmas;
• Create bugs faster
• Avoid or delay critical design decisions
• Incrementally develop code to fulfil tactical needs
There are some better designed scripting languages which
help force the programmer to make better upfront design
decisions but there is no replacement to well considered
up front design.

Providing script run wrappers does not insulate you
from the need to design and maintain those wrappers.
When presented between a choice between ‘hard to
maintain’ versus quick to develop its always best to
choose the route that simplifies maintenance.

For many D.X.H. the act of maintenance seems like a
task done far into the future, though its been shown that
the ability to easily refactor code is one route to
successful software [20] and directly related to the design
decisions made today.

1.1.5. Not enough time

While no discipline can assume ‘unlimited time’ in
fulfilling their required goals, few have to calculate the
intersection of the time dimension in as many
challenging ways as a programmer is commonly asked.

Many of the aforementioned approaches are chosen
because they pre-exist, are already being used or there is
little time to properly assess the right way forward. In
this scenario, its easy to avoid ‘doing things the right way’
as there is can be no visible impact on the end users
usage.

Desperation due to time starvation forces the D.X.H.
into the risky proposition of building up significant
technical debt for immediate gains today. Put another
way, if the D.X.H. has no time to choose and develop
the right way, how will they ever have enough time to
develop doing it the wrong way?

1.1.6. Why XProc again ?

XProc reduces all the above forms of desperation
transforming the D.X.H. into a Delighted XProc Hacker.
Its been designed from the ground up to be your default

entry point/run wrapper and controller to using XML
technologies in processing pipelines.

While using XProc itself may come with some of its
own acts of desperation, they pale in significance
compared to the issues brought on using the other
approaches. XProc is a domain specific language (DSL)
designed to control your XML processing. Apart from
hand tuned, manually crafted code it’s the best thing for
controlling your XML processing and you should be
using it today.

1.2. Why Dependency Management?

D.X.H. will already use package managers to manage
their environments dependencies and its highly likely
they also use package managers 1 2 3 to manage language
dependencies.

XProc presents a unique challenge for existing
package managers as its primary extension mechanism is
in the definition of custom steps. A custom step can be
created with pure XProc or be implemented as an
extension step to the underlying XProc processor.
Custom steps will need to include its step signature
definition so it can be used as well as any ancillary
dependencies.

This approach to extension means that the core
XProc language itself is spartan and highly generic
presenting challenges for new users attempting to do
simple things. Often a D.X.H. practices acts of
desperation in learning XProc itself.

Page 171 of 177

Diaries of a desperate XProc Hacker

https://www.npmjs.com/
http://search.maven.org/
http://bower.io/

1 Depify Packages github repo - https://github.com/depify/depify-packages

Take the following stylized XProc pipeline which
processes a collection of XML files with XSLT.

<p:pipeline>

 <p:directory-list include-filter=".*\.xml$">
 <p:with-option name="path" select="$testdir"/>
 </p:directory-list>

 <p:for-each>
 <p:iteration-source
 select="/c:directory/c:file"/>
 <p:variable name="namein"
 select="/c:file/@name"/>
 <p:load>
 <p:with-option name="href"
 select="concat($testdir, $namein)"/>
 </p:load>

 <p:xslt>
 ...
 </p:xslt>

 <p:store>
 ...
 </p:store>
 </p:for-each>
</p:pipeline>

Which forces the XProc author to learn many concepts
before becoming useful.
• list files with p:directory-list
• iterate with p:for-each
• perform xslt step
• save output with p:store step

Future versions of XProc will make this particular
scenario easier but serves as a good example where a
custom step could be developed to abstract away the
complexity, as shown in the following listing.

<p:pipeline>
 <my:customXSLTProcessStep dir=".*\.xml$"
 xslt="mystylesheet.xsl"/>
</p:pipeline>

Lastly, XProc needs to handle ancillary dependencies,
such as an XSLT stylesheet or XQuery module which
have no convention in existing package management
systems. Depify attempts to provide simple transitive
dependency analysis to pull down such dependencies to
satisfy custom XProc step need.

1.3. XML Calabash and depify solution

XML Calabash [5] is the reference implementation for
XProc and is built using Java.

Depify [2] is a modest package management system,
based on a github repository which provides custom step
dependency management for XML Calabash. It is
specifically designed to make it easy to develop and
distribute custom steps built for XML Calabash. Depify’s
assumptions of usage of XProc with XML Calabash is a
form of ‘convention over configuration’.

XML Calabash extension step mechanism provides a
reasonable set of defaults which can be assumed by the
package manager, making it easy to reuse and distribute
custom steps when building XProc solutions.

This is the route by which the D.X.H. transforms
into the Delighted XProc Hacker.

2. Technical

2.1. Architecture Overview

Depify has three components that comprises its high
level architecture.

Figure 2. depify architecture

• depify github repo1 – contains metadata containing
details of your step implementation

Page 172 of 177

Diaries of a desperate XProc Hacker

https://github.com/depify/depify-packages

1 Download depify client - https://github.com/depify/depify-client/releases

• depify client1 – client written with XProc that
communicates with depify github repo and pulls
down and installs custom steps

• depify website [2] - searchable interface for
discovering new custom steps

We will describe the detail of a depify package in the
following section.

The architectural components XML Calabash
employs at runtime to achieve custom extension steps are
as follows;

Figure 3. XML Calabash extension step runtime
architecture

A jar that works by just dropping onto XML Calabash
classpath is elegant as the extension step can be
distributed using existing distribution mechanisms (ex.
gradle with maven) though depify provides the
additional advantage of configuration which allows the
step to be immediately usable in an XProc pipeline.

2.2. Points of Interest

There is not enough scope for this paper to go into deep
technical detail of every component though I've
presented a few highlights below.

2.2.1. depify github repo

The depify github repo contains metadata that represent
each depify package with new packages added as the
result of a pull request.

The following is an example of metadata that must be
defined for a package to be usable by depify.

<depify xmlns="https://github.com/depify"
 name="xmlcalabash-ext-step-java"
 version="1.0"
 repo-uri="https://github.com/xquery/xmlcalabash-ext-step-java"
 keep-fresh="true">
 <title>xmlcalabash-ext-step-java</title>
 <desc>example impl of xproc extension step library, in java, for XML Calabash.</desc>
 <license type="?"/>
 <author id="xquery">Jim Fuller</author>
 <website>https://github.com/xquery/calabash-java-step-example</website>
 <xproc version="1.0"
 ns="http://example.org/xmlcalabash/steps"
 jar="example-library-ext.jar/example-library-ext.jar"
 library-uri="!/example-library.xpl">
 <!--catalog name="urn:example-library" jar="example-library-ext.jar" uri="/example-library.xpl"/-->
 </xproc>
</depify>

Page 173 of 177

Diaries of a desperate XProc Hacker

https://github.com/depify/depify-client/releases

1 Depify Metadata Schema - https://github.com/depify/depify-packages/blob/master/etc/depify.rng
2 Depify Packages Travis - https://travis-ci.org/depify/depify-packages
3 Saxon CE - http://www.saxonica.com/ce/index.xml

The depify package metadata format is described with a
schema1 and minimally must define a custom step's
canonical name, version and repo uri.

It is possible to provide a zip archive for repo-uri
attribute value but it is preferred to provide a github repo
that contains the custom step. Depify leverages github’s
release features to be able to retrieve specific versions of a
package.

With every new commit to the repo a travis build2

takes care of generating the public package repository.

2.2.2. depify client

The depify client provides a command line interface for
installing and removing depify packages.

$ depify help

depify 1.0 | copyright (c) 2015 Jim Fuller |
 see https://github.com/depify

usage: depify [install|remove|list|info|search|
 xproc|catalog|library|upgrade|help]
 [package name] [package version]

install package
$ depify install xprocdoc
remove package
$ depify remove xprocdoc
info package
$ depify info xprocdoc
list installed packages
$ depify list
search all packages
$ depify search xproc
generate xmlresolver catalog
$ depify catalog
generate xproc library
$ depify library
reinstall all packages
$ depify install
initialize .depify
$ depify init mypackage 1.0
upgrade depify client
$ depify upgrade
help with depify client
$ depify help

Depify is itself written in XProc and ships with latest
version of XML Calabash, you may also integrate it into
your own XProc pipelines.

<depify:depify>
 <x:option name="command" select="'install'"/>
 <x:option name="package"
 select="'xmlcalabash-ext-step-java'"/>
 <x:option name="version" select="'1.0'"/>
 <x:option name="app_dir" select="'.'"/>
 <x:option name="app_dir_lib" select="'lib'"/>
</depify:depify>

2.2.3. depify.com

With every new commit to depify package repository a
searchable website, depify.com [2] is updated.

Depify.com is published to its associated github pages
and leverages the use Saxon-CE3 to deliver all
functionality.

2.2.4. XML Calabash extension mechanisms

To implement a step in XML Calabash one needs to
• define a class that inherits DefaultStep and lives in

package as a separate jar

Page 174 of 177

Diaries of a desperate XProc Hacker

https://github.com/depify/depify-packages/blob/master/etc/depify.rng
https://travis-ci.org/depify/depify-packages
http://www.saxonica.com/ce/index.xml

• define annotations that represent step name and
namespace

package com.example.library;

import com.xmlcalabash.library.DefaultStep;
import com.xmlcalabash.core.XProcConstants;
import com.xmlcalabash.core.XMLCalabash;
import com.xmlcalabash.io.WritablePipe;
import com.xmlcalabash.core.XProcRuntime;
import com.xmlcalabash.util.TreeWriter;

import net.sf.saxon.s9api.SaxonApiException;
import net.sf.saxon.s9api.XdmNode;
import com.xmlcalabash.runtime.XAtomicStep;

@XMLCalabash(
name = "ex:hello-world",
type = "{http://example.org/xmlcalabash/steps}hello-world")

public class HelloWorld extends DefaultStep {
 private WritablePipe result = null;

 public HelloWorld(XProcRuntime runtime, XAtomicStep step) {
 super(runtime,step);
 }

 public void setOutput(String port, WritablePipe pipe) {
 result = pipe;
 }

 public void reset() {
 result.resetWriter();
 }

 public void run() throws SaxonApiException {
 super.run();

 TreeWriter tree = new TreeWriter(runtime);
 tree.startDocument(step.getNode().getBaseURI());
 tree.addStartElement(XProcConstants.c_result);
 tree.startContent();
 tree.addText("Hello World");
 tree.addEndElement();
 tree.endDocument();
 result.write(tree.getResult());
 }
}

The jar containing the compiled java custom step you
will need to include the XProc library that defines the
custom step's signature.

M Filemode Length Date Time File
- ---------- -------- ----------- -------- ---
 drwxr-xr-x 0 8-Mar-2015 10:43:38 META-INF/
 -rw-r--r-- 843 8-Mar-2015 10:43:38 META-INF/MANIFEST.MF
 drwxr-xr-x 0 8-Mar-2015 10:43:38 com/
 drwxr-xr-x 0 8-Mar-2015 10:43:38 com/example/
 drwxr-xr-x 0 8-Mar-2015 10:43:38 com/example/library/
 -rw-r--r-- 2062 8-Mar-2015 10:43:38 com/example/library/HelloWorld.class
 drwxr-xr-x 0 8-Mar-2015 10:43:38 META-INF/annotations/
 -rw-r--r-- 31 8-Mar-2015 10:43:38 META-INF/annotations/com.xmlcalabash.core.XMLCalabash
 -rw-r--r-- 294 19-Feb-2015 15:41:00 example-library.xpl
- ---------- -------- ----------- -------- ---
 3230 9 files

Page 175 of 177

Diaries of a desperate XProc Hacker

This library just contains the step signature declaration.

<p:library version="1.0"
 xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:c="http://www.w3.org/ns/xproc-step"
 xmlns:ex="http://example.org/xmlcalabash/steps">

 <p:declare-step type="ex:hello-world">
 <p:output port="result"/>
 </p:declare-step>

</p:library>

There already exists many XML Calabash java extension
steps, all available for installation by depify today.
• xmlcalabash1-asciidoctor
• xmlcalabash1-xmlunit
• xmlcalabash1-xcc
• xmlcalabash1-rdf

• xmlcalabash1-print
• xmlcalabash1-plantuml
• xmlcalabash1-metadata-extractor
• xmlcalabash1-mathml-to-svg
• xmlcalabash1-ditaa
• xmlcalabash1-deltaxml

3. Summary

The usage of XML Calabash with depify leverages the
development and distribution of custom step libraries.

Unsurprisingly, enabling XProc's primary extension
mechanism makes XProc itself easier to use.

Additionally, developing XML Calabash custom steps
allows for distribution with pre-existing deployment
mechanisms (maven central repository).

Bibliography

[1] XProc. An XML Pipeline Language. 11th May 2010. World Wide Web Consortium (W3C).
http://www.w3.org/TR/xproc/

[2] depify.com.
http://depify.com/

[3] Regular Expressions (This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 License.).
xkcd.com.
http://xkcd.com/208

[4] definition of 'desperatus'. Wiktionary, The Free dictionary.
http://en.wiktionary.org/wiki/desperatus#Latin

[5] XML Calabash. An implementation of XProc: An XML Pipeline Language..
http://xmlcalabash.com/

[6] Muenchian grouping method. Wikipedia.
http://en.wikipedia.org/wiki/XSLT/Muenchian_grouping

[20] A case study on the impact of refactoring on quality and productivity in an agile team . Raimund Moser, Pekka
Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Giancarlo Succi. Springer Berlin Heidelberg.
http://www.researchgate.net/profile/Giancarlo_Succi/publication/
221200711_A_Case_Study_on_the_Impact_of_Refactoring_on_Quality_and_Productivity_in_an_Agile_Team/
links/0046351f7fbd1e7a41000000.pdf

Page 176 of 177

Diaries of a desperate XProc Hacker

http://www.w3.org/TR/xproc/
http://depify.com/
http://xkcd.com/208
http://en.wiktionary.org/wiki/desperatus#Latin
http://xmlcalabash.com/
http://en.wikipedia.org/wiki/XSLT/Muenchian_grouping
http://www.researchgate.net/profile/Giancarlo_Succi/publication/221200711_A_Case_Study_on_the_Impact_of_Refactoring_on_Quality_and_Productivity_in_an_Agile_Team/links/0046351f7fbd1e7a41000000.pdf
http://www.researchgate.net/profile/Giancarlo_Succi/publication/221200711_A_Case_Study_on_the_Impact_of_Refactoring_on_Quality_and_Productivity_in_an_Agile_Team/links/0046351f7fbd1e7a41000000.pdf
http://www.researchgate.net/profile/Giancarlo_Succi/publication/221200711_A_Case_Study_on_the_Impact_of_Refactoring_on_Quality_and_Productivity_in_an_Agile_Team/links/0046351f7fbd1e7a41000000.pdf

Charles Foster

XML London 2015
Conference Proceedings

Published by
XML London

103 High Street
Evesham

WR11 4DN
UK

This document was created by transforming original DocBook XML sources
into an XHTML document which was subsequently rendered into a PDF by

Antenna House Formatter.

1st edition

London 2015

ISBN 978-0-9926471-2-4

http://antennahouse.com

	XML London 2015
	Table of Contents
	General Information
	Sponsors
	Preface
	Improving Pattern Matching Performance in XSLT
	1. Introduction
	2. XSLT push mode
	3. Template rules in Saxon
	3.1. Generic match patterns

	4. Processing a DITA document
	Note
	4.1. Source document and transform
	4.2. Processing characteristics

	5. Preconditions
	6. Other possibilities
	6.1.
 “Un-disambiguating” rules
	6.2. Pretokenizing
	Note
	6.3. Using key() mechanisms

	7. Generalisation?
	8. Conclusions
	References

	It's the little things that matter
	1. Disclaimer
	2. An introduction
	3. Structured error handling with try/catch
	3.1. Syntax and use
	3.2. Improving your code
	3.3. Caveats
	3.4. Limitations

	4. Forcing statically declared modes to prevent type errors
	4.1. Syntax and use
	4.2. Improving your code
	4.3. Caveats
	4.4. Limitations

	5. Setting an entry point for your XSLT stylesheet
	5.1. Syntax and use
	5.2. Improving your code
	5.3. Caveats
	5.4. Limitations

	6. Better performance with memoization
	6.1. Syntax and use
	6.2. Improving your code
	6.3. Caveats
	6.4. Limitations

	7. Simpler templates with text value templates
	7.1. Syntax and use
	7.2. Improving your code
	7.3. Caveats
	7.4. Limitations

	8. Improve production stability by introducing assertions
	8.1. Syntax and use
	8.2. Improving your code
	8.3. Caveats
	8.4. Limitations

	9. Meta programming with shadow attributes
	9.1. Syntax and use
	9.2. Improving your code
	9.3. Caveats
	9.4. Limitations

	10. Apply templates on atomic values
	10.1. Syntax and use
	10.2. Improving your code
	10.3. Caveats
	10.4. Limitations

	11. Improve performance helping the processor decide where to apply forking
	11.1. Syntax and use
	11.2. Improving your code
	11.3. Caveats
	11.4. Limitations

	12. Conclusion
	Bibliography

	Continuous Integration for XML and RDF Data
	1. Introduction
	2. Continuous Integration
	2.1. Build Workflow
	2.2. Nightly Builds
	2.3. Unit testing
	2.4. Benefits of Continuous Integration

	3. Deployment
	4. Future Work
	5. Conclusion
	6. Acknowledgements
	Bibliography

	Vivliostyle - Web browser based CSS typesetting engine
	1. Introduction
	2. CSS Paged Media and the limitations of current implementations.
	3. Enhancing web browser's page layout with JavaScript
	4. Standardizing and implementing next generation CSS standards
	Bibliography

	Magic URLs in an XML Universe
	1. The problem
	2. The idea
	3. URLs in Java
	4. The convert URLs
	4.1. XSLT conversion step
	4.2. XQuery conversion step
	4.3. Java conversion step
	4.4. JavaScript conversion step
	4.5. Excel to XML conversion step
	4.6. JSON to XML conversion step
	4.7. HTML to XHTML conversion step
	4.8. Wrap text conversion step

	5. URL aliases
	6. Sample conversion pipelines
	6.1. Excel to DITA
	6.2. Google Sheets to DITA
	6.3. HTML to DITA
	6.4. Markdown to DITA
	6.5. XML Schema to DITA
	6.6. Java to DITA
	6.7. Javadoc to DITA
	6.8. Custom XML to SVG
	6.9. DITA Map to Schematron
	6.10. Round-tripping CSV to DITA and back

	7. Conclusions

	A rendering language for RDF
	1. Introduction
	2. Rendering RDF
	3. Just-in-time reflection
	3.1. Static reflection
	3.2. Generating reflections dynamically

	4. Normal form design
	4.1. Resources
	4.2. Predicates
	4.2.1. Resource-valued properties
	4.2.2. Literal-valued properties

	4.3. Multiple roots
	4.4. The parent and ancestor axis:backtracking
	4.5. The descendant axis: reentrancy and circularity
	4.6. The sibling axis: sibling properties

	5. An XSLT engine for RDF Graphs
	5.1. Overall architecture
	5.2. Stylesheet structure
	5.2.1. The Reflect function
	5.2.2. The Select function

	5.3. Transformation example

	6. Limitations
	7. Related work
	7.1. XSPARQL
	7.2. TriAl
	7.3. RDFXSLT
	7.4. RDF Twig
	7.5. TreeHugger
	7.6. RxSLT

	8. Conclusions and future work
	References

	Publishing with XProc
	1. Introduction
	2. Progressive enhancement
	3. Microsoft Word
	4. WordML conversion
	4.1. Challenges in conversion of WordML to XHTML

	5. Progressive enhancement and XSLT
	5.1. Using meta-programming to structure content taken from Word
	5.2. Implementation

	6. XProc
	6.1. Manifest files
	6.2. Applying XProc to the problem
	6.2.1. Loading the manifest
	6.2.2. Processing the manifest
	6.2.3. A complete pipeline

	7. Conclusions
	7.1. Issues with XProc

	Data-Driven Programming in XQuery
	1. Problem statement
	1.1. Definitions
	1.2. Real world examples
	1.3. More precisely

	2. Data Driving XQuery
	2.1. A simple example
	2.2. Python
	2.3. XSLT
	2.4. XQuery, using transform.xq
	Note
	2.5. XQuery, simple recursion
	2.6. XQuery using higher-order functions

	3. Conclusion
	4. Acknowledgments

	XML Processing with Scala and yaidom
	1. Introduction
	2. Brief introduction to Scala and Scala Collections
	3. Brief introduction to yaidom
	4. Brief introduction to the XBRL examples
	5. Simple yaidom query examples
	6. Namespace examples
	7. Extending yaidom for custom XML dialects
	8. Conclusion
	Bibliography

	Lizard
	1. Introduction
	2. Prior Experience with Data Publishing Platforms
	3. Advantages and Disadvantages
	4. Apache Jena
	5. Storing RDF
	6. Extending to a Cluster
	7. Deployment
	8. Scale
	Bibliography

	Streamlining XML Authoring Workflows
	1. Sequential and Concurrent Editing Workflows
	2. Current Systems
	2.1. XML Authoring
	2.2. Software Development

	3. Proof of Concept Design
	Note
	3.1. High-level Architecture
	3.2. User Interface Style
	3.3. DITA XML Document Format
	3.4. Proof of Concept Workflow
	Note
	3.5. Identifying features in the workflow
	3.6. Document-view design
	3.6.1. Nested changes
	3.6.2. Styling of content
	3.6.3. WYSYWIG Vs Code View

	3.7. Content and attribute change lists
	3.8. Accept and Reject Modes
	3.8.1. User Experience

	3.9. The Files Panel

	4. Proof of Concept Implementation
	4.1. Server
	4.2. Client
	4.2.1. File Management
	4.2.2. Page Rendering
	4.2.3. Transforming a Merge Result
	4.2.4. Creating a Working Merge

	Note
	4.2.5. Creating a Finalized Merge
	4.2.6. Handling User Events

	4.3. A Document Merge Scenario

	5. Conclusions

	Implementation of Portable EXPath Extension Functions
	1. Introduction
	1.1. Extension Function Costs
	1.1.1. Directly
	Restricting User Freedom

	1.1.2. Indirectly
	Fragmenting the Community

	2. Prior Art
	2.1. EXSLT
	2.2. XSLT 1.1
	2.3. FunctX
	2.4. EXQuery
	2.5. EXPath

	3. Analysis
	3.1. Commonality of EXPath Standardised Extension Functions and Implementation Type Mapping
	3.2. XPDL Implementation Survey

	4. Portable XPDL Extension Function Implementation
	4.1. Implementation Portability
	4.2. Implementation Type Mapping for Haxe
	4.3. Implementation of a portable file:exists
	4.4. XPDL Processor Vendor Implementation

	5. Summary and Conclusion
	5.1. Future Work

	A. Function Type Mapping in Haxe
	B. file:exists implementation in Haxe
	Bibliography

	Validating XSL-FO with Relax NG and Schematron
	1. Introduction
	2. Why Relax NG?
	3. Why Relax NG Compact Syntax?
	4. Generating the Relax NG and Schematron
	5. Validating FOs
	6. Validating properties
	7. Antenna House extensions
	8. Putting it all together - the onion and the string
	9. Testing
	10. Need for speed
	11. Future improvements
	12. Conclusion
	Bibliography

	The application of Schematron schemas to word-processing documents
	1. Background
	2. Quality
	3. Approaches
	3.1. The case for Schematron

	4. Types of rule
	Note
	4.1. Unexpected styles
	4.2. Unexpected sequence of styles
	4.3. Formatting of datatypes, e.g. dates
	4.4. Co-occurrence constraints

	5. Error reporting and visualisation
	5.1. SVRL
	5.2. Auto-generated XSLT
	5.3. Annotated source document
	5.4. Visualisation

	6. Simplification
	6.1. Abstraction
	6.2. Simplified source

	7. Further simplification
	7.1. Auto-generated Schematron

	8. Further applications
	9. Conclusion
	Bibliography

	XML Interfaces to the Internet of Things with XForms
	1. Introduction
	2. User Interfaces for Devices
	3. XForms
	4. Example: A Thermostat
	5. Display Values
	6. The User Interface
	7. Submitting Data
	8. Polling
	9. Repetition
	10. Multilingual Interfaces
	11. Experience
	12. Specifications and implementations
	References

	Diaries of a desperate XProc Hacker
	1. Overview
	1.1. Why XProc
	1.1.1. Adoption of a large set of dependencies and software
	1.1.2. Not the right tool for the job
	1.1.3. Java invocation adds a layer of abstraction
	1.1.4. Hard to maintain
	1.1.5. Not enough time
	1.1.6. Why XProc again ?

	1.2. Why Dependency Management?
	1.3. XML Calabash and depify solution

	2. Technical
	2.1. Architecture Overview
	2.2. Points of Interest
	2.2.1. depify github repo
	2.2.2. depify client
	2.2.3. depify.com
	2.2.4. XML Calabash extension mechanisms

	3. Summary
	Bibliography

