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The (a) real world of service provision

What to do about (some of) it

How to do that

Outline



Andy Seaborne

Editor on SPARQL query

A committer on Apache Jena

At Epimorphics Ltd

Who am I?

http://www.epimorphics.com/


➢ Epimorphics

➢ Funding : InnovateUK* 

➢ Users
○ For the discussion and encouragement

* Used to be the Technology Strategy Board.
UK Department for Business, Innovation & Skills

This work



http://environment.data.gov.uk/

http://landregistry.data.gov.uk/

Example Services

http://environment.data.gov.uk/
http://environment.data.gov.uk/
http://landregistry.data.gov.uk/
http://landregistry.data.gov.uk/


Maximise usage

Publication not application

Customer Requirements



Data publishing != Database backed web site

● Different traffic patterns
○ Expensive queries, less control
○ Bot multiplier effect

● “Admin”
○ SLAs: Heartbleed

Running Services



● Reacting to events

● Machine administration / SLAs

Problem Statement



24x7 Operation

Consistency

Goals



Makes the system easier to use
○ For users
○ For operators

Each query sees an unchanging database

… that did exist; no “bit of this, bit of that”

Clients may conspire!

About Consistency



Apache Jena TDB

➢ Node Table
○ Inline values (integers, date/dateTime, …)

➢ Indexes are covering
○ Range scans
○ All key, no value
○ No "triple table"

Id RDF TermIndex: SPO Index: POS Index: OSP



SPARQL Execution

{ ?x :p 123 . }

Convert to NodeIds

Look in POS to get all PO?, assign S to ?x

123 is an inline constant in TDB.

{ ?x :p 123 . 
  ?x :q ?v . }

A database join
Index join (Loop+substitution)

Index join (= loop) on 
  :x1 :q ?v
where :x1 is the value of ?x



Index Implementation

➢ TDB uses threaded B+Trees for indexes
○ 8K blocks 100-way B+Tree

SPO SPO SPO ------ ------ ------

Ptr Ptr ------ ------ ------

SPO SPO SPO SPO ------ ------

Ptr Ptr Ptr ------ ------

SPO SPO SPO SPO SPO SPO SPO SPO SPO SPO ------ ------



Choices

Where to introduce distribution?
Query and Update

Indexes / B+Trees Node table / Objects

Blocks Key → Value Store



This Does Not Work (very well)

➢ Easy to do (pick a KV store of your choice)
➢ Impedance mismatch

○ Too much data moving about
○ Little parallelism
○ Bad cold-start

Distribute the storage
K->V store

Index access on query processor

Query and Update

B+Trees Objects

Blocks Key→Value



Distribute

➢ Distribute the indexes
○ With modified index access

➢ Distribute the nodes
➢ Comms : Apache Thrift

Query and Update

B+Trees Objects

Blocks Key→Value



Clustered Node Table

➢ Node Table
○ N replicas; Read R / Write W

e.g. W=N and R =1 =>

Complete copies of node table on each data server

○ Can shard

○ Replaceable

Requirement: NodeId for naming



Clustered Indexes

➢ Indexes
○ Can shard by subject

○ Replicas of each shard (R=1, W=N)

○ Compound access operations



Clustered Indexes

Index

Shard 1 Shard 2 Shard 3

Machine 1 Machine 2



Modified SPARQL Execution

➢ Different unit of index access
○ subject + several predicates

(subj, pred1, pred2, pred3, …)

➢ Different join algorithms
○ Merge join
○ Parallel hash join



Configuration 1

Query server

Load Balancer (or RR-DNS)

Data server

POS 
Copy 1

PSO 
Copy 2

Data server

POS 
Copy 1

PSO 
Copy 2

Data server

Node 
Copy 1

Data server

Node 
Copy 2

Query server



Data server

Configuration 2

Load Balancer (or RR-DNS)

Node 
Copy 1

Query server

Data server

Node 
Copy 2

POS 
Copy 1

PSO 
Copy 2

POS 
Copy 1

PSO 
Copy 2

Query server



Status

Working prototype

Spin-off : TDB2



New Technology

● Copy-on-write indexes
● New transactional coordinator
● Apache Thrift encoded node table

● Side effect: TDB2
○ Arbitrary scaling transactions
○ Transactional only
○ Space recovery
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