
Lizard

A Linked Data Publishing Platform

Andy Seaborne
Epimorphics Ltd.

The (a) real world of service provision

What to do about (some of) it

How to do that

Outline

Andy Seaborne

Editor on SPARQL query

A committer on Apache Jena

At Epimorphics Ltd

Who am I?

http://www.epimorphics.com/

➢ Epimorphics

➢ Funding : InnovateUK*

➢ Users
○ For the discussion and encouragement

* Used to be the Technology Strategy Board.
UK Department for Business, Innovation & Skills

This work

http://environment.data.gov.uk/

http://landregistry.data.gov.uk/

Example Services

http://environment.data.gov.uk/
http://environment.data.gov.uk/
http://landregistry.data.gov.uk/
http://landregistry.data.gov.uk/

Maximise usage

Publication not application

Customer Requirements

Data publishing != Database backed web site

● Different traffic patterns
○ Expensive queries, less control
○ Bot multiplier effect

● “Admin”
○ SLAs: Heartbleed

Running Services

● Reacting to events

● Machine administration / SLAs

Problem Statement

24x7 Operation

Consistency

Goals

Makes the system easier to use
○ For users
○ For operators

Each query sees an unchanging database

… that did exist; no “bit of this, bit of that”

Clients may conspire!

About Consistency

Apache Jena TDB

➢ Node Table
○ Inline values (integers, date/dateTime, …)

➢ Indexes are covering
○ Range scans
○ All key, no value
○ No "triple table"

Id RDF TermIndex: SPO Index: POS Index: OSP

SPARQL Execution

{ ?x :p 123 . }

Convert to NodeIds

Look in POS to get all PO?, assign S to ?x

123 is an inline constant in TDB.

{ ?x :p 123 .
 ?x :q ?v . }

A database join
Index join (Loop+substitution)

Index join (= loop) on
 :x1 :q ?v
where :x1 is the value of ?x

Index Implementation

➢ TDB uses threaded B+Trees for indexes
○ 8K blocks 100-way B+Tree

SPO SPO SPO ------ ------ ------

Ptr Ptr ------ ------ ------

SPO SPO SPO SPO ------ ------

Ptr Ptr Ptr ------ ------

SPO SPO SPO SPO SPO SPO SPO SPO SPO SPO ------ ------

Choices

Where to introduce distribution?
Query and Update

Indexes / B+Trees Node table / Objects

Blocks Key → Value Store

This Does Not Work (very well)

➢ Easy to do (pick a KV store of your choice)
➢ Impedance mismatch

○ Too much data moving about
○ Little parallelism
○ Bad cold-start

Distribute the storage
K->V store

Index access on query processor

Query and Update

B+Trees Objects

Blocks Key→Value

Distribute

➢ Distribute the indexes
○ With modified index access

➢ Distribute the nodes
➢ Comms : Apache Thrift

Query and Update

B+Trees Objects

Blocks Key→Value

Clustered Node Table

➢ Node Table
○ N replicas; Read R / Write W

e.g. W=N and R =1 =>

Complete copies of node table on each data server

○ Can shard

○ Replaceable

Requirement: NodeId for naming

Clustered Indexes

➢ Indexes
○ Can shard by subject

○ Replicas of each shard (R=1, W=N)

○ Compound access operations

Clustered Indexes

Index

Shard 1 Shard 2 Shard 3

Machine 1 Machine 2

Modified SPARQL Execution

➢ Different unit of index access
○ subject + several predicates

(subj, pred1, pred2, pred3, …)

➢ Different join algorithms
○ Merge join
○ Parallel hash join

Configuration 1

Query server

Load Balancer (or RR-DNS)

Data server

POS
Copy 1

PSO
Copy 2

Data server

POS
Copy 1

PSO
Copy 2

Data server

Node
Copy 1

Data server

Node
Copy 2

Query server

Data server

Configuration 2

Load Balancer (or RR-DNS)

Node
Copy 1

Query server

Data server

Node
Copy 2

POS
Copy 1

PSO
Copy 2

POS
Copy 1

PSO
Copy 2

Query server

Status

Working prototype

Spin-off : TDB2

New Technology

● Copy-on-write indexes
● New transactional coordinator
● Apache Thrift encoded node table

● Side effect: TDB2
○ Arbitrary scaling transactions
○ Transactional only
○ Space recovery

Paul Hirst / CC-BY-SA-2.5

http://commons.wikimedia.org/wiki/User:Phirst
http://creativecommons.org/licenses/by-sa/2.5/
http://commons.wikimedia.org/wiki/User:Phirst

