
An XML-based Approach for
Data Preprocessing of

Multi-Label Classification Problems

Eduardo Corrêa Gonçalves, Vanessa Braganholo

Universidade Federal Fluminense (UFF) – Brazil

XML London 2014, July 7-8, University College London

Outline
 Introduction

 Multi-Label Classification

 ARFF versus XML

 XML-based Preprocessing of the IMDb Dataset

 The IMDb dataset

 A Study on the Words

 Data Transformation

 Conclusions and Future Work

 Classification

 Active topic of research in the fields of A.I. and Data Mining.

 Task of automatically assigning objects to discrete classes (known as “labels”)
based on the features of the objects.

 I.e.: predicting the category(ies) to which an object belongs.

 Example: Spam detection

Introduction (1/4)

spamClassifier

object: message label: spam

Introduction (2/4)

Single-Label

Classification

(SLC)

Multi-Label

Classification

(MLC)

• Object must be associated to one and
only one class label.

• Spam detection – an incoming e-mail
either belongs to the class “spam” or to
the class “normal”.

• Loan risk prediction - a loan
applicant can be classified as “low”,
“medium” or “high” credit risk.

• Objects can be assigned to various
labels.

• Text categorization - A news article
about the 2014 Football World Cup can
be classified as “Sports”, “Politics” and
“Brazil”.

 Problem Statement

 It is well-known that a large (perhaps the largest) part of the available data in the

world takes the form of free text on the Web.

Introduction (3/4)

 There has been a increasing interest in the

application of classification techniques to
these data!

 E.g.: sentiment analysis.

 PROBLEM: text data are tend to be more

difficult to clean and transform (highly

susceptible to noisy)

 CONSEQUENCE: low quality data low
quality classification.

 Our proposal:

 The use of an XML-based approach for data preprocessing in multi-label

classification of text documents.

Introduction (4/4)
 Goal: demonstrate that XML facilitates the major steps involved in preprocessing.

 Classification task: associate movie summaries to genres.

 Data: IMDb (Internet Movie Database - www.imdb.com)

Multi-label Classification (1/5)

 Scene Classification:

mountains + trees

 Music into Emotions:

 Functional Genomics: predicting functional classes of genes and proteins

 Recently, several modern applications of MLC have emerged:

 Text Classification: documents into topics (ex: sports, ecology, religion, …)

Multi-label Classification (2/5)
 How to build a multi-label classifier (1/2)?

 MLC algorithms need to learn from a set objects whose classes are known:

 The training dataset.

 Example:

 MLC task: associating movies to genres according to their summaries.

 Four possible genres: “drama”, “romance”, “horror”, “action”.

 Training dataset

Text Id Feature Vector
(words of the

movie summary)

Drama Romance Horror Action

1 x1

2 x2

3 x3

4 x4

5 x5

 How to build a multi-label classifier (1/2)?

 From the training set, the MLC algorithm learns a classifier.

Multi-label Classification (3/5)

Training
Dataset

Classifier
Induction

Classifier

New Object

Object’s Labels

 Classifier: function that receives the features of a new object as input and outputs

its predicted label set

h : X {0,1}q where q = number of labels

 Several distinct techniques have been developed for building classifiers:

 k-Nearest Neighbours (k-NN).

 Decision trees.

 Probabilistic classifiers.

 Neural networks.

 Support vector machines.

 They are based on different mathematical principles for addressing the classification

task.

 In the next slide we give an example of classification with the k-NN technique.

Multi-label Classification (4/5)

 Example: k-Nearest Neighbours.

 A new object x is classified based on the k objects in the training set which are

more similar to it.

 Example: new object = “The Lunchbox” k=3

Multi-label Classification (5/5)

Hot Fuzz

City of God

Fahrenheit

451

Slumdog

Millionaire
127 Hours

Shaun of

the Dead

Mon

Meilleur Ami

Midnight

in Paris

The Bridges of

Madison County

The Lunchbox

 Neighbour1– Slumdog Millionaire (class labels = Action, Romance, Drama)

 Neighbour2 – Midnight in Paris (class labels = Romance, Fantasy, Comedy)

 Neighbour3 – The Bridges of Madison County (class labels = Romance, Drama)

 The Lunchbox is assigned the labels Romance and Drama

Central

Station

Annie

Hall

ARFF versus XML (1/7)
 Most classification tools work with training data either structured in:

 Relational tables; or

 Flat-files (one record per line).

ARFF versus XML (2/7)
 The ARFF format

 Flat-file format

 Popularly used in the data mining field

@relation loan_risk_prediction

@attribute age numeric
@attribute gender {F, M}
@attribute marital_status {SINGLE, MARRIED, DIVORCED, WIDOWED}
@attribute monthly_income numeric
@attribute risk {LOW, MEDIUM, HIGH}

@data
18,M,SINGLE,550.00,HIGH
38,F,MARRIED,1700.00,LOW
23,M,MARRIED,1300.00,MEDIUM
32,M,DIVORCED,2500.00,LOW
19,M,SINGLE,900.00,HIGH
68,F,WIDOWED,2200.00,MEDIUM
34,M,MARRIED,1350.00,MEDIUM
32,F,MARRIED,1400.00,LOW
20,F,MARRIED,1100.00,HIGH
20,M,DIVORCED,2100.00,LOW

ARFF file for
loan risk prediction

ARFF versus XML (3/7)

@relation loan_risk_prediction

@attribute age numeric
@attribute gender {F, M}
@attribute marital_status {SINGLE, MARRIED, DIVORCED, WIDOWED}
@attribute monthly_income numeric
@attribute risk {LOW, MEDIUM, HIGH}

@data
18,M,SINGLE,550.00,HIGH
38,F,MARRIED,1700.00,LOW
23,M,MARRIED,1300.00,MEDIUM
32,M,DIVORCED,2500.00,LOW
19,M,SINGLE,900.00,HIGH
68,F,WIDOWED,2200.00,MEDIUM
34,M,MARRIED,1350.00,MEDIUM
32,F,MARRIED,1400.00,LOW
20,F,MARRIED,1100.00,HIGH
20,M,DIVORCED,2100.00,LOW

Header section

Data section

Class attribute

 The ARFF format

 Flat-file format

 Popularly used in the data mining field

 The ARFF format

 Simple and intuitive.

 Sufficient for several classification tasks… as long as they involve:

 Relational data (“one record per line”).

 Conventional attributes (“age”, “salary”, “marital status”, …).

 However ARFF is not suitable for text classification… this is because:

 We normally have to deal with multiple labels.

 We need to deal with a “less conventional” attribute:

 The words that appear documents!

ARFF versus XML (4/7)

 Remembering our classification task:

 Prediction of movie genres in function of their summaries.

ARFF versus XML (5/7)

@relation movies

@attribute a {0,1}
@attribute abandon {0,1}
@attribute about {0,1}
…
@attribute zero {0,1}
@attribute zoology {0,1}
@attribute genre_action{0,1}
@attribute genre_comedy{0,1}
@attribute genre_drama {0,1}
…
@attribute genre_romance {0,1}

@data
0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,...
1,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,...
0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,...
…

ARFF versus XML (6/7)
 Example of ARFF file for movie genres classification.

 Problems:

 Each word must be declared as

a binary attribute in the header

(bag of words)

IMDb: 190,000 words
 154,000 movies

 Cumbersome to query, explore

and transform.

 Highly sparse.

 Does not support the
specification of multi-valued

attributes:

 Movies with multiple

genres or plots.

ARFF versus XML (7/7)
 So… Why not to use XML?

 Text represented in a natural

way.

 Easy to query, explore and
transform:

 SAX

 XQuery

 XSLT

 Definition of multi-valued
attributes is straightforward

(movies with multiple plots and

genres).

Experiment (1/10)
 Goal:

 Transform the original IMDb data* (plain text files) into a XML database.

 Study and preprocess this database.

 As a result, we will obtain a dataset, ready to be mined.

 high quality data high quality classification.

*The IMDb plain text files can be download: www.imdb.com/interfaces

Data Source
(raw data)

Plots + Genres

XML

Step 1:
Dataset

Generation

IMDb plain text files*:
- “Plots”
- “Genres”

Step 2:
Preprocessing

XML Dataset

Preprocessed Data

XML

Transformed XML Dataset
(prepared to be mined)

http://www.imdb.com/interfaces

Experiment (2/10)
 Step 1 – Generation of the “raw” XML dataset

plot.list: 256,486 movies

3.88M lines

genres.list: 778,676 movies

1.33M lines

 Merging of the two plain IMDb files into a single XML dataset.

 Result: XML file containing 153,499 movies.

Experiment (3/10)
 Step 1 – Generation of the “raw” XML dataset

 Nice file!!!

 But not yet ready to be

mined!

 The reasons are presented in
the next slides

 Let’s go to the Step 2 of

the experiment.

Experiment (4/10)
 Step 2 – Preprocessing

 Two sub-steps:

1. STUDY:

 The XQuery Language and the SAX API were used to querying and

exploring the XML dataset.

2. TRANSFORMATION:

 According to the results of the study, we clean and transform the XML
dataset.

Experiment (5/10)
 Step 2.1 – Preprocessing / Study

 XQuery was used to generate frequency tables

<freq_genres>
{
for $u in distinct-values(doc("imdb.xml")//movie/class)
let $b := doc("imdb.xml")//movie[class=$u]
return
<row>
<genre>{$u}</genre>
<count>{count($b)}</count>
</row>
}
</freq_genres>

<freq_genres>
<row>
<genre>Drama</genre>
<count>59177</count>

</row>
<row>

<genre>Action</genre>
<count>14416</count>

</row>
<row>

<genre>Comedy</genre>
<count>38373</count>

</row>
<row>

<genre>Crime</genre>
<count>10875</count>

</row>
<row>

<genre>Adult</genre>
<count>1625</count>

</row>
<row>

<genre>Adventure</genre>
<count>9596</count>

</row>
...

</freq_genres>

Experiment (6/10)
 Step 2.1 – Preprocessing / Study

 SAX was used to perform a study on the words.

 Some results:

Description Result

Total number of words 16.305.677

Number of distinct words 187.718

About half of the words occur only once “agnosticism”, “polyvision”

Several misspelled words and typos “marjuana”, “caracters”, “theforce”, ...

Several proper names “Robert” (freq=3,053), “Rosemary” (229), “Carlos” (1,363),
“Marquinhos” (5), “Aleksandrov” (2)

Synonyms, multiple languages “Brazil” (741), “Brasil” (49), ...

 Step 2.2 – Preprocessing / Transformations

 From the results of our study we could do:

 Data reduction:

 Words that appeared only once were removed.

 Removal of stop words (details soon)

 Stemming (details soon)

 It would also be possible to perform data cleaning

 E.g: correction of typos.

Experiment (7/10)

 Step 2.2 – Preprocessing –Transformations

 Stop Words.

 Words that tend to be very frequent, but do not help on discriminating the

movie genres.

 articles, prepositions, adverbs, …

 E.g.: “the” occurs in 100% of the movies...

 On the IMDb domain, there are also specific words that can be regarded

as useless: “movie”, “film”, the proper names.

Experiment (8/10)

<?xml version="1.0" encoding="UTF-8"?>

<stopwords>

<stopword>the</stopword>

<stopword>and</stopword>

<stopword>to</stopword>

<stopword>mr</stopword>

<stopword>that</stopword>

<stopword>from</stopword>

<stopword>movie</stopword>

...

</stopwords>

Experiment (9/10)
 Step 2.2 – Preprocessing –Transformations

 Stemming

 The process of conflating the variant forms of a word into a compact

representation: the stem.

 Intuition: morphological variants of words typically have similar interpretations

and can be considered as equivalent for the purpose of data mining analysis.

 Example:

 The words “educate”, “educational”, “education” and “educating” could all be

reduced to the stem “educ”.

 In this work we used the Porter Algorithm* (JAVA implementation).

*The specification of the Porter Algorithm can be found at: http://tartarus.org/martin/PorterStemmer/

http://tartarus.org/martin/PorterStemmer/

Experiment (10/10)
 Summary

Raw Data

XML

Original XML Dataset

187,817 words

Transformed XML Dataset
(prepared to be mined)

79,753 stems

Preprocessed Data

XML

Conclusions
 XML facilitates the major steps involved in data preprocessing of text data.

 With the use of the SAX and XQuery, we could easily:

 Querying, exploring and transforming the IMDb dataset.

Future Work (1/2)
 Define the final format of the preprocessed XML dataset.

 Develop an algorithm to direct mining this dataset.

<?xml version="1.0" encoding="UTF-8"?>

<imdb>

<movie id=1>

<term>

<stem>comput</stem>

<weigth>0.8730</weigth>

</term>

<term>

<stem>hyper</stem>

<weigth>0.3020</weigth>

</term>

...

<class>drama</class>

<class>suspense</class>

</movie>

...

</imdb>

 Evaluating the feasibility of developing an XSLT version of the Porter
Stemming Algorithm.

 This algorithm relies on the idea that the suffixes in English language are mostly

made up of a combination of smaller and simpler suffixes.

 It works in 5 steps:

 Within each step the word is tested against a few set of suffix
transformation rules.

 If a test results in TRUE, the word suffix is removed or transformed; The

control moves to the next step.

 Otherwise, the next rule in the step is tested.

RELATION -> RELATE -> RELAT

Future Work (2/2)

